植物生态学报 ›› 2021, Vol. 45 ›› Issue (5): 539-551.DOI: 10.17521/cjpe.2020.0330
所属专题: 青藏高原植物生态学:群落生态学; 微生物生态学; 生物多样性
收稿日期:
2020-10-10
接受日期:
2021-02-04
出版日期:
2021-05-20
发布日期:
2021-03-09
通讯作者:
牛克昌
作者简介:
*牛克昌:ORCID: 0000-0002-2131-2279(kechangniu@nju.edu.cn)基金资助:
Received:
2020-10-10
Accepted:
2021-02-04
Online:
2021-05-20
Published:
2021-03-09
Contact:
NIU Ke-Chang
Supported by:
摘要:
土壤微生物多样性的形成、维持和变化机理是生态学研究的核心内容, 已有大量研究表明土壤微生物群落构建不仅受到土壤环境的深刻影响, 也与植物群落物种多样性密切相关。由于自然群落中土壤环境和植物多样性协同影响土壤微生物, 难以区分和厘清植物多样性和土壤环境对土壤微生物多样性构建的各自影响。该研究基于在青藏高原高寒草地构建的人工草地群落, 比较分析了3种优势禾本科牧草单播和混播及施肥处理13年后, 土壤细菌和真菌物种多样性及其与植物群落和土壤理化因子的关系。主要结果: 1)与各单播处理相比, 3种牧草两两混播一致显著降低了土壤细菌群落的丰富度和多样性, 其中变形菌门和放线菌门相对丰度显著增加, 而酸杆菌门、拟杆菌门和浮霉菌门相对丰度显著减小; 牧草混播对土壤真菌多样性没有显著影响。2)牧草混播显著降低了土壤pH和土壤全氮含量, 增加了土壤全磷含量; 施肥显著降低土壤pH, 增加了土壤速效磷含量; 但这些土壤理化因子的变化不足以解释土壤细菌和真菌多样性在处理间的差异。3)施肥显著提高了植物群落地上生物量, 降低了植物物种丰富度, 土壤细菌多样性随植物物种丰富度增加而减小, 而与植物生物量变化无关。该研究在野外条件下, 通过长期控制实验揭示了高寒草地禾草混播并不增加土壤微生物多样性, 为高寒地区牧草混播人工草地实践提供了科学依据。
姜鑫, 牛克昌. 青藏高原禾草混播对土壤微生物多样性的影响. 植物生态学报, 2021, 45(5): 539-551. DOI: 10.17521/cjpe.2020.0330
JIANG Xin, NIU Ke-Chang. Effects of grass mixed-sowing on soil microbial diversity on the Qingzang (Tibetan) Plateau. Chinese Journal of Plant Ecology, 2021, 45(5): 539-551. DOI: 10.17521/cjpe.2020.0330
变量 Variable | 变异度 Variability (%) | F | 混播 Mixed- Sowing | 施肥 Fertilized | ||
---|---|---|---|---|---|
单播/混播 Single-sowing/Mixed-sowing (df = 1) | 施肥/不施肥 Fertilized/Unfertilized (df = 2) | 单播 Single-sowing | 混播 Mixed-sowing | ||
土壤微生物多样性 Soil microbial diversity | |||||
细菌丰富度(Chao1) Bacterial richness (Chao1) | 38.33 | 37.87* | 2.72 | 0.69 | -96.92* | -30.44 | -13.61 |
细菌Shannon多样性 Bacterial Shannon diversity | 44.35 | 41.51* | 0.15 | 0.04 | -0.60* | -0.02 | -0.05 |
真菌丰富度(Chao1) Fungal richness (Chao1) | 16.03 | 3.10 | 2.18 | 0.50 | -28.22 | 19.30 | -12.65 |
真菌Shannon多样性 Fungal Shannon diversity | 8.16 | 3.36 | 7.14 | 1.33 | -0.15 | -0.04 | -0.50 |
土壤理化因子 Soil edaphic factor | |||||
土壤pH Soil pH | 18.17 | 55.48* | 27.47 | 7.25* | -0.22* | -0.24* | -0.12* |
土壤湿度 Soil humidity | 10.95 | 3.49 | 9.01 | 1.87 | 0.02 | -0.01 | -0.02 |
土壤全氮含量 Soil total nitrogen content | 68.81 | 51.36* | 2.46 | 1.47 | -0.21* | 0.06 | 0.00 |
土壤全磷含量 Soil total phosphorus content | 41.15 | 16.46* | 5.23 | 1.68 | 1.23* | 0.18 | 0.46 |
土壤有效氮含量 Soil available nitrogen content | 0.38 | 0.77 | 0.80 | 0.12 | -0.00 | -0.18 | 0.00 |
土壤速效磷含量 Soil available phosphorus content | 8.25 | 4.43 | 31.78 | 8.47* | 0.04 | 0.08* | 0.05* |
土壤有机碳含量 Soil organic carbon content | 0.52 | 0.26 | 9.07 | 1.54 | 1.20 | 3.01 | -0.42 |
植物群落 Plant community | |||||
植物地上生物量 Plant aboveground biomass | 1.45 | 0.44 | 27.98 | 6.83* | -11.20 | 14.36 | 26.93* |
植物物种丰富度 Plant species richness | 0.84 | 1.01 | 34.08 | 7.69* | 1.33 | -1.11 | -4.89* |
表1 广义线性混合模型检验混播和施肥对土壤微生物多样性的影响
Table 1 Summary of the effect of mix-sowing and fertilization on variation in soil microbial diversity tested by generalized linear mixed effect model
变量 Variable | 变异度 Variability (%) | F | 混播 Mixed- Sowing | 施肥 Fertilized | ||
---|---|---|---|---|---|
单播/混播 Single-sowing/Mixed-sowing (df = 1) | 施肥/不施肥 Fertilized/Unfertilized (df = 2) | 单播 Single-sowing | 混播 Mixed-sowing | ||
土壤微生物多样性 Soil microbial diversity | |||||
细菌丰富度(Chao1) Bacterial richness (Chao1) | 38.33 | 37.87* | 2.72 | 0.69 | -96.92* | -30.44 | -13.61 |
细菌Shannon多样性 Bacterial Shannon diversity | 44.35 | 41.51* | 0.15 | 0.04 | -0.60* | -0.02 | -0.05 |
真菌丰富度(Chao1) Fungal richness (Chao1) | 16.03 | 3.10 | 2.18 | 0.50 | -28.22 | 19.30 | -12.65 |
真菌Shannon多样性 Fungal Shannon diversity | 8.16 | 3.36 | 7.14 | 1.33 | -0.15 | -0.04 | -0.50 |
土壤理化因子 Soil edaphic factor | |||||
土壤pH Soil pH | 18.17 | 55.48* | 27.47 | 7.25* | -0.22* | -0.24* | -0.12* |
土壤湿度 Soil humidity | 10.95 | 3.49 | 9.01 | 1.87 | 0.02 | -0.01 | -0.02 |
土壤全氮含量 Soil total nitrogen content | 68.81 | 51.36* | 2.46 | 1.47 | -0.21* | 0.06 | 0.00 |
土壤全磷含量 Soil total phosphorus content | 41.15 | 16.46* | 5.23 | 1.68 | 1.23* | 0.18 | 0.46 |
土壤有效氮含量 Soil available nitrogen content | 0.38 | 0.77 | 0.80 | 0.12 | -0.00 | -0.18 | 0.00 |
土壤速效磷含量 Soil available phosphorus content | 8.25 | 4.43 | 31.78 | 8.47* | 0.04 | 0.08* | 0.05* |
土壤有机碳含量 Soil organic carbon content | 0.52 | 0.26 | 9.07 | 1.54 | 1.20 | 3.01 | -0.42 |
植物群落 Plant community | |||||
植物地上生物量 Plant aboveground biomass | 1.45 | 0.44 | 27.98 | 6.83* | -11.20 | 14.36 | 26.93* |
植物物种丰富度 Plant species richness | 0.84 | 1.01 | 34.08 | 7.69* | 1.33 | -1.11 | -4.89* |
图1 混播和施肥对土壤细菌和真菌多样性的影响(平均值±标准误)。A, 细菌丰富度(Chao 1)。B, 细菌Shannon多样性。C, 真菌丰富度(Chao 1)。D, 真菌Shannon多样性。En, 垂穗披碱草; Fo, 羊茅; Fs, 中华羊茅。
Fig. 1 Effect of mixed-sowing and fertilization on variation in soil bacterial and fungal diversities relative to single-sowing and unfertilized treatment (mean ± SE). A, bacterial richness (Chao 1). B, bacterial Shannon diversity. C, fungal richness (Chao 1). D, fungal Shannon diversity. En, Elymus nutans; Fo, Festuca ovina; Fs, F. sinensis.
图2 单播和混播处理中, 土壤细菌和真菌各门水平优势菌群相对丰度比较。A, 细菌门水平优势类群相对丰度。B, 真菌门水平优势类群相对丰度。En, 垂穗披碱草; Fo, 羊茅; Fs, 中华羊茅。图中*表示与单播与混播处理间该菌群相对丰度的差异显著(p < 0.05)。其他细菌包括装甲菌门、衣原体门、绿弯菌门、蓝藻门、迷踪菌门、厚壁菌门、芽单胞菌门、硝化螺旋菌门等16个细菌门类; 其他真菌包括壶菌门、球囊菌门以及3种未知真菌门共5个真菌门类。
Fig. 2 Relative abundance of dominant phyla of soil bacteria and fungi in single- and mixed-sowing plots, with significant difference between them (p < 0.05) indicated by *. A, Dominant phyla of bacteria. B, Dominant phyla of fungi. En, Elymus nutans; Fo, Festuca ovina; Fs, F. sinensis. Others of bacteria include Armatimonadetes, BRC1, Candidatus_Saccharibacteria, Chlamydiae, Chloroflexi, Cyanobacteria, Elusimicrobia, Firmicutes, Gemmatimonadetes, Ignavibacteriae, Latescibacteria, Nitrospirae, Parcubacteria, Unclassified_Bacteria, candidate_division_WPS-1 and candidate_division_WPS-2. Others of fungi include Chytridiomycota, Glomeromycota and three uclassified fungi phyla.
微生物类群 Microbes taxon | 变异度 Variability (%) | F | 混播 Mixed- Sowing | 施肥 Fertilized | ||
---|---|---|---|---|---|
单播/混播 Single-sowing/Mixed-sowing (df = 1) | 施肥/不施肥 Fertilized/Unfertilized (df = 2) | 单播 Single- sowing | 混播 Mixed- sowing | ||
细菌门水平优势类群 Dominant phylum of bacteria | |||||
酸杆菌门 Acidobacteria | 32.84 | 11.81* | 2.48 | 0.65 | -0.05* | 0.00 | 0.02 |
放线菌门 Actinobacteria | 12.42 | 9.13* | 13.84 | 2.83 | 0.01* | 0.00 | -0.01* |
拟杆菌门 Bacteroidetes | 34.68 | 13.62* | 0.93 | 0.24 | -0.03* | 0.01 | 0.00 |
浮霉菌门 Planctomycetes | 21.33 | 5.59 | 0.73 | 0.16 | -0.02 | 0.00 | 0.00 |
变形菌门 Proteobacteria | 32.67 | 28.11* | 0.47 | 0.11 | 0.08* | -0.01 | -0.01 |
疣微菌门 Verrucomicrobia | 0.23 | 0.04 | 8.19 | 1.77 | 0.00 | 0.01 | 0.01 |
真菌门水平优势菌群 Dominant phylum of fungi | |||||
子囊菌门 Ascomycota | 1.07 | 0.85 | 1.25 | 0.19 | -0.05 | 0.01 | 0.05 |
担子菌门 Basidiomycota | 2.03 | 1.82 | 1.14 | 0.18 | 0.02 | -0.04 | -0.01 |
接合菌门 Zygomycota | 1.51 | 0.82 | 4.47 | 0.72 | 0.04 | 0.04 | 0.06 |
表2 广义线性混合模型检验混播和施肥对土壤微生物优势菌群(门水平)的影响
Table 2 Summary of the effect of mix-sowing and fertilization on variation in dominant phyla of soil microbes tested by generalized linear mixed effect model
微生物类群 Microbes taxon | 变异度 Variability (%) | F | 混播 Mixed- Sowing | 施肥 Fertilized | ||
---|---|---|---|---|---|
单播/混播 Single-sowing/Mixed-sowing (df = 1) | 施肥/不施肥 Fertilized/Unfertilized (df = 2) | 单播 Single- sowing | 混播 Mixed- sowing | ||
细菌门水平优势类群 Dominant phylum of bacteria | |||||
酸杆菌门 Acidobacteria | 32.84 | 11.81* | 2.48 | 0.65 | -0.05* | 0.00 | 0.02 |
放线菌门 Actinobacteria | 12.42 | 9.13* | 13.84 | 2.83 | 0.01* | 0.00 | -0.01* |
拟杆菌门 Bacteroidetes | 34.68 | 13.62* | 0.93 | 0.24 | -0.03* | 0.01 | 0.00 |
浮霉菌门 Planctomycetes | 21.33 | 5.59 | 0.73 | 0.16 | -0.02 | 0.00 | 0.00 |
变形菌门 Proteobacteria | 32.67 | 28.11* | 0.47 | 0.11 | 0.08* | -0.01 | -0.01 |
疣微菌门 Verrucomicrobia | 0.23 | 0.04 | 8.19 | 1.77 | 0.00 | 0.01 | 0.01 |
真菌门水平优势菌群 Dominant phylum of fungi | |||||
子囊菌门 Ascomycota | 1.07 | 0.85 | 1.25 | 0.19 | -0.05 | 0.01 | 0.05 |
担子菌门 Basidiomycota | 2.03 | 1.82 | 1.14 | 0.18 | 0.02 | -0.04 | -0.01 |
接合菌门 Zygomycota | 1.51 | 0.82 | 4.47 | 0.72 | 0.04 | 0.04 | 0.06 |
图3 单播和混播处理中土壤微生物群落结构。A, 细菌群落。B, 真菌群落。En, 垂穗披碱草; Fo, 羊茅; Fs, 中华羊茅。
Fig. 3 Difference in soil microbial community compositions in single- and mixed-sowing plots. A, Soil bacterial community composition. B, Soil fungal community composition. En, Elymus nutans; Fo, Festuca ovina; Fs, F. sinensis. PAB, plant aboveground biomass; PSR, plant species richness; SAN, soil available nitrogen; SAP, soil available phosphorus; SOC, soil organic carbon; STN, soil total nitrogen; STP, soil total phosphorus.
图4 土壤细菌和真菌多样性与土壤理化因子和植物群落关系的多元相关分析。A, 细菌。B, 真菌。En, 垂穗披碱草; Fo, 羊茅; Fs, 中华羊茅。Wilks’ Lambda多元检验显示单播和混播差异显著(p < 0.05)。
Fig. 4 Generalized canonical discriminant analysis for links among soil bacterial and fungal diversities, edaphic factors and plant community. A, Bacteria. B, Fungal. En, Elymus nutans; Fo, Festuca ovina; Fs, F. sinensis. There are significant difference between single- and mixed-sowing plots tested by a Wilks’ lambda multivariate test. PAB, plant aboveground biomass; PSR, plant species richness; SAN, soil available nitrogen; SAP, soil available phosphorus; SOC, soil organic carbon; STN, soil total nitrogen; STP, soil total phosphorus.
固定因子 Fixed factor | 细菌丰富度(Chao1) Bacterial richness (Chao1) R2 = 0.57* | 细菌Shannon多样性 Bacterial Shannon diversity R2 = 0.57* | 真菌丰富度(Chao1) Fungal richness (Chao1) R2 = 0.35 | 真菌Shannon多样性 Fungal Shannon diversity R2 = 0.19 |
---|---|---|---|---|
土壤理化因子 soil edaphic factor | ||||
土壤pH Soil pH | -15.24 ± 13.55 | -0.10 ± 0.09 | -9.79 ± 12.88 | 0.05 ± 0.18 |
土壤湿度 Soil humidity | -25.96 ± 11.78* | -0.09 ± 0.08 | -21.80 ± 11.20 | -0.13 ± 0.16 |
土壤全氮含量 Soil total nitrogen content | 5.62 ± 19.72 | 0.13 ± 0.13 | 23.13 ± 19.02 | 0.04 ± 0.27 |
土壤全磷含量 Soil total phosphorus content | -3.28 ± 13.36 | -0.04 ± 0.08 | -16.29 ± 12.92 | -0.11 ± 0.18 |
土壤有效氮含量 Soil available nitrogen content | -13.50 ± 9.53 | -0.09 ± 0.06 | 3.67 ± 9.01 | 0.12 ± 0.13 |
土壤速效磷含量 Soil available phosphorus content | 28.74 ± 11.99* | 0.11 ± 0.08 | 1.07 ± 11.48 | 0.03 ± 0.17 |
土壤有机碳含量 Soil organic carbon content | -0.25 ± 9.82 | 0.01 ± 0.06 | -24.04 ± 9.38* | -0.05 ± 0.14 |
植物群落 Plant community | ||||
植物地上生物量 Plant aboveground biomass | -4.35 ± 10.83 | -0.10 ± 0.07 | -14.30 ± 10.47 | -0.13 ± 0.15 |
植物物种丰富度 Plant species richness | -23.85 ± 10.77* | -0.14 ± 0.07 | 5.89 ± 10.18 | -0.07 ± 0.15 |
处理影响 Treatment effect | ||||
混播 Mixed-sowing | -91.07 ± 38.55* | -0.47 ± 0.24 | 13.46 ± 38.35 | -0.13 ± 0.53 |
施肥 Fertilized | -103.52 ± 34.32* | -0.37 ± 0.22 | 10.27 ± 32.62 | -0.20 ± 0.48 |
表3 广义线性混合模型检验土壤微生物多样性与各土壤理化因子及植物群落的相关关系(平均值±标准误)
Table 3 Association of soil microbial diversity with edaphic factors and plant community tested by generalized linear mixed effect model (mean ± SE)
固定因子 Fixed factor | 细菌丰富度(Chao1) Bacterial richness (Chao1) R2 = 0.57* | 细菌Shannon多样性 Bacterial Shannon diversity R2 = 0.57* | 真菌丰富度(Chao1) Fungal richness (Chao1) R2 = 0.35 | 真菌Shannon多样性 Fungal Shannon diversity R2 = 0.19 |
---|---|---|---|---|
土壤理化因子 soil edaphic factor | ||||
土壤pH Soil pH | -15.24 ± 13.55 | -0.10 ± 0.09 | -9.79 ± 12.88 | 0.05 ± 0.18 |
土壤湿度 Soil humidity | -25.96 ± 11.78* | -0.09 ± 0.08 | -21.80 ± 11.20 | -0.13 ± 0.16 |
土壤全氮含量 Soil total nitrogen content | 5.62 ± 19.72 | 0.13 ± 0.13 | 23.13 ± 19.02 | 0.04 ± 0.27 |
土壤全磷含量 Soil total phosphorus content | -3.28 ± 13.36 | -0.04 ± 0.08 | -16.29 ± 12.92 | -0.11 ± 0.18 |
土壤有效氮含量 Soil available nitrogen content | -13.50 ± 9.53 | -0.09 ± 0.06 | 3.67 ± 9.01 | 0.12 ± 0.13 |
土壤速效磷含量 Soil available phosphorus content | 28.74 ± 11.99* | 0.11 ± 0.08 | 1.07 ± 11.48 | 0.03 ± 0.17 |
土壤有机碳含量 Soil organic carbon content | -0.25 ± 9.82 | 0.01 ± 0.06 | -24.04 ± 9.38* | -0.05 ± 0.14 |
植物群落 Plant community | ||||
植物地上生物量 Plant aboveground biomass | -4.35 ± 10.83 | -0.10 ± 0.07 | -14.30 ± 10.47 | -0.13 ± 0.15 |
植物物种丰富度 Plant species richness | -23.85 ± 10.77* | -0.14 ± 0.07 | 5.89 ± 10.18 | -0.07 ± 0.15 |
处理影响 Treatment effect | ||||
混播 Mixed-sowing | -91.07 ± 38.55* | -0.47 ± 0.24 | 13.46 ± 38.35 | -0.13 ± 0.53 |
施肥 Fertilized | -103.52 ± 34.32* | -0.37 ± 0.22 | 10.27 ± 32.62 | -0.20 ± 0.48 |
[1] |
Bahram M,Hildebrand F,Forslund SK,Anderson JL,Soudzilovskaia NA,Bodegom PM,Bengtsson-Palme J,Anslan S,Coelho LP,Harend H,Huerta-Cepas J,Medema MH,Maltz MR,Mundra S,Olsson PA,Pent M,Põlme S,Sunagawa S,Ryberg M,Tedersoo L,Bork P(2018).Structure and function of the global topsoil microbiome.Nature,560, 233-237.
DOI URL |
[2] |
Bardgett RD,van der Putten WH(2014).Belowground biodiversity and ecosystem functioning.Nature,515, 505-511.
DOI URL |
[3] |
Boyer AG,Jetz W(2014).Extinctions and the loss of ecological function in island bird communities.Global Ecology and Biogeography,23, 679-688.
DOI URL |
[4] | Callaghan TV,Jonasson S,Nichols H,Heywood RB,Wookey PA,Wadhams P,Dowdeswell JA,Schofield AN(1995).Arctic terrestrial ecosystems and environmental change.Philosophical Transactions: Physical and Engineering Sciences,352, 259-276. |
[5] |
Chen C,Chen HYH,Chen XL,Huang ZQ(2019).Meta-analysis shows positive effects of plant diversity on microbial biomass and respiration.Nature Communications,10, 1332. DOI:10.1038/s41467-019-09258-y.
DOI URL |
[6] | Chen Y,Lü GH,Li Y(2018).Soil microbial functional diversity of rhizosphere and non-rhizosphere of three dominant herbaceous plants in the Dushanzi District.Acta Ecologica Sinica,38, 3110-3117. |
[陈悦,吕光辉,李岩(2018).独山子区优势草本植物根际与非根际土壤微生物功能多样性.生态学报,38, 3110-3117.] | |
[7] |
Civitello DJ,Cohen J,Fatima H,Halstead NT,Liriano J,McMahon TA,Ortega CN,Sauer EL,Sehgal T,Young S,Rohr JR(2015).Biodiversity inhibits parasites: broad evidence for the dilution effect.Proceedings of the National Academy of Sciences of the United States of America,112, 8667-8671.
DOI PMID |
[8] |
de Vries FT,Hoffland E,van Eekeren N,Brussaard L,Bloem J(2006).Fungal/bacterial ratios in grasslands with contrasting nitrogen management.Soil Biology & Biochemistry,38, 2092-2103.
DOI URL |
[9] | Delegado-Baquerizo M,Bardgett RD,Vitousek PM,Maestre FT,Williams MA,Eldridge DJ,Lambers H,Neuhauser S,Gallardo A,Garcia-Velázquez L,Sala OE,Abades SR,Alfaro FD,Berhe AA,Bowker MA,et al.(2019).Changes in belowground biodiversity during ecosystem development.Proceedings of the National Academy of Sciences of the United States of America,116, 6891-6896. |
[10] |
Delgado-Baquerizo M,Reich PB,Khachane AN,Campbell CD,Thomas N,Freitag TE,Abu Al-Soud W,Sørensen S,Bardgett RD,Singh BK(2017).It is elemental: soil nutrient stoichiometry drives bacterial diversity.Environmental Microbiology,19, 1176-1188.
DOI PMID |
[11] | Fang JY,Jing HC,Zhang WH,Gao SQ,Duan ZY,Wang HS,Zhong J,Pan QM,Zhao K,Bai WM,Li LH,Bai YF,Jiang GM,Huang JH,Huang ZY(2018).The concept of “grass-based livestock husbandry” and its practice in Hulun Buir, Inner Mongolia.Chinese Science Bulletin,63, 1619-1631. |
[方精云,景海春,张文浩,高树琴,段子渊,王竑晟,钟瑾,潘庆民,赵凯,白文明,李凌浩,白永飞,蒋高明,黄建辉,黄振英(2018).论草牧业的理论体系及其实践.科学通报,63, 1619-1631.] | |
[12] |
Field E,Castagneyrol B,Gibbs M,Jactel H,Barsoum N,Schönrogge K,Hector A(2020).Associational resistance to both insect and pathogen damage in mixed forests is modulated by tree neighbour identity and drought.Journal of Ecology,108, 1511-1522.
DOI URL |
[13] |
Fierer N,Jackson RB(2006).The diversity and biogeography of soil bacterial communities.Proceedings of the National Academy of Sciences of the United States of America,103, 626-631.
PMID |
[14] | Friendly M,Fox J(2017).Candisc: Visualizing Generalized Canonical Discriminant and Canonical correlation analysis.R package version 0.8-0. [2017-09-19]. https://CRAN.R-project.org/package=candisc. |
[15] |
Hacker N,Ebeling A,Gessler A,Gleixner G,González Macé O,de Kroon H,Lange M,Mommer L,Eisenhauer N,Ravenek J,Scheu S,Weigelt A,Wagg C,Wilcke W,Oelmann Y(2015).Plant diversity shapes microbe- rhizosphere effects on P mobilisation from organic matter in soil.Ecology Letters,18, 1356-1365.
DOI PMID |
[16] |
Hao YQ,Zhao XF,Zhang DY(2016).Field experimental evidence that stochastic processes predominate in the initial assembly of bacterial communities.Environmental Microbiology,18, 1730-1739.
DOI URL |
[17] |
Hector A,Schmid B,Beierkuhnlein C,Caldeira MC,Diemer M,Dimitrakopoulos PG,Finn JA,Freitas H,Giller PS,Good J,Harris R,Hogberg P,Huss-Danell K,Joshi J,Jumpponen A,et al.(1999).Plant diversity and productivity experiments in European grasslands.Science,286, 1123-1127.
PMID |
[18] |
Johnson D,Campbell CD,Lee JA,Callaghan TV,Gwynn-Jones D(2002).Arctic microorganisms respond more to elevated UV-B radiation than CO2.Nature,416, 82-83.
DOI URL |
[19] | Kong WD(2013).A review of microbial diversity in polar terrestrial environments.Biodiversity Science,21, 457-468. |
[孔维栋(2013).极地陆域微生物多样性研究进展.生物多样性,21, 457-468.] | |
[20] |
Lange M,Eisenhauer N,Sierra CA,Bessler H,Engels C,Griffiths RI,Mellado-Vázquez PG,Malik AA,Roy J,Scheu S,Steinbeiss S,Thomson BC,Trumbore SE,Gleixner G(2015).Plant diversity increases soil microbial activity and soil carbon storage.Nature Communications,6, 6707. DOI:10.1038/ncomms7707.
DOI URL |
[21] |
Leff JW,Bardgett RD,Wilkinson A,Jackson BG,Pritchard WJ,de Long JR,Oakley S,Mason KE,Ostle NJ,Johnson D,Baggs EM,Fierer N(2018).Predicting the structure of soil communities from plant community taxonomy, phylogeny, and traits.The ISME Journal,12, 1794-1805.
DOI URL |
[22] |
Li A,Niu KC,Du GZ(2011).Resource availability, species composition and sown density effects on productivity of experimental plant communities.Plant and Soil,344, 177-186.
DOI URL |
[23] | Li L(2016).Intercropping enhances agroecosystem services and functioning: current knowledge and perspectives.Chinese Journal of Eco-Agriculture,24, 403-415. |
[李隆(2016).间套作强化农田生态系统服务功能的研究进展与应用展望.中国生态农业学报,24, 403-415.] | |
[24] |
Li SX,Wang YL,Wang YQ,Yin YL(2021).Response of soil bacterial community characteristics to alpine meadow degradation.Biodiversity Science,29, 53-64.
DOI URL |
[李世雄,王彦龙,王玉琴,尹亚丽(2020).土壤细菌群落特征对高寒草甸退化的响应.生物多样性,29, 53-64.] | |
[25] |
Liu L,Zhu K,Wurzburger N,Zhang J(2020).Relationships between plant diversity and soil microbial diversity vary across taxonomic groups and spatial scales.Ecosphere,11, e02999. DOI:10.1016/j.soilbio.2021.108143.
DOI |
[26] |
Mulder C,van Wijnen HJ,van Wezel AP(2005).Numerical abundance and biodiversity of below-ground taxocenes along a pH gradient across the Netherlands.Journal of Biogeography,32, 1775-1790.
DOI URL |
[27] | Nelson DW,Sommers LE(1983).Total carbon, organic carbon, and organic matter//Page A, Miller R, Keeney D. Methods of Soil Analysis. American Society of Agronomy,Madison. 539-579. |
[28] |
Niu KC,He JS,Lechowicz MJ(2016a).Grazing-induced shifts in community functional composition and soil nutrient availability in Tibetan alpine meadows.Journal of Applied Ecology,53, 1554-1564.
DOI URL |
[29] |
Niu KC,He JS,Zhang ST,Lechowicz MJ(2016b).Tradeoffs between forage quality and soil fertility: lessons from Himalayan rangelands.Agriculture, Ecosystems & Environment,234, 31-39.
DOI URL |
[30] |
Niu KC,Liu YN,Shen ZH,He FL,Fang JY(2009).Community assembly: the relative importance of neutral theory and niche theory.Biodiversity Science,17, 579-593.
DOI URL |
[牛克昌,刘怿宁,沈泽昊,何芳良,方精云(2009).群落构建的中性理论和生态位理论.生物多样性,17, 579-593.] | |
[31] |
Pardo LH,Fenn ME,Goodale CL,Geiser LH,Driscoll CT,Allen EB,Baron JS,Bobbink R,Bowman WD,Clark CM,Emmett B,Gilliam FS,Greaver TL,Hall SJ,Lilleskov EA,et al.(2011).Effects of nitrogen deposition and empirical nitrogen critical loads for ecoregions of the United States.Ecological Applications,21, 3049-3082.
DOI URL |
[32] | Pinheiro J,Bates D,DebRoy S,Sarkar D,R Core Team(2017).nlme: Linear and nonlinear mixed effects models R package version3.1-131. [2021-02-03]. https://CRAN.R-project.org/package=nlme. |
[33] |
Porazinska DL,Farrer EC,Spasojevic MJ,Bueno de Mesquita CP,Sartwell SA,Smith JG,White CT,King AJ,Suding KN,Schmidt SK(2018).Plant diversity and density predict belowground diversity and function in an early successional alpine ecosystem.Ecology,99, 1942-1952.
DOI PMID |
[34] |
Prober SM,Leff JW,Bates ST,Borer ET,Firn J,Harpole WS,Lind EM,Seabloom EW,Adler PB,Bakker JD,Cleland EE,DeCrappeo NM,DeLorenze E,Hagenah N,Hautier Y,et al.(2015).Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide.Ecology Letters,18, 85-95.
DOI URL |
[35] |
Rakowski C,Cardinale BJ(2016).Herbivores control effects of algal species richness on community biomass and stability in a laboratory microcosm experiment.Oikos,125, 1627-1635.
DOI URL |
[36] |
Ramus AP,Long ZT(2016).Producer diversity enhances consumer stability in a benthic marine community.Journal of Ecology,104, 572-579.
DOI URL |
[37] |
Soliveres S,van der Plas F,Manning P,Prati D,Gossner MM,Renner SC,Alt F,Arndt H,Baumgartner V,Binkenstein J,Birkhofer K,Blaser S,Blüthgen N,Boch S,Böhm S,Börschig C,Buscot F,Diekötter T,Heinze J,Hölzel N,Jung K,Klaus VH,Kleinebecker T,Klemmer S,et al.(2016).Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality.Nature,536, 456-459.
DOI URL |
[38] |
Sommers LE,Nelson DW(1972).Determination of total phosphorus in soils: a rapid perchloric acid digestion procedure.Soil Science Society of America Journal,36, 902-904.
DOI URL |
[39] |
Tilman D,Isbell F,Cowles JM(2014).Biodiversity and ecosystem functioning.Annual Review of Ecology, Evolution, and Systematics,45, 471-493.
DOI URL |
[40] | Wagg C,Bender SF,Widmer F,van der Heijden MGA(2014).Soil biodiversity and soil community composition determine ecosystem multifunctionality.Proceedings of the National Academy of Sciences of the United States of America,111, 5266-5270. |
[41] |
Wall DH,Moore JC(1999).Interactions underground: soil biodiversity, mutualism, and ecosystem processes.Bioscience,49, 109-117.
DOI URL |
[42] | Wang X,Zeng ZH,Hu YG,Zhu B(2007).Progress and prospect on mixture of Gramineae herbage and Leguminosae herbage.Chinese Journal of Grassland,29, 92-98. |
[王旭,曾昭海,胡跃高,朱波(2007).豆科与禾本科牧草混播效应研究进展.中国草地学报,29, 92-98.] | |
[43] |
Wang XB,Lü XT,Yao J,Wang ZW,Deng Y,Cheng WX,Zhou JZ,Han XG(2017).Habitat-specific patterns and drivers of bacterial β-diversity in China’s drylands.The ISME Journal,11, 1345-1358.
DOI URL |
[44] |
Wang YT,Niu KC(2020).Effect of soil environment on functional diversity of soil nematodes in Tibetan alpine meadows.Biodiversity Science,28, 707-717.
DOI URL |
[王宇彤,牛克昌(2020).青藏高原高寒草甸土壤环境对线虫功能多样性的影响.生物多样性,28, 707-717.] | |
[45] |
Wardle DA(2016).Do experiments exploring plant diversity- ecosystem functioning relationships inform how biodiversity loss impacts natural ecosystems?Journal of Vegetation Science,27, 646-653.
DOI URL |
[46] | Wardle DA,Bardgett RD(2010).Aboveground-Belowground Linkages. Biotic Interactions, Ecosystem Processes, and Global Change.Biotic Interactions, Ecosystem Processes, and Global Change. Oxford University Press, Oxford,UK. |
[47] |
Wardle DA,Bardgett RD,Klironomos JN,Setälä H,van der Putten WH,Wall DH(2004).Ecological linkages between aboveground and belowground biota.Science,304, 1629-1633.
PMID |
[48] |
Wardle DA,Jonsson M,Bansal S,Bardgett RD,Gundale MJ,Metcalfe DB(2012).Linking vegetation change, carbon sequestration and biodiversity: insights from island ecosystems in a long-term natural experiment.Journal of Ecology,100, 16-30.
DOI URL |
[49] |
Weisser WW,Roscher C,Meyer ST,Ebeling A,Luo GJ,Allan E,Beβler H,Barnard RL,Buchmann N,Buscot F,Engels C,Fischer C,Fischer M,Gessler A,Gleixner G,et al.(2017).Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: patterns, mechanisms, and open questions.Basic and Applied Ecology,23, 1-73.
DOI URL |
[50] |
Yang F,Niu KC,Collins CG,Yan XB,Ji YG,Ling N,Zhou XH,Du GZ,Guo H,Hu SJ(2019a).Grazing practices affect the soil microbial community composition in a Tibetan alpine meadow.Land Degradation & Development,30, 49-59.
DOI URL |
[51] |
Yang LN,Pan ZC,Zhu W,Wu EJ,He DC,Yuan X,Qin YY,Wang Y,Chen RS,Thrall PH,Burdon JJ,Shang LP,Sui QJ,Zhan JS(2019b).Enhanced agricultural sustainability through within-species diversification.Nature Sustainability,2, 46-52.
DOI URL |
[52] |
Yang W,Jeelani N,Zhu ZH,Luo YQ,Cheng XL,An SQ(2019c).Alterations in soil bacterial community in relation to Spartina alterniflora Loisel. invasion chronosequence in the eastern Chinese coastal wetlands.Applied Soil Ecology,135, 38-43.
DOI |
[53] |
Zhang ST,Liu JP,Bao XH,Niu KC(2011).Seed-to-seed potential allelopathic effects between Ligularia virgaurea and native grass species of Tibetan alpine grasslands.Ecological Research,26, 47-52.
DOI URL |
[54] |
Zhang XM,Han XG(2012).Nitrogen deposition alters soil chemical properties and bacterial communities in the Inner Mongolia grassland.Journal of Environmental Sciences,24, 1483-1491.
DOI URL |
[55] |
Zhang XM,Johnston ER,Barberán A,Ren Y,Lü XT,Han XG(2017).Decreased plant productivity resulting from plant group removal experiment constrains soil microbial functional diversity.Global Change Biology,23, 4318-4332.
DOI URL |
[56] | Zhao XG,Zhang ST,Niu KC(2020a).Association of soil bacterial diversity with plant community functional attributes in alpine meadows. Scientia Sinica (Vitae),50, 70-80. |
[赵兴鸽,张世挺,牛克昌(2020a).高寒草甸植物群落功能属性与土壤细菌多样性关系.中国科学: 生命科学,50, 70-80.] | |
[57] | Zhao XG,Zhang ST,Niu KC(2020b).Relationships between soil fungal diversity, plant community functional traits, and soil attributes in Tibetan alpine meadows.Chinese Journal of Applied and Environmental Biology,26, 1-9. |
[赵兴鸽,张世挺,牛克昌(2020b).青藏高原高寒草甸土壤真菌多样性与植物群落功能性状和土壤理化特性的关系.应用与环境生物学报,26, 1-9.] | |
[58] |
Zhou ZH,Wang CK(2016).Changes of the relationships between soil and microbes in carbon, nitrogen and phosphorus stoichiometry during ecosystem succession.Chinese Journal of Plant Ecology,40, 1257-1266.
DOI URL |
[周正虎,王传宽(2016).生态系统演替过程中土壤与微生物碳氮磷化学计量关系的变化.植物生态学报,40, 1257-1266.] | |
[59] |
Zhou ZH,Wang CK,Zheng MH,Jiang LF,Luo YQ(2017).Patterns and mechanisms of responses by soil microbial communities to nitrogen addition.Soil Biology & Biochemistry,115, 433-441.
DOI URL |
[1] | 张琦, 冯可, 常智慧, 何双辉, 徐维启. 灌丛化对林草交错带植物和土壤微生物的影响[J]. 植物生态学报, 2023, 47(6): 770-781. |
[2] | 王姝文, 李文怀, 李艳龙, 严慧, 李永宏. 放牧家畜类型对内蒙古典型草原植物多样性和群落结构的影响[J]. 植物生态学报, 2022, 46(8): 941-950. |
[3] | 周楷玲, 赵玉金, 白永飞. 基于Sentinel-2A数据的东北森林植物多样性监测方法研究[J]. 植物生态学报, 2022, 46(10): 1251-1267. |
[4] | 范敏, 卢奕曈, 王照华, 黄颖琪, 彭羽, 尚佳欣, 张杨. 浑善达克沙地中部斑块格局影响植物多样性及功能性状[J]. 植物生态学报, 2022, 46(1): 51-61. |
[5] | 钟志伟, 李晓菲, 王德利. 植物-植食性动物相互关系研究进展[J]. 植物生态学报, 2021, 45(10): 1036-1048. |
[6] | 朱林, 王甜甜, 赵学琳, 祁亚淑, 许兴. 紫花苜蓿和斜茎黄耆水力提升作用及其对伴生植物的效应[J]. 植物生态学报, 2020, 44(7): 752-762. |
[7] | 邹东廷, 王庆刚, 罗奥, 王志恒. 中国蔷薇科植物多样性格局及其资源植物保护现状[J]. 植物生态学报, 2019, 43(1): 1-15. |
[8] | 刘文亭, 卫智军, 吕世杰, 孙世贤, 贾利娟, 张爽, 王天乐, 代景忠, 卢志宏. ·荒漠草地植物多样性对草食动物采食的响应机制[J]. 植物生态学报, 2016, 40(6): 564-573. |
[9] | 崔宁洁,张丹桔,刘洋,张健,杨万勤,欧江,张捷,宋小艳,殷睿. 马尾松人工林不同大小林窗植物多样性及其季节动态[J]. 植物生态学报, 2014, 38(5): 477-490. |
[10] | 张敏,潘艳霞,杨洪晓. 山东半岛潮上带沙草地的物种多度格局及其对人为干扰的响应[J]. 植物生态学报, 2013, 37(6): 542-550. |
[11] | 刘聪, 项文化, 田大伦, 方晰, 彭长辉. 中亚热带森林植物多样性增加导致细根生物量“超产”[J]. 植物生态学报, 2011, 35(5): 539-550. |
[12] | 张亮, 邢福, 于丽丽, 许坤, 孙忠林, 吕宪国. 三江平原沼泽湿地岛状林植物多样性[J]. 植物生态学报, 2008, 32(3): 582-590. |
[13] | 奚为民, PEET Robert K.. 美国东部杜克森林长期定位研究综述[J]. 植物生态学报, 2008, 32(2): 299-318. |
[14] | 王震洪, 段昌群, 侯永平, 杨建松. 植物多样性与生态系统土壤保持功能关系及其生态学意义[J]. 植物生态学报, 2006, 30(3): 392-403. |
[15] | 朱华. “西双版纳热带山地雨林的植物多样性研究”的一些问题讨论[J]. 植物生态学报, 2006, 30(1): 184-186. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19