植物生态学报 ›› 2006, Vol. 30 ›› Issue (3): 392-403.DOI: 10.17521/cjpe.2006.0053
所属专题: 生物多样性
接受日期:
2005-07-23
发布日期:
2006-05-30
作者简介:
E-mail: zhhwang66@163.com
基金资助:
WANG Zhen-Hong1(), DUAN Chang-Qun2, HOU Yong-Ping2, YANG Jian-Song1
Accepted:
2005-07-23
Published:
2006-05-30
摘要:
测定物种丰富度呈梯度变化的半湿润常绿阔叶林不同次生演替阶段小区地表径流、土壤侵蚀和总磷流失及影响这些过程的植物群落郁闭度、个体密度、胸高断面积、植物叶吸附水,分析物种多样性与生态系统土壤保持功能、稳定性及直接影响土壤保持功能的群落结构、树冠截留间的关系。结果表明,在降雨、坡度、坡向、坡位、土壤类型等水土保持影响因子相同条件下,随着各小区物种多样性的增加,地表产流次数不断下降;在3个降雨季节,物种多样性最低的小区产生地表径流77次,而物种多样性最高小区产生地表径流才9次;系列小区地表径流、土壤侵蚀和总磷流失随着物种多样性增加呈幂指数下降;物种多样性最低的小区地表径流、土壤侵蚀和总磷流失分别为960.20 m3·hm-2·a-1,11.4 t·hm-2·a-1,127.69 kg·hm-2·a-1,而物种多样性最高的小区为75.55 m3·hm-2·a-1、0.28 t·hm-2·a-1、4.71 kg·hm-2·a-1,分别相差12、50和25倍;地表径流、土壤侵蚀和总磷流失变异系数也呈幂指数下降,物种多样性最高的小区地表径流、土壤侵蚀和总磷流失的变异系数分别为57.93、187.94和 59.2,而物种多样性最低的小区变异系数高达287.6、534.21、315.47,分别相差4、3和5倍。物种多样性与影响土壤保持功能的群落郁闭度、密度和胸高断面积呈正相关关系。不同演替阶段植物叶吸附水量差异显著,吸附水量最高的演替阶段是次生半湿润常绿阔叶林,为12.28 t·hm-2·a-1, 最低是云南松(Pinus yunnanensis)林, 为4.15 t·hm-2·a-1。“植物多样性-土壤保持功能相关群落结构因子及树冠截留效应-生态系统土壤保持功能”的耦合关系表明了植物多样性通过植物群落结构削弱了降雨动能,减少了地表径流,减轻了土壤及营养元素的流失,以间接方式调控生态系统土壤保持功能,维持系统营养的持续性,在不同尺度上实现生态系统生产力。物种多样性的提高,促进了生态系统土壤保持功能的稳定性。植物多样性-生态系统土壤保持过程的研究可能是生态系统稳定性研究的好方法。用植物叶吸附水测定可评价群落树冠截留效应。由于植物多样性与生态系统土壤保持功能间存在相关关系,基于植物多样性对生态系统土壤保持功能作用模式,可增进对生命系统和地球系统界面间相互作用关系的了解。
王震洪, 段昌群, 侯永平, 杨建松. 植物多样性与生态系统土壤保持功能关系及其生态学意义. 植物生态学报, 2006, 30(3): 392-403. DOI: 10.17521/cjpe.2006.0053
WANG Zhen-Hong, DUAN Chang-Qun, HOU Yong-Ping, YANG Jian-Song. THE RELATIONSHIP OF PLANT SPECIES DIVERSITY TO ECOSYSTEM FUNCTION IN RELATION TO SOIL CONSERVATION IN SEMI-HUMID EVERGREEN FORESTS, YUNNAN PROVINCE,CHINA. Chinese Journal of Plant Ecology, 2006, 30(3): 392-403. DOI: 10.17521/cjpe.2006.0053
图1 系列小区物种多样性梯度变化 APMO:云南松+铁子+竹叶草群丛Ass. Pinus yunnanensis+Myrsine africana+Oplismenus compsitus AEME:史密斯桉+铁子+紫茎泽兰群丛Ass. Eucalyptus smith+Myrsine africana+Eupatorium adenophorum APLO:云南松+滇石栎+竹叶草群丛Ass. Pinus yunnanensis+Lithocarpus confines+Oplismenus compsitus AEI:鸡骨柴+白茅群丛Ass. Elsholtzia fruticosa+Imperata cylindrical ACKV:滇青冈+滇油杉+杜氏地丁群丛Ass. Cyclobalanopsis glaucoides+Keteleeria evelyniana+Viola duelouxii
Fig.1 Species diversity at series plots
土壤保持指标 Variables of soil conservation | 年份 Years | 降雨量 Rainfall (mm) | 产流降雨量 Runoff rainfall (mm) | 最大次降雨 The greatest rainfall (mm) | APMO | AEME | AEI | APLO | ACKV | ||
---|---|---|---|---|---|---|---|---|---|---|---|
地表径流 | 2001 | 715.66 | 422.00 | 44.50 | 596.68 | 358.68 | 192.36 | 157.87 | 109.78 | ||
Surface runoff | 2002 | 828.44 | 542.99 | 127.40 | 767.35 | 377.59 | 251.03 | 129.25 | 40.38 | ||
(m3·hm-2·a-1) | 2003 | 734.85 | 612.20 | 79.60 | 619.63 | 379.13 | 308.13 | 202.43 | 123.55 | ||
平均Average | 759.65 | 525.73 | 661.22 | 371.80 | 250.50 | 163.18 | 91.23 | ||||
土壤侵蚀 | 2001 | 715.66 | 422.00 | 44.50 | 4.89 | 4.14 | 1.95 | 1.60 | 1.31 | ||
Soil erosion | 2002 | 828.44 | 542.99 | 127.40 | 6.59 | 4.81 | 2.89 | 1.48 | 1.18 | ||
(t·hm-2·a-1) | 2003 | 734.85 | 612.20 | 79.60 | 6.40 | 4.70 | 1.99 | 1.47 | 1.40 | ||
平均Average | 759.65 | 525.73 | 5.96 | 4.55 | 2.27 | 1.51 | 1.29 | ||||
径流中 | 2001 | 715.66 | 422.00 | 44.50 | 73.89 | 72.62 | 25.63 | 19.69 | 10.40 | ||
总磷流失 | 2002 | 828.44 | 542.99 | 127.40 | 112.96 | 93.58 | 38.23 | 35.39 | 7.26 | ||
Total P loss | 2003 | 734.85 | 612.20 | 79.60 | 126.71 | 75.32 | 29.03 | 19.34 | 5.47 | ||
(kg·hm-2·a-1) | 平均Average | 759.65 | 525.73 | 104.52 | 80.51 | 30.96 | 24.81 | 7.71 |
表1 小区生态系统土壤保持功能特征
Table 1 Ecosystem functioning attributions of soil and water conservation at series plots
土壤保持指标 Variables of soil conservation | 年份 Years | 降雨量 Rainfall (mm) | 产流降雨量 Runoff rainfall (mm) | 最大次降雨 The greatest rainfall (mm) | APMO | AEME | AEI | APLO | ACKV | ||
---|---|---|---|---|---|---|---|---|---|---|---|
地表径流 | 2001 | 715.66 | 422.00 | 44.50 | 596.68 | 358.68 | 192.36 | 157.87 | 109.78 | ||
Surface runoff | 2002 | 828.44 | 542.99 | 127.40 | 767.35 | 377.59 | 251.03 | 129.25 | 40.38 | ||
(m3·hm-2·a-1) | 2003 | 734.85 | 612.20 | 79.60 | 619.63 | 379.13 | 308.13 | 202.43 | 123.55 | ||
平均Average | 759.65 | 525.73 | 661.22 | 371.80 | 250.50 | 163.18 | 91.23 | ||||
土壤侵蚀 | 2001 | 715.66 | 422.00 | 44.50 | 4.89 | 4.14 | 1.95 | 1.60 | 1.31 | ||
Soil erosion | 2002 | 828.44 | 542.99 | 127.40 | 6.59 | 4.81 | 2.89 | 1.48 | 1.18 | ||
(t·hm-2·a-1) | 2003 | 734.85 | 612.20 | 79.60 | 6.40 | 4.70 | 1.99 | 1.47 | 1.40 | ||
平均Average | 759.65 | 525.73 | 5.96 | 4.55 | 2.27 | 1.51 | 1.29 | ||||
径流中 | 2001 | 715.66 | 422.00 | 44.50 | 73.89 | 72.62 | 25.63 | 19.69 | 10.40 | ||
总磷流失 | 2002 | 828.44 | 542.99 | 127.40 | 112.96 | 93.58 | 38.23 | 35.39 | 7.26 | ||
Total P loss | 2003 | 734.85 | 612.20 | 79.60 | 126.71 | 75.32 | 29.03 | 19.34 | 5.47 | ||
(kg·hm-2·a-1) | 平均Average | 759.65 | 525.73 | 104.52 | 80.51 | 30.96 | 24.81 | 7.71 |
图3 植物多样性与地表径流、土壤侵蚀和总磷流失的关系 分别用系列小区3年77次产流降雨地表径流、土壤侵蚀和总磷流失数据对物种多样性D作散点图。在77次产流降雨中,有的小区未产生径流,则该小区该次观测地表径流、土壤侵蚀和总磷流失为0 Dot diagrams were drew with 77 times of the observation values of surface runoff, soil erosion and total P leaching against plant species diversity, D at series plots. Surface runoff did not happen at some plots with high plant species diversity and the observation values were 0 at that time surface runoff happened at low plant species diversity. Based on the observation value the correlation between plant species diversity, D and the observation value was inspected
Fig.3 Plant species diversity and surface runoff, soil erosion and total P erosion at the series plots
图4 物种多样性与地表径流、土壤侵蚀和总磷流失变异系数间的关系 分别用不同物种多样性小区3年77次产流降雨地表径流、土壤侵蚀和总磷流失数据计算标准差和平均值,按公式(2)计算变异系数。在77次产流降雨中,有小区未产生径流,则该小区该次观测地表径流、土壤侵蚀和总磷流失为0。用系列小区变异系数对物种多样性D作图,并进行数学拟合和相关性检验 Figs were drew with the coefficient of variation of 77 times of the observation values of surface runoff, soil erosion and total P leaching against plant species diversity, D at the series plots. Surface runoff did not happen at some plots with high plant species diversity and the observation values were 0 at that time surface runoff happened at low plant species diversity. Based on the calculation results the correlation between plant species diversity and coefficient of variation was inspected A: 地表径流Surface runoff; B: 土壤侵蚀Soil erosion; C: 总磷流失Total P leaching
Fig.4 The relation of plant species diversity to the coefficient of the variation of surface runoff, soil erosion and total P erosion at the series plots
图6 植物多样性与植物群落乔木层郁闭度和胸高断面积的关系
Fig.6 The relation of plant species diversity to the degree of closeness and cross section area at the breast height at plot scales at the different succession phases of semi-humid evergreen forest
演替阶段 Succession phases | 吸附水量 Hygroscopic volume (t·hm-2, mm) | ||
---|---|---|---|
木本植物层 Woody plant layer | 草本植物层 Herbaceous plant layer | 总计 Total | |
AEI | 0.56, 0.06 | 5.11, 0.51 | 5.67, 0.57 |
APMO | 3.41, 0.34 | 0.74, 0.07 | 4.15, 0.42 |
APLO | 5.28, 0.53 | 0.93, 0.09 | 6.21, 0.62 |
ACKV | 11.87, 1.19 | 0.41, 0.04 | 12.28, 1.23 |
AEME | 6.15, 0.62 | 1.44, 0.14 | 7.59, 0.76 |
表2 不同演替阶段植物叶吸附水量
Table 2 The hygroscopic volume of the leaves of forest canopy at the different secondary succession phases
演替阶段 Succession phases | 吸附水量 Hygroscopic volume (t·hm-2, mm) | ||
---|---|---|---|
木本植物层 Woody plant layer | 草本植物层 Herbaceous plant layer | 总计 Total | |
AEI | 0.56, 0.06 | 5.11, 0.51 | 5.67, 0.57 |
APMO | 3.41, 0.34 | 0.74, 0.07 | 4.15, 0.42 |
APLO | 5.28, 0.53 | 0.93, 0.09 | 6.21, 0.62 |
ACKV | 11.87, 1.19 | 0.41, 0.04 | 12.28, 1.23 |
AEME | 6.15, 0.62 | 1.44, 0.14 | 7.59, 0.76 |
图7 植物多样性与群落冠层叶吸附水量间关系(A: 木本植物层 B: 草本植物层)
Fig.7 Plant species diversity and the hygroscopic volume of the leaves of forest canopy on woody plant layer (A) and herbaceous plant layer (B)
[1] | Chen LZ (陈灵芝), Qian YQ (钱迎倩) (1997). Frontiers in biodiversity science. Acta Ecologica Sinica (生态学报), 17,565-572. (in Chinese with English abstract) |
[2] | Ewel JJ (1986). Designing agricultural ecosystems for the humid tropics. Annual Review on Ecological System, 17,245-254. |
[3] |
Ewel JJ, Mazzarino MJ, Berish CW (1991). Tropical soil fertility changes under monoculture and successional communities of different structure. Ecological Applications, 1,289-302.
DOI URL PMID |
[4] | Feng YZ (冯耀宗) (2003). Species diversity and manmade forest ecosystem stability. Chinese Journal of Applied Ecology (应用生态学报), 14,853-857. (in Chinese with English abstract) |
[5] | Feng ZW (冯宗炜) (1999). Biomass and Primary Productivity of Chinese Forest Ecosystems (中国森林生态系统生物量和生产力). Science Press, Beijing,1-157. (in Chinese) |
[6] | Huang JH (黄建辉) (1995). Biodiversity and ecosystem stability. Chinese Biodiversity (生物多样性), 3,31-37. (in Chinese with English abstract) |
[7] | Huang JH (黄建辉), Bai YF (白永飞), Han XG (韩兴国) (2000). Effects of species diversity on ecosystem functioning: mechanisms and hypotheses. Chinese Biodiversity (生物多样性), 9,1-7. (in Chinese with English abstract) |
[8] |
Huston MA, Aarssen LW, Austin MP, Cade BS, Fridley JD, Garnier E, Grime JP, Hodgson J (2000). No consistent effect of plant diversity on productivity. Science, 289,1255.
DOI URL PMID |
[9] | Jiang HQ (姜汉侨) (1984). Several issues in researching about Yunnanesis pinus. Journal of Yunnan University (云南大学学报), 6,1-5. (in Chinese with English abstract) |
[10] | Jiang YX (蒋有绪), Wang BS (王伯荪), Zang RG ( 润国), Jin JH (金建华), Liao WB (廖文波) (2002). Biodiversity and Formation Mechanisms of Tropical Forest in Hainan Island in China (海南热带林生物多样性及其形成机制). Science Press, Beijing,217-233. (in Chinese) |
[11] | Kareiva P (1996). Diversity and sustainability on the prairie. Nature, 379,673-674. |
[12] | Liu WY (刘文耀), Liu LH (刘伦辉), Zheng Z (郑征), Jing GF (荆贵芬) (1991). Preliminary study on hydrological function of evergreen broad-leaved forest and Pinus yunnanensis forest in central Yunnan Province. Acta Phytoecologica et Geobotanica Sinica (植物生态学与地植物学学报). 15,159-167. (in Chinese with English abstract) |
[13] | Liu SR (刘世荣) (1996). Review on the interception function of forest ecosystem -global water cycle, water resources and crisis. In: Jiang YX(蒋有绪) ed. . The Law of Forest Ecosystem Structure and Function in China (中国森林生态系统结构和功能规律研究). China Forestry Publishing House, Beijing,16-22. (in Chinese) |
[14] |
Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime J, Hector A, Hooper D, Huston M, Raffaelli D, Schmid B, Tilman D, Wardle D (2001). Biodiversity and ecosystem function: current knowledge and future challenges. Science, 294,804-808.
DOI URL PMID |
[15] | Ma KP (马克平), Mi XC (米湘成), Wei W (魏伟), Lu ZJ (卢志军) (2004). Advances and review on biodiversity. In: Li WH(李文华),Zhao JZ(赵景柱) eds Recall and Prospect on Ecology (生态学研究回顾与展望). China Meteorological Press, Beijing,110-125. (in Chinese) |
[16] | May RM (1973). Stability and Complexity in Model Ecosystem. Princeton University Press, Princeton,108-110. |
[17] | McCann K, Hastings A, Huxel G (1999). Weak trophic interactions and the balance of nature. Nature, 395,794-798. |
[18] | Naeem S, Thompson LJ, Lawler SP, Lawton JH, Woodfin RM (1994). Declining bio-diversity can alter the performance of ecosystes. Nature, 368,734-737. |
[19] |
Purvis A, Hector A (2000). Getting the measure of bio-diversity. Nature, 405,212-219.
DOI URL PMID |
[20] | Schlesinger WH (1977). Carbon balance in terrestrial detritus. Annual Review on Ecological System, 8,51-81. |
[21] | Schlesinger WH (1997). Biogeochemistry: an Analysis of Global Change. Academic Press, San Diego, California,5-50. |
[22] | Schulze ED, Mooney HA (1993). Bio-Diversity and Ecosystem Function.. Spring-Verlag, New York,1-54. |
[23] | Song YC (宋永昌) (2001). Vegetation Ecology (植被生态学). East China Normal University Press, Shanghai, 52. (in Chinese) |
[24] | Spehn EM, Joshi J, Schmid B, Diemer M, Korner C (2000). Above-ground resource use increases with plant species richness in experimental grassland ecosystems. Functional Ecology, 14,326-337. |
[25] | Tilman D (1996). Bio-diversity: population versus ecosystem stability. Ecology, 77,350-363. |
[26] |
Tilman D (2000). Causes, consequences and ethics of biodiversity. Nature, 405,298-211.
URL PMID |
[27] | Tilman D, Wedin D, Knops J (1996). Productivity and sustainability influenced by bio-diversity in grassland ecosystems. Nature, 379,718-720. |
[28] | Wang DL (王德利), Ba L (巴雷), Wang YQ (王亚秋) (2004). Advance and prospect on theory ecology. In: Li WH(李文华),Zhao JZ(赵景柱) eds Recall and Prospect on Ecology (生态学研究回顾与展望), China Meteorological Press, Beijing,3-27. (in Chinese) |
[29] | Wang LX (王礼先) (1997). Soil and Water Conservation (水土保持学). China Forestry Publishing House, Beijing. (in Chinese) |
[30] | Wang ZH (王震洪), Zhang L (张玲), Duan CQ (段昌群) (2001). Relationship between manmade forest community structure and soil erosion in Muding County of Yunnan Province. Research of Soil and Water Conservation (水土保持研究), 8,74-79. (in Chinese with English abstract) |
[31] | Wang ZH (2004). Relationship between Plant Species Diversity and Soil Erosion Control on Different Secondary Phases of Semi-humid Even-green Broad-leaved Forest. Proceedings of 13 th International Soil Conservation Organization Conference , 973. |
[32] | Wardle D, Zackrisson O, Homberg G (1997). The influence of island area on ecosystem properties. Science, 277,1296-1299. |
[33] | William JR, Renard KG, Dyke PT (1983). EPIC-a new method for assessing erosion,effect on soil productivity. Journal of Soil and Water Conservation, 36,381-383. |
[34] | Yue TX (岳天祥), Ma SJ (马世骏) (1991). The study on ecosystem stability. Acta Ecologica Sinica (生态学报), 11,361-366. (in Chinese with English abstract) |
[35] | Zhang DY (张大勇) (2000). Research on Theory Ecology (理论生态学研究). High Education Press, Beijing,1-100. (in Chinese) |
[36] | Zhang QG (张全国), Zhang DY (张大勇) (2002). Biodiversity and ecosystem functioning: recent advances and controversies. Biodiversity Science (生物多样性), 10,49-60. (in Chinese with English abstract) |
[37] | Zhou GY (周国逸) (1997). Principal and Application of Water and Heat in Ecosystem (生态系统水热原理及其应用). China Meteorological Press, Beijing. (in Chinese) |
[38] | Zhou JZ (周集中), Ma SJ (马世骏) (1990). Ecosystem stability. In: Ma SJ (马世骏) ed. Perspective of Modern Ecology (现代生态学透视), Science Press, Beijing,54-71. (in Chinese) |
[39] | Zhu TC (祝廷成), Zhong ZC (钟章成), Li JD (李建东) (1988). Plant Ecology (植物生态学). High Education Press, Beijing,198-199. (in Chinese) |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[3] | 张琦, 冯可, 常智慧, 何双辉, 徐维启. 灌丛化对林草交错带植物和土壤微生物的影响[J]. 植物生态学报, 2023, 47(6): 770-781. |
[4] | 冯可, 刘冬梅, 张琦, 安菁, 何双辉. 旅游干扰对松山油松林土壤微生物多样性及群落结构的影响[J]. 植物生态学报, 2023, 47(4): 584-596. |
[5] | 席念勋, 张原野, 周淑荣. 群落生态学中的植物-土壤反馈研究[J]. 植物生态学报, 2023, 47(2): 170-182. |
[6] | 樊凡, 赵联军, 马添翼, 熊心雨, 张远彬, 申小莉, 李晟. 川西王朗亚高山暗针叶林25.2 hm2动态监测样地物种组成与群落结构特征[J]. 植物生态学报, 2022, 46(9): 1005-1017. |
[7] | 王姝文, 李文怀, 李艳龙, 严慧, 李永宏. 放牧家畜类型对内蒙古典型草原植物多样性和群落结构的影响[J]. 植物生态学报, 2022, 46(8): 941-950. |
[8] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[9] | 于水今, 王娟, 张春雨, 赵秀海. 温带针阔混交林生物量稳定性影响机制[J]. 植物生态学报, 2022, 46(6): 632-641. |
[10] | 韩广轩, 王法明, 马俊, 肖雷雷, 初小静, 赵明亮. 滨海盐沼湿地蓝色碳汇功能、形成机制及其增汇潜力[J]. 植物生态学报, 2022, 46(4): 373-382. |
[11] | 谢育杭, 贾璞, 郑修坛, 李金天, 束文圣, 王宇涛. 驯化对作物微生物组多样性和群落结构的影响及作用途径[J]. 植物生态学报, 2022, 46(3): 249-266. |
[12] | 周亮, 杨君珑, 杨虎, 窦建德, 黄维, 李小伟. 宁夏蒙古扁桃群落特征与分类[J]. 植物生态学报, 2022, 46(2): 243-248. |
[13] | 黄侩侩, 胡刚, 庞庆玲, 张贝, 何业涌, 胡聪, 徐超昊, 张忠华. 放牧对中国亚热带喀斯特山地灌草丛物种组成与群落结构的影响[J]. 植物生态学报, 2022, 46(11): 1350-1363. |
[14] | 周楷玲, 赵玉金, 白永飞. 基于Sentinel-2A数据的东北森林植物多样性监测方法研究[J]. 植物生态学报, 2022, 46(10): 1251-1267. |
[15] | 刘艳方, 王文颖, 索南吉, 周华坤, 毛旭锋, 王世雄, 陈哲. 青海海北植物群落类型与土壤线虫群落相互关系[J]. 植物生态学报, 2022, 46(1): 27-39. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19