植物生态学报 ›› 2022, Vol. 46 ›› Issue (4): 373-382.DOI: 10.17521/cjpe.2021.0264
• 综述 • 下一篇
韩广轩1,2,*(), 王法明3, 马俊4, 肖雷雷1, 初小静1,2, 赵明亮1,2
收稿日期:
2021-07-14
接受日期:
2021-11-08
出版日期:
2022-04-20
发布日期:
2021-12-16
通讯作者:
韩广轩
作者简介:
*(E-mail: gxhan@yic.ac.cn) ORCID: 韩广轩:0000-0003-2651-8599基金资助:
HAN Guang-Xuan1,2,*(), WANG Fa-Ming3, MA Jun4, XIAO Lei-Lei1, CHU Xiao-Jing1,2, ZHAO Ming-Liang1,2
Received:
2021-07-14
Accepted:
2021-11-08
Online:
2022-04-20
Published:
2021-12-16
Contact:
HAN Guang-Xuan
Supported by:
摘要:
盐沼湿地具有很高的碳捕获与存储能力, 是缓解全球变暖的有效蓝色碳汇(蓝碳)。未来气候变暖和海平面上升可能增加盐沼湿地的固碳能力, 其蓝碳功能越来越受到国际社会的重视。该文重点围绕盐沼湿地蓝碳形成的关键过程、光合碳分配过程及影响机制、碳沉积埋藏特征及其来源解析、盐沼湿地土壤碳库稳定性及其微生物机制、盐沼湿地蓝碳过程动态模拟及其增汇潜力等5个方面进行综述。在此基础上, 针对当前研究的不足, 提出今后的研究中需要进一步探究盐沼湿地植被海陆梯度分布格局对碳吸收能力和碳分配的影响, 土壤有机碳沉积和埋藏速率及其对全球变化的响应, 盐沼湿地土壤碳库的稳定性及其横向碳流动, 气候变化和海平面上升背景下盐沼湿地蓝碳模拟与增汇潜力评估, 以及盐沼湿地蓝碳的增汇技术和途径。以期为深入理解盐沼湿地蓝碳形成过程与机制, 预测全球变化背景下盐沼湿地蓝碳功能的潜在变化趋势和制定蓝碳增汇途径提供理论支持, 助力碳达峰、碳中和目标实现。
韩广轩, 王法明, 马俊, 肖雷雷, 初小静, 赵明亮. 滨海盐沼湿地蓝色碳汇功能、形成机制及其增汇潜力. 植物生态学报, 2022, 46(4): 373-382. DOI: 10.17521/cjpe.2021.0264
HAN Guang-Xuan, WANG Fa-Ming, MA Jun, XIAO Lei-Lei, CHU Xiao-Jing, ZHAO Ming-Liang. Blue carbon sink function, formation mechanism and sequestration potential of coastal salt marshes. Chinese Journal of Plant Ecology, 2022, 46(4): 373-382. DOI: 10.17521/cjpe.2021.0264
图1 潮汐作用下盐沼湿地固碳关键过程, 包括盐沼植物的光合作用及光合产物分配、碳沉积埋藏、土壤碳矿化分解、溶解有机碳(DOC)、颗粒有机碳(POC)、溶解无机碳(DIC)流失等。
Fig. 1 Key processes of carbon sequestration under tidal action, including photosynthesis and allocation of photosynthetic products, carbon deposition and burial, soil carbon mineralization, and losses of dissolved organic carbon (DOC), particulate organic carbon (POC), dissolved inorganic carbon (DIC) in salt marshes.
图2 盐沼湿地土壤有机碳矿化关键过程, 包括盐沼植物的凋落分解、土壤有机碳水解、发酵、产酸、产CO2和CH4等。
Fig. 2 Key processes of soil organic carbon mineralization, including litter decomposition of salt marsh plant, hydrolysis, fermentation, acetogenesis, CO2 production generation and methanogenesis of soil organic carbon.
[1] |
Antler G, Mills JV, Hutchings AM, Redeker KR, Turchyn AV (2019). The sedimentary carbon-sulfur-iron interplay—A lesson from East Anglian salt marsh sediments. Frontiers in Earth Science, 7, 140. DOI: 10.3389/feart.2019.00140.
DOI URL |
[2] |
Cao L, Song JM, Li XG, Yuan HM, Li N, Duan LQ (2013). Research progresses in carbon budget and carbon cycle of the coastal salt marshes in China. Acta Ecologica Sinica, 33, 5141-5152.
DOI URL |
[ 曹磊, 宋金明, 李学刚, 袁华茂, 李宁, 段丽琴 (2013). 中国滨海盐沼湿地碳收支与碳循环过程研究进展. 生态学报, 33, 5141-5152.] | |
[3] | Choi Y, Wang Y (2004). Dynamics of carbon sequestration in a coastal wetland using radiocarbon measurements. Global Biogeochemical Cycles, 18, 133-147. |
[4] |
Chu XJ, Han GX, Xing QH, Xia JY, Sun BY, Yu JB, Li DJ (2018). Dual effect of precipitation redistribution on net ecosystem CO2 exchange of a coastal wetland in the Yellow River Delta. Agricultural and Forest Meteorology, 249, 286-296.
DOI URL |
[5] |
de Lacerda LD, Marins RV, da Silva Dias FJ(2020). An arctic paradox: response of fluvial Hg inputs and bioavailability to global climate change in an extreme coastal environment. Frontiers in Earth Science, 8, 93. DOI: 10.3389/feart.2020.00093.
DOI URL |
[6] |
DeLaune RD, White JR (2012). Will coastal wetlands continue to sequester carbon in response to an increase in global sea level?: a case study of the rapidly subsiding Mississippi river deltaic plain. Climatic Change, 110, 297-314.
DOI URL |
[7] |
Diao H, Wang A, Yuan F, Guan D, Dai G, Wu J (2020). Environmental effects on carbon isotope discrimination from assimilation to respiration in a coniferous and broad-leaved mixed forest of northeast China. Forests, 11, 1156. DOI: 10.3390/f11111156.
DOI URL |
[8] |
Doroski AA, Helton AM, Vadas TM (2019). Greenhouse gas fluxes from coastal wetlands at the intersection of urban pollution and saltwater intrusion: a soil core experiment. Soil Biology & Biochemistry, 131, 44-53.
DOI URL |
[9] |
Duarte CM, Losada IJ, Hendriks IE, Mazarrasa I, Marbà N (2013). The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change, 3, 961-968.
DOI URL |
[10] |
Elschot K, Bakker JP, Temmerman S, van de Koppel J, Bouma TJ (2015). Ecosystem engineering by large grazers enhances carbon stocks in a tidal salt marsh. Marine Ecology Progress Series, 537, 9-21.
DOI URL |
[11] |
Ewers Lewis CJ, Young MA, Ierodiaconou D, Baldock JA, Hawke B, Sanderman J, Carnell PE, Macreadie PI (2020). Drivers and modelling of blue carbon stock variability in sediments of southeastern Australia. Biogeosciences, 17, 2041-2059.
DOI URL |
[12] |
Feng XJ, Wang YY, Liu T, Jia J, Dai GH, Ma T, Liu ZG (2020). Biomarkers and their applications in ecosystem research. Chinese Journal of Plant Ecology, 44, 384-394.
DOI URL |
[ 冯晓娟, 王依云, 刘婷, 贾军, 戴国华, 马田, 刘宗广 (2020). 生物标志物及其在生态系统研究中的应用. 植物生态学报, 44, 384-394.]
DOI |
|
[13] |
Georgiou K, Abramoff RZ, Harte J, Riley WJ, Torn MS (2017). Microbial community-level regulation explains soil carbon responses to long-term litter manipulations. Nature Communications, 8, 1223. DOI: 10.1038/s41467-017-02134-7.
DOI URL |
[14] |
Gu J, Luo M, Zhang X, Christakos G, Agusti S, Duarte CM, Wu J (2018). Losses of salt marsh in China: trends, threats and management. Estuarine Coastal and Shelf Science, 214, 98-109.
DOI URL |
[15] | Han GX (2017). Effect of tidal action and drying-wetting cycles on carbon exchange in a salt marsh: progress and prospects. Acta Ecologica Sinica, 37, 8170-8178. |
[ 韩广轩 (2017). 潮汐作用和干湿交替对盐沼湿地碳交换的影响机制研究进展. 生态学报, 37, 8170-8178.] | |
[16] |
Han GX, Chu XJ, Xing QH, Li DJ, Yu JB, Luo YQ, Wang GM, Mao PL, Rafique R (2015). Effects of episodic flooding on the net ecosystem CO2 exchange of a supratidal wetland in the Yellow River Delta. Journal of Geophysical Research: Biogeosciences, 120, 1506-1520.
DOI URL |
[17] |
Han GX, Sun BY, Chu XJ, Xing QH, Song WM, Xia JY (2018). Precipitation events reduce soil respiration in a coastal wetland based on four-year continuous field measurements. Agricultural and Forest Meteorology, 256-257, 292-303.
DOI URL |
[18] | Han GX, Wang GM, Bi XL, Wang CY (2018). Evolution Mechanism and Ecological Restoration of Coastal Wetlands in the Yellow River Delta. Science Press, Beijing. |
[ 韩广轩, 王光美, 毕晓丽, 王传远 (2018). 黄河三角洲滨海湿地演变机制与生态修复. 科学出版社, 北京.] | |
[19] | Hoegh-Guldberg O, Caldeira K, Chopin T, Gaines S, Haugan P, Herner M, Howard J, Konar M, Krause-Jensen D, Lindstad E, Lovelock CE, Michelin M, Nielsen FG, Northrop E, Parker R, et al. (2019). The Ocean as a Solution to Climate Change: Five Opportunities for Action. World Resources Institute, Washington D.C. |
[20] | Huang M, Ge CD, Zuo P, Ji ZQ, Fang WL, Zhou MY (2018). The contribution of Spartina introduction on organic matter source and its effects on carbon burial in tidal flats. Journal of Nanjing University (Natural Science), 54, 656-664. |
[ 黄梅, 葛晨东, 左平, 纪振强, 方文丽, 周孟洋 (2018). 米草引种对潮滩沉积物有机质的贡献及碳埋藏的影响. 南京大学学报(自然科学版), 54, 655-664.] | |
[21] |
Joergensen RG (2018). Amino sugars as specific indices for fungal and bacterial residues in soil. Biology and Fertility of Soils, 54, 559-568.
DOI URL |
[22] |
Kauffman JB, Giovanonni L, Kelly J, Dunstan N, Borde A, Diefenderfer H, Cornu C, Janousek C, Apple J, Brophy L (2020). Total ecosystem carbon stocks at the marine-terrestrial interface: blue carbon of the Pacific Northwest Coast, United States. Global Change Biology, 26, 5679-5692.
DOI URL |
[23] |
Kelleway JJ, Serrano O, Baldock JA, Burgess R, Cannard T, Lavery PS, Lovelock CE, Macreadie PI, Masqué P, Newnham M, Saintilan N, Steven ADL (2020). A national approach to greenhouse gas abatement through blue carbon management. Global Environmental Change, 63, 102083. DOI: 10.1016/j.gloenvcha.2020.102083.
DOI URL |
[24] |
Kirwan ML, Mudd SM (2012). Response of salt-marsh carbon accumulation to climate change. Nature, 489, 550-553.
DOI URL |
[25] |
Langley JA, McKee KL, Cahoon DR, Cherry JA, Megonigal JP (2009). Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise. Proceedings of the National Academy of Sciences of the United States of America, 106, 6182-6186.
DOI PMID |
[26] |
Lehmann J, Hansel CM, Kaiser C, Kleber M, Maher K, Manzoni S, Nunan N, Reichstein M, Schimel JP, Torn MS, Wieder WR, Kögel-Knabner I (2020). Persistence of soil organic carbon caused by functional complexity. Nature Geoscience, 13, 529-534.
DOI URL |
[27] |
Li J, Liu YM, Sun H, Huang JT, Lu JF (2019). Analysis of blue carbon in Chinaʼs coastal zone. Environmental Science & Technology, 42(10), 207-216.
DOI URL |
[ 李捷, 刘译蔓, 孙辉, 黄建涛, 路景钫 (2019). 中国海岸带蓝碳现状分析. 环境科学与技术, 42(10), 207-216.] | |
[28] |
Liu YL, Ge TD, Zhu ZK, Liu SL, Luo Y, Li Y, Wang P, Gavrichkova O, Xu XL, Wang JK, Wu JS, Guggenberger G, Kuzyakov Y (2019). Carbon input and allocation by rice into paddy soils: a review. Soil Biology & Biochemistry, 133, 97-107.
DOI URL |
[29] |
Luk SY, Todd-Brown K, Eagle M, McNichol AP, Sanderman J, Gosselin K, Spivak AC (2021). Soil organic carbon development and turnover in natural and disturbed salt marsh environments. Geophysical Research Letters, 48, e2020GL090287. DOI: 10.1029/2020GL090287.
DOI |
[30] |
Macreadie PI, Anton A, Raven JA, Beaumont N, Connolly RM, Friess DA, Kelleway JJ, Kennedy H, Kuwae T, Lavery PS, Lovelock CE, Smale DA, Apostolaki ET, Atwood TB, Baldock J, et al. (2019). The future of Blue Carbon science. Nature Communications, 10, 3998. DOI: 10.1038/s41467-019-11693-w.
DOI PMID |
[31] |
Macreadie PI, Nielsen DA, Kelleway JJ, Atwood TB, Seymour JR, Petrou K, Connolly RM, Thomson ACG, Trevathan- Tackett SM, Ralph PJ (2017). Can we manage coastal ecosystems to sequester more blue carbon? Frontiers in Ecology and the Environment, 15(4), 206-213.
DOI URL |
[32] |
McLeod E, Chmura GL, Bouillon S, Salm R, Björk M, Duarte CM, Lovelock CE, Schlesinger WH, Silliman BR (2011). A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment, 9, 552-560.
DOI URL |
[33] |
Mou XM, Li XG, Zhao N, Yu YW, Kuzyakov Y (2018). Tibetan sedges sequester more carbon belowground than grasses: a 13C labeling study. Plant and Soil, 426, 287-298.
DOI URL |
[34] | Nellemann C, Corcoran E, Duarte CM, Valdés L, De Young C, Fonseca L, Grimsditch G (2009). Blue Carbon—The Role of Healthy Oceans in Binding Carbon. United Nations Environment Programme, GRID-Arendal, Arendal, Norway. |
[35] |
Newton A, Icely J, Cristina S, Perillo GME, Turner RE, Ashan DW, Cragg S, Luo Y, Tu C, Li Y, Zhang H, Ramesh R, Forbes DL, Solidoro C, Béjaoui B, et al. (2020). Anthropogenic, direct pressures on coastal wetlands. Frontiers in Ecology and Evolution, 8, 144. DOI: 10.3389/fevo.2020. 00144.
DOI URL |
[36] |
Pausch J, Kuzyakov Y (2018). Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale. Global Change Biology, 24, 1-12.
DOI URL |
[37] |
Peck EK, Wheatcroft RA, Brophy LS (2020). Controls on sediment accretion and blue carbon burial in tidal saline wetlands: insights from the oregon coast, USA. Journal of Geophysical Research: Biogeosciences, 125, e2019JG005464. DOI: 10.1029/2019JG005464.
DOI |
[38] |
Preece C, Farré-Armengol G, Llusià J, Peñuelas J (2018). Thirsty tree roots exude more carbon. Tree Physiology, 38, 690-695.
DOI URL |
[39] |
Radabaugh KR, Moyer RP, Chappel AR, Powell CE, Bociu I, Clark BC, Smoak JM (2018). Coastal blue carbon assessment of mangroves, salt marshes, and salt barrens in Tampa Bay, Florida, USA. Estuaries and Coasts, 41, 1496-1510.
DOI URL |
[40] |
Rogers K, Kelleway JJ, Saintilan N, Megonigal JP, Adams JB, Holmquist JR, Lu M, Schile-Beers L, Zawadzki A, Mazumder D, Woodroffe CD (2019). Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise. Nature, 567, 91-95.
DOI URL |
[41] |
Roth VN, Lange M, Simon C, Hertkorn N, Bucher S, Goodall T, Griffiths RI, Mellado-Vázquez PG, Mommer L, Oram NJ, Weigelt A, Dittmar T, Gleixner G (2019). Persistence of dissolved organic matter explained by molecular changes during its passage through soil. Nature Geoscience, 12, 755-761.
DOI URL |
[42] |
Samper-Villarreal J, Lovelock CE, Saunders MI, Roelfsema C, Mumby PJ (2016). Organic carbon in seagrass sediments is influenced by seagrass canopy complexity, turbidity, wave height, and water depth. Limnology and Oceanography, 61, 938-952.
DOI URL |
[43] |
Sanderman J, Hengl T, Fiske GJ (2017). Soil carbon debt of 12,000 years of human land use. Proceedings of the National Academy of Sciences of the United States of America, 114, 9575-9580.
DOI PMID |
[44] |
Sapkota Y, White JR (2021). Long-term fate of rapidly eroding carbon stock soil profiles in coastal wetlands. Science of the Total Environment, 753, 141913. DOI: 10.1016/ j.scitotenv.2020.141913.
DOI URL |
[45] |
Schuerch M, Spencer T, Temmerman S, Kirwan ML, Wolff C, Lincke D, McOwen CJ, Pickering MD, Reef R, Vafeidis AT, Hinkel J, Nicholls RJ, Brown S (2018). Future response of global coastal wetlands to sea-level rise. Nature, 561, 231-234.
DOI URL |
[46] |
Sousa AI, Lillebø AI, Pardal MA, Cacador I (2010). Productivity and nutrient cycling in salt marshes: contribution to ecosystem health. Estuarine, Coastal and Shelf Science, 87, 640-646.
DOI URL |
[47] |
Spencer T, Schuerch M, Nicholls RJ, Hinkel J, Lincke D, Vafeidis AT, Reef R, McFadden L, Brown L (2016). Global coastal wetland change under sea-level rise and related stresses: the DIVA Wetland Change Model. Global and Planetary Change, 139, 15-30.
DOI URL |
[48] |
Spivak AC, Sanderman J, Bowen JL, Canuel EA, Hopkinson CS (2019). Global-change controls on soil-carbon accumulation and loss in coastal vegetated ecosystems. Nature Geoscience, 12, 685-692.
DOI URL |
[49] |
Stefan K, Angela A, Johannes I, Hasibeder R, Lange M, Lavorel S, Bahn M, Gleixner G (2018). Land use in mountain grasslands alters drought response and recovery of carbon allocation and plant-microbial interactions. Journal of Ecology, 106, 1230-1243.
DOI URL |
[50] |
Street LE, Garnett MH, Subke JA, Baxter R, Dean JF, Wookey PA (2020). Plant carbon allocation drives turnover of old soil organic matter in permafrost tundra soils. Global Change Biology, 26, 4559-4571.
DOI URL |
[51] |
Wang B, Gong JR, Zhang ZH, Yang B, Liu M, Zhu CC, Shi JY, Zhang WY, Yue KX (2019a). Nitrogen addition alters photosynthetic carbon fixation, allocation of photoassimilates, and carbon partitioning of Leymus chinensis in a temperate grassland of Inner Mongolia. Agricultural and Forest Meteorology, 279, 107743. DOI: 10.1016/j.agrformet.2019.107743.
DOI URL |
[52] |
Wang F, Lu X, Sanders CJ, Tang J (2019b). Tidal wetland resilience to sea level rise increases their carbon sequestration capacity in United States. Nature Communications, 10, 5434. DOI: 10.1038/s41467-019-13294-z.
DOI URL |
[53] |
Wang F, Sanders CJ, Santos IR, Tang J, Schuerch M, Kirwan ML, Kopp RE, Zhu K, Li X, Yuan J, Liu W, Li Z (2021a). Global blue carbon accumulation in tidal wetlands increases with climate change. National Science Review, 8, nwaa296. DOI: 10.1093/nsr/nwaa296.
DOI URL |
[54] | Wang FM, Tang JW, Ye SY, Liu JH (2021). Blue carbon sink function of Chinese coastal wetlands and carbon neutrality strategy. Bulletin of Chinese Academy of Sciences, 36, 241-251. |
[ 王法明, 唐剑武, 叶思源, 刘纪化 (2021). 中国滨海湿地的蓝色碳汇功能及碳中和对策. 中国科学院院刊, 36, 241-251.] | |
[55] |
Wang R, Bicharanloo B, Shirvan MB, Cavagnaro TR, Jiang Y, Keitel C, Dijkstra FA (2021b). A novel 13C pulse-labelling method to quantify the contribution of rhizodeposits to soil respiration in a grassland exposed to drought and nitrogen addition. New Phytologist, 230, 857-866.
DOI URL |
[56] | Wang XJ, Zhang HB, Han GX (2016). Carbon cycle and “blue carbon” potential in China’s coastal zone. Bulletin of Chinese Academy of Sciences, 31, 1218-1225. |
[ 王秀君, 章海波, 韩广轩 (2016). 中国海岸带及近海碳循环与蓝碳潜力. 中国科学院院刊, 31, 1218-1225.] | |
[57] |
Williams A, de Vries FT (2020). Plant root exudation under drought: implications for ecosystem functioning. New Phytologist, 225, 1899-1905.
DOI PMID |
[58] |
Xia P, Meng XW, Li Z, Feng AP (2016). Sedimentary records of mangrove evolution during the past one hundred years based on stable carbon isotope and pollen evidences in Maowei, SW China. Journal of Ocean University of China, 15, 447-455.
DOI URL |
[59] |
Xia SP, Song ZL, Li Q, Guo LD, Yu CX, Singh BP, Fu XL, Chen CM, Wang YD, Wang HL (2021a). Distribution, sources, and decomposition of soil organic matter along a salinity gradient in estuarine wetlands characterized by C:N ratio, δ13C-δ15N, and lignin biomarker. Global Change Biology, 27, 417-434.
DOI URL |
[60] |
Xia SP, Wang WQ, Song ZL, Kuzyakov Y, Guo LD, van Zwieten L, Li Q, Hartley IP, Yang YH, Wang YD, Andrew Quine T, Liu CQ, Wang HL (2021b). Spartina alterniflora invasion controls organic carbon stocks in coastal marsh and mangrove soils across tropics and subtropics. Global Change Biology, 27, 1627-1644.
DOI URL |
[61] |
Xiong YM, Liao BW, Wang FM (2018). Mangrove vegetation enhances soil carbon storage primarily through in situ inputs rather than increasing allochthonous sediments. Marine Pollution Bulletin, 131, 378-385.
DOI URL |
[62] |
Xu X, Liu H, Liu Y, Zhou C, Pan L, Fang C, Nie M, Li B (2020). Human eutrophication drives biogeographic salt marsh productivity patterns in China. Ecological Applications, 30, e02045. DOI: 10.1002/eap.2045.
DOI |
[63] |
Ye S, Laws EA, Yuknis N, Yu XY, Ding X, Yuan H, Zhao G, Wang J, Pei S, Brix H (2018). Carbon sequestration and its controlling factors in the temperate wetland communities along the Bohai Sea, China. Marine and Freshwater Research, 69, 700-713.
DOI URL |
[64] |
Yuan Y, Li Y, Mou Z, Kuang L, Wu W, Zhang J, Wang F, Hui D, Peñuelas J, Sardans J, Lambers H, Wang J, Kuang Y, Li Z, Liu Z (2021). Phosphorus addition decreases microbial residual contribution to soil organic carbon pool in a tropical coastal forest. Global Change Biology, 27, 454-466.
DOI PMID |
[65] |
Zhang P, Nie M, Li B, Wu JH (2017). The transfer and allocation of newly fixed C by invasive Spartina alterniflora and native Phragmites australis to soil microbiota. Soil Biology & Biochemistry, 113, 231-239.
DOI URL |
[66] |
Zhou CH, Mao QY, Xu X, Fang CM, Luo YM, Li B (2016). Preliminary analysis of C sequestration potential of blue carbon ecosystems on Chinese coastal zone. Scientia Sinica Vitae, 46, 475-486.
DOI URL |
[ 周晨昊, 毛覃愉, 徐晓, 方长明, 骆永明, 李博 (2016). 中国海岸带蓝碳生态系统碳汇潜力的初步分析. 中国科学: 生命科学, 46, 475-486.] |
[1] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[2] | 李雪, 董杰, 韩广轩, 张奇奇, 谢宝华, 李培广, 赵明亮, 陈克龙, 宋维民. 黄河三角洲典型滨海盐沼湿地土壤CO2和CH4排放对水盐变化的响应[J]. 植物生态学报, 2023, 47(3): 434-446. |
[3] | 韩广轩, 李隽永, 屈文笛. 氮输入对滨海盐沼湿地碳循环关键过程的影响及机制[J]. 植物生态学报, 2021, 45(4): 321-333. |
[4] | 陈锦, 宋明华, 李以康. 13C脉冲标记揭示放牧对高寒草甸同化碳分配的影响[J]. 植物生态学报, 2019, 43(7): 576-584. |
[5] | 李群, 赵成章, 赵连春, 王建良, 张伟涛, 姚文秀. 秦王川盐沼湿地芦苇比叶面积与叶片热耗散的关联性分析[J]. 植物生态学报, 2017, 41(9): 985-994. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19