植物生态学报 ›› 2019, Vol. 43 ›› Issue (7): 576-584.DOI: 10.17521/cjpe.2019.0009
所属专题: 青藏高原植物生态学:群落生态学
收稿日期:
2019-01-10
接受日期:
2019-06-25
出版日期:
2019-07-20
发布日期:
2019-12-12
通讯作者:
宋明华
基金资助:
CHEN Jin1,2,SONG Ming-Hua1,*(),LI Yi-Kang3
Received:
2019-01-10
Accepted:
2019-06-25
Online:
2019-07-20
Published:
2019-12-12
Contact:
SONG Ming-Hua
Supported by:
摘要:
放牧是人类对草地进行利用的重要方式之一, 放牧影响草地生态系统的结构和功能, 改变植物光合碳(C)分配, 进而改变土壤有机碳的储存。青藏高原的高寒草甸是世界上海拔最高的草地生态系统, 寒冷季节长等独特的环境特点使其具有高的土壤有机碳含量。为了揭示长期轻度放牧对植物光合碳分配及植物光合碳在各库之间运移的影响, 基于在青藏高原矮嵩草草甸开展的长期冬季轻度放牧和围栏封育实验, 利用 13C示踪方法揭示了放牧对光合碳在植物地上、地下组织的分配以及光合碳在植物、土壤各碳库中的运移和滞留。研究结果发现, 在 13C标记之后第30天, 冬季轻度放牧样地的植物地上部分内 13C约占开始时 13C含量的32%, 根和土壤中的 13C约占22%, 植物地上部分呼吸中的 13C量约占30%。在放牧和围封这两个不同处理中, 土壤中光合碳的滞留以及光合碳随土壤呼吸释放的速率存在显著差异。长期冬季轻度放牧促使植物将更多的光合碳输入到根和土壤碳库中。与围栏封育处理相比较, 放牧处理下的 13C从植物地上部分输入到地下的速率较快, 通过土壤呼吸释放的速率也快, 而植物地上部分和植物地上部分呼吸中 13C的量较低。另外, 高寒矮嵩草草甸土壤C储量在冬季轻度放牧和围栏封育处理下没有显著差异。我们的研究表明, 尽管冬季轻度放牧改变了植物光合碳分配在地上和地下碳库中的分配, 但是没有显著影响土壤碳库储量。
陈锦, 宋明华, 李以康. 13C脉冲标记揭示放牧对高寒草甸同化碳分配的影响. 植物生态学报, 2019, 43(7): 576-584. DOI: 10.17521/cjpe.2019.0009
CHEN Jin, SONG Ming-Hua, LI Yi-Kang. 13C pulse labeling reveals the effects of grazing on partitioning of assimilated carbon in an alpine meadow. Chinese Journal of Plant Ecology, 2019, 43(7): 576-584. DOI: 10.17521/cjpe.2019.0009
图1 冬季轻度放牧(LWG)和围封(Encl)的高寒草甸土壤(A)和植物(B)碳库及植物植物地上部分(C)和根(D)碳储量(平均值±标准误差)。*表示放牧与未放牧样地差异显著(p < 0.05)。
Fig. 1 Carbon (C) stock in soil (A) and plants (B) in light winter grazed (LWG) and fence-enclosed (Encl) alpine meadows and in plant shoot (C) and root (D) (mean ± SE). * indicates significant difference between grazed and ungrazed plots (p < 0.05).
图2 冬季轻度放牧(LWG)和围封(Encl)高寒草甸13C标记后30天的累积土壤CO2-C排放情况(平均值±标准误差)。*表示放牧与未放牧样地差异显著(p < 0.05)。
Fig. 2 Cumulative soil CO2-C efflux over 30 days following 13C labelling in light winter grazed (LWG) and fence-enclosed (Encl) alpine meadows(mean ± SE). * indicates significant difference between grazed and ungrazed plots (p < 0.05).
图3 在13C标记后的30天期间, 冬季轻度放牧(LWG)和围封(Encl)的高寒草甸的植物地上部分、根和植物地上部分呼吸作用下损失的13C动态(平均值±标准误差)。*表示放牧与未放牧样地差异显著(p < 0.05)。
Fig. 3 13C dynamics in shoots and roots and 13C losses by shoot respiration during a 30 day period following 13C labelling in light winter grazed (LWG) and fence-enclosed (Encl) alpine meadows (mean ± SE). * indicates significant difference between grazed and ungrazed plots (p < 0.05).
图4 13C标记后30天, 冬季轻度放牧(LWG)和围封(Encl)的高寒草甸的根和土壤13C动态(平均值±标准误差)。*表示放牧与未放牧样地差异显著(p < 0.05)。
Fig. 4 13C dynamics in roots and soil during a 30 day period following 13C labelling in light winter grazed (LWG) and fence- enclosed (Encl) alpine meadows (mean ± SE). * indicates significant difference between grazed and ungrazed plots (p < 0.05).
图5 13CO2-C标记后30天, 冬季轻度放牧(LWG)和围封(Encl)的高寒草甸的土壤中13CO2-C的排放速率(平均值±标准误差)。*表示放牧与未放牧样地差异显著(p < 0.05)。
Fig. 5 13CO2-C efflux rate in soil of light winter grazed (LWG) and fence-enclosed (Encl) alpine meadows during a 30 day period following 13C labelling (mean ± SE). * indicates significant difference between grazed and ungrazed plots (p < 0.05).
[1] | Burenbayin ( 2012). Effect of Different Grazing Seasons on the Plant Diversity and Productivity in Kobresia Alpine Meadow. Master degree dissertation, Chinese Academy of Sciences, Beijing. |
[ 布仁巴音 ( 2012). 不同季节放牧对高寒草甸植物群落多样性和生产力的影响. 硕士学位论文, 中国科学院研究生院, 北京.] | |
[2] |
Cao GM, Tang YH, Mo WH, Wang YS, Li YN, Zhao XQ ( 2004). Grazing intensity alters soil respiration in an alpine meadow on the Tibetan Plateau. Soil Biology & Biochemistry, 36, 237-243.
DOI URL PMID |
[3] | Chinese Soil Taxonomy Research Group ( 1995). Chinese Soil Taxonomy. Science Press, Beijing. 58-147. |
[ 中国土壤分类学研究组 ( 1995). 中国土壤分类. 科学出版社, 北京. 58-147.] | |
[4] |
Cingolani AM, Noy-Meir I, Díaz S ( 2005). Grazing effects on rangeland diversity: A synthesis of contemporary models. Ecological Applications, 15, 757-773.
DOI URL |
[5] |
Doescher PS, Svejcar TJ, Jaindl RG ( 1997). Gas exchange of Idaho fescue in response to defoliation and grazing history. Journal of Range Management, 50, 285-289.
DOI URL |
[6] |
Gao YH, Zeng XY, Schumann M, Chen H ( 2011). Effectiveness of exclosures on restoration of degraded alpine meadow in the eastern Tibetan Plateau. Arid Land Research and Management, 25, 164-175.
DOI URL |
[7] |
Gao YZ, Giese M, Lin S, Sattelmacher B, Zhao Y, Brueck H ( 2008). Belowground net primary productivity and biomass allocation of a grassland in Inner Mongolia is affected by grazing intensity. Plant and Soil, 307, 41-50.
DOI URL |
[8] | Haferkamp MR, MacNeil MD ( 2004). Grazing effects on carbon dynamics in the northern mixed-grass prairie. Environmental Management, 3(S1), S462-S474. |
[9] |
Hafner S, Unteregelsbacher S, Seeber E, Lena B, Xu XL, Li XG, Guggenberger G, Miehe G, Kuzyakov Y ( 2012). Effect of grazing on carbon stocks and assimilate partitioning in a Tibetan montane pasture revealed by 13CO2 pulse labeling . Global Change Biology, 18, 528-538.
DOI URL |
[10] | Hamblin A, Tennant D, Perry MW ( 1990). The cost of stress: Dry matter partitioning changes with seasonal supply of water and nitrogen to dryland wheat. Plant and Soil, 122, 47-58. |
[11] |
Herzschuh U, Birks HJB, Ni J, Zhao Y, Liu H, Liu X, Grosse G ( 2010). Holocene land-cover changes on the Tibetan Plateau. The Holocene, 20(1), 91-104.
DOI URL |
[12] | IPCC ( Intergovernmental Panel on Climate Change) ( 2001). Climate Change 2001: The Scientific Basis. Cambridge University Press, New York, USA. 881. |
[13] |
Klumpp K, Soussana JF ( 2009). Using functional traits to predict grassland ecosystem change: A mathematical test of the response-and-effect trait approach. Global Change Biology, 15, 2921-2934.
DOI URL |
[14] |
Kuzyakov Y, Domanski G ( 2000). Carbon input by plants into the soil. Review. Journal of Plant Nutrition and Soil Science, 163, 421-431.
DOI URL PMID |
[15] |
Lettens S, Orshoven J, Wesemael B, Muys B, Perrin D ( 2005). Soil organic carbon changes in landscape units of Belgium between 1960 and 2000 with reference to 1990. Global Change Biology, 11, 2128-2140.
DOI URL |
[16] |
McNaughton SJ ( 1979). Grazing as an optimization process: Grass-ungulate relationships in the Serengeti. The American Naturalist, 113, 691-703.
DOI URL |
[17] |
McNaughton SJ ( 1985). Ecology of a grazing ecosystem: The Serengeti. Ecological Monographs, 55, 259-294.
DOI URL PMID |
[18] |
McNaughton SJ ( 1993). Grasses and grazers, science and management. Ecological Applications, 3, 17-20.
DOI URL PMID |
[19] |
McNaughton SJ, Ruess RW, Seagle SW ( 1988). Large mammals and process dynamics in African ecosystems. BioScience, 38, 794-800.
DOI URL PMID |
[20] |
Menke J, Bradford GE ( 1992). Rangelands. Agriculture, Ecosystems & Environment, 42, 141-163.
DOI URL PMID |
[21] |
Milchunas DG, Lauenroth WK ( 1993). Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecological Monographs, 63, 327-366.
DOI URL |
[22] |
Morris JT, Jensen A ( 1998). The carbon balance of grazed and non-grazed Spartina anglica saltmarshes at Skallingen, Denmark. Journal of Ecology, 86, 229-242.
DOI URL |
[23] |
Ni J ( 2002). Carbon storage in grasslands of China. Journal of Arid Environments, 50, 205-218.
DOI URL PMID |
[24] | Oesterheld M, Loreti J, Semmartin M, Paruelo JM ( 1999). Grazing, fire, and climate effects on primary productivity of grasslands and savannas. In: Walker LR ed. Ecosystems of Disturbed Ground. Elsevier, New York, USA. 287-306. |
[25] |
Rangel-Castro JI, Prosser JI, Scrimgeour CM, Smith P, Ostle N, Ineson P, Meharg A, Killham K ( 2004). Carbon flow in an upland grassland: Effect of liming on the flux of recently photosynthesized carbon to rhizosphere soil. Global Change Biology, 10, 2100-2108.
DOI URL |
[26] |
Rogiers N, Eugster W, Furger M, Siegwolf R ( 2005). Effect of land management on ecosystem carbon fluxes at a subalpine grassland site in the Swiss Alps. Theoretical and Applied Climatology, 80, 187-203.
DOI URL |
[27] |
Scurlock JMO, Hall DO ( 1998). The global carbon sink: A grassland perspective. Global Change Biology, 4, 229-233.
DOI URL PMID |
[28] |
Song M, Guo Y, Yu F, Zhang X, Cao G, Cornelissen JHC ( 2018). Shifts in priming partly explain impacts of long-term nitrogen input in different chemical forms on soil organic carbon storage. Global Change Biology, 24, 4160-4172.
DOI URL PMID |
[29] |
Song MH, Yu FH, Ouyang H, Cao GM, Xu XL, Cornelissen JHC ( 2012). Different inter-annual responses to availability and form of nitrogen explain species coexistence in an alpine meadow community after release from grazing. Global Change Biology, 18, 3100-3111.
DOI URL PMID |
[30] |
Sun Y, Xu XL, Kuzyakov Y ( 2014). Mechanisms of rhizosphere priming effects and their ecological significance . Chinese Journal of Plant Ecology, 38, 62-75.
DOI URL |
[ 孙悦, 徐兴良, KUZYAKOV Yakov ( 2014). 根际激发效应的发生机制及其生态重要性. 植物生态学报, 38, 62-75.]
DOI URL |
|
[31] |
Thomas AD ( 2012). Impact of grazing intensity on seasonal variations in soil organic carbon and soil CO2 efflux in two semiarid grasslands in southern Botswana. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 3076-3086.
DOI URL PMID |
[32] | UNEP ( 1993). Agenda 21 Rio Declaration. United Nations, New York, USA. |
[33] |
Walkley A, Black IA ( 1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37, 29-38.
DOI URL |
[34] |
Ward SE, Bardgett RD, McNamara NP, Adamson JK, Ostle NJ ( 2007). Long-term consequences of grazing and burning on northern peatland carbon dynamics. Ecosystems, 10, 1069-1083.
DOI URL |
[35] | White RP, Murray S, Rohweder M ( 2000). Pilot Analysis of Global Ecosystems: Grassland Ecosystems. World Resources Institute, Washington DC. |
[36] |
Wilsey BJ, Parent G, Roulet NT, Moore TR, Potvin C ( 2002). Tropical pasture carbon cycling: Relationships between C source/sink strength, above-ground biomass and grazing. Ecology Letters, 5, 367-376.
DOI URL |
[37] |
Wu GL, Liu ZH, Zhang L, Chen JM, Hu TM ( 2010). Long-term fencing improved soil properties and soil organic carbon storage in an alpine swamp meadow of western China. Plant and Soil, 332, 331-337.
DOI URL |
[38] | Xie XL, Sun B, Zhou HZ, Li ZP, Li AB ( 2004). Organic carbon density and storage in soils of China and spatial analysis. Acta Pedologica Sinica, 41, 35-43. |
[ 解宪丽, 孙波, 周慧珍, 李忠佩, 李安波 ( 2004). 中国土壤有机碳密度和储量的估算与空间分布分析. 土壤学报, 41, 35-43.] | |
[39] |
Yang YH, Mohammat A, Feng JM, Zhou R, Fang JY ( 2007). Storage, patterns and environmental controls of soil organic carbon in China. Biogeochemistry, 84, 131-141.
DOI URL PMID |
[40] | Zheng D, Zhang QS, Wu SH ( 2000). Mountain Geoecology and Sustainable Development of the Tibetan Plateau. Springer, Dordrecht. 15-16. |
[41] | Zhou XM, Wang QJ, Zhao XQ ( 2001). Chinese Kobresia Meadows. Science Press, Beijing. |
[ 周兴民, 王启基, 赵新全 ( 2001). 中国嵩草草甸. 科学出版社, 北京.] | |
[42] |
Zibilske LM ( 1994). Carbon mineralization. In Weaver RW, Angle S, Bottomley P, Bezdicek D, Smith S, Tabatabai A, Wollum A eds. Methods of Soil Analysis. Part 2—Microbiological and Biochemical Properties. Soil Science Society of America, Wisconsin, USA. 835-863.
DOI URL PMID |
[1] | 江康威 张青青 王亚菲 李宏 丁雨 杨永强 吐尔逊娜依·热依木. 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 萨其拉, 张霞, 朱琳, 康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化[J]. 植物生态学报, 2024, 48(3): 331-340. |
[3] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[4] | 茹雅倩, 薛建国, 葛萍, 李钰霖, 李东旭, 韩鹏, 杨天润, 储伟, 陈章, 张晓琳, 李昂, 黄建辉. 高频轮牧对典型草原生产生态效果的影响[J]. 植物生态学报, 2024, 48(2): 171-179. |
[5] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[6] | 李红琴, 张法伟, 仪律北. 高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应[J]. 植物生态学报, 2023, 47(7): 922-931. |
[7] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[8] | 李伟, 张荣. 亚高寒草甸群落结构决定群落生产力实例验证[J]. 植物生态学报, 2023, 47(5): 713-723. |
[9] | 王德利, 梁存柱. 退化草原的恢复状态: 气候顶极或干扰顶极?[J]. 植物生态学报, 2023, 47(10): 1464-1470. |
[10] | 董全民, 赵新全, 刘玉祯, 冯斌, 俞旸, 杨晓霞, 张春平, 曹铨, 刘文亭. 放牧方式影响高寒草地矮生嵩草种子大小与数量的关系[J]. 植物生态学报, 2022, 46(9): 1018-1026. |
[11] | 白悦, 刘晨, 黄月, 董亚楠, 王露. 科尔沁沙质草地植物群落高度空间异质性对不同放牧方式的响应[J]. 植物生态学报, 2022, 46(4): 394-404. |
[12] | 韩广轩, 王法明, 马俊, 肖雷雷, 初小静, 赵明亮. 滨海盐沼湿地蓝色碳汇功能、形成机制及其增汇潜力[J]. 植物生态学报, 2022, 46(4): 373-382. |
[13] | 郝建锋, 周润惠, 姚小兰, 喻静, 陈聪琳, 向琳, 王姚瑶, 苏天成, 齐锦秋. 二代野猪放牧对夹金山针阔混交林物种多样性与土壤理化性质的影响[J]. 植物生态学报, 2022, 46(2): 197-207. |
[14] | 黄侩侩, 胡刚, 庞庆玲, 张贝, 何业涌, 胡聪, 徐超昊, 张忠华. 放牧对中国亚热带喀斯特山地灌草丛物种组成与群落结构的影响[J]. 植物生态学报, 2022, 46(11): 1350-1363. |
[15] | 刘艳方, 王文颖, 索南吉, 周华坤, 毛旭锋, 王世雄, 陈哲. 青海海北植物群落类型与土壤线虫群落相互关系[J]. 植物生态学报, 2022, 46(1): 27-39. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19