植物生态学报 ›› 2023, Vol. 47 ›› Issue (5): 713-723.DOI: 10.17521/cjpe.2022.0331
所属专题: 植被生态学
收稿日期:
2022-08-17
接受日期:
2022-11-11
出版日期:
2023-05-20
发布日期:
2022-11-11
通讯作者:
*(rongz@lzu.edu.cn)
作者简介:
李伟: ORCID:0000-0002-1644-850X
Received:
2022-08-17
Accepted:
2022-11-11
Online:
2023-05-20
Published:
2022-11-11
摘要:
在植物物种丰富度与生产力之间关系的研究中, 多以物种丰富度和生产力作为双变量, 常常忽略在同一物种丰富度水平下可能影响群落生产力的其他因素, 例如物种组合与组成等。该研究采用盆栽法, 以中华羊茅(Festuca sinensis)、垂穗披碱草(Elymus nutans)、鸭茅(Dactylis glomerata)和紫花苜蓿(Medicago sativa)为研究对象, 设置4个物种丰富度水平(1、2、3、4), 并在最高物种丰富度水平下, 保持总种植密度不变, 改变各组成物种的相对比例(10%、20%、30%、40%), 探讨群落物种组合、组成及物种所属功能群对群落生产力的影响。结果表明: 1)在较低物种丰富度下, 群落生产力随物种丰富度增加而增加, 在较高物种丰富度下, 群落生产力随物种丰富度的增加不再显著变化。2)群落物种组合及组成对群落生产力具有显著影响, 配置垂穗披碱草的群落及垂穗披碱草占比大的群落具有更高生产力。3)混播物种所属功能群对群落生产力具有显著影响, 豆科植物对其他混播物种生产力表现出促进或抑制作用, 禾本科物种垂穗披碱草对群落生产力有正效应,中华羊茅和鸭茅对群落生产力影响不明显。由此推测, 物种丰富度与生产力之间存在一定的表观关系, 植物群落生产力更取决于与物种丰富度相关的物种组合及其组成, 而非物种丰富度。
李伟, 张荣. 亚高寒草甸群落结构决定群落生产力实例验证. 植物生态学报, 2023, 47(5): 713-723. DOI: 10.17521/cjpe.2022.0331
LI Wei, ZHANG Rong. Case verification of community structure determining community productivity in subalpine meadow. Chinese Journal of Plant Ecology, 2023, 47(5): 713-723. DOI: 10.17521/cjpe.2022.0331
物种丰富度 Species richness | 物种组合与物种组成 Species combination and species composition | |||||
---|---|---|---|---|---|---|
1 | FS100 | EN100 | MS100 | DG100 | ||
2 | FS50EN50 | FS50MS50 | FS50DG50 | EN50MS50 | EN50DG50 | MS50DG50 |
3 | FS33EN33MS33 | FS33EN33DG33 | FS33MS33DG33 | EN33MS33DG33 | ||
4 | FS25EN25MS25DG25-SC23 | |||||
FS10EN20MS30DG40- SC14 | FS10EN20MS40DG30- SC13 | FS10EN30MS20DG40- SC21 | FS10EN30MS40DG20- SC25 | FS10EN40MS20DG30- SC24 | FS10EN40MS30DG20- SC19 | |
FS20EN10MS30DG40- SC1 | FS20EN10MS40DG30- SC4 | FS20EN30MS10DG40- SC18 | FS20EN30MS40DG10- SC16 | FS20EN40MS10DG30- SC10 | FS20EN40MS30DG10- SC11 | |
FS30EN10MS20DG40- SC7 | FS30EN10MS40DG20- SC17 | FS30EN20MS10DG40- SC3 | FS30EN20MS40DG10- SC6 | FS30EN40MS10DG20- SC8 | FS30EN40MS20DG10- SC15 | |
FS30EN40MS20DG10- SC2 | FS40EN10MS30DG20- SC9 | FS40EN20MS10DG30- SC20 | FS40EN20MS30DG10- SC5 | FS40EN30MS10DG20- SC12 | FS40EN30MS20DG10- SC22 |
表1 不同物种丰富度水平下的群落物种组合及组成
Table 1 Species combination and species composition of plant communities at different species richness levels
物种丰富度 Species richness | 物种组合与物种组成 Species combination and species composition | |||||
---|---|---|---|---|---|---|
1 | FS100 | EN100 | MS100 | DG100 | ||
2 | FS50EN50 | FS50MS50 | FS50DG50 | EN50MS50 | EN50DG50 | MS50DG50 |
3 | FS33EN33MS33 | FS33EN33DG33 | FS33MS33DG33 | EN33MS33DG33 | ||
4 | FS25EN25MS25DG25-SC23 | |||||
FS10EN20MS30DG40- SC14 | FS10EN20MS40DG30- SC13 | FS10EN30MS20DG40- SC21 | FS10EN30MS40DG20- SC25 | FS10EN40MS20DG30- SC24 | FS10EN40MS30DG20- SC19 | |
FS20EN10MS30DG40- SC1 | FS20EN10MS40DG30- SC4 | FS20EN30MS10DG40- SC18 | FS20EN30MS40DG10- SC16 | FS20EN40MS10DG30- SC10 | FS20EN40MS30DG10- SC11 | |
FS30EN10MS20DG40- SC7 | FS30EN10MS40DG20- SC17 | FS30EN20MS10DG40- SC3 | FS30EN20MS40DG10- SC6 | FS30EN40MS10DG20- SC8 | FS30EN40MS20DG10- SC15 | |
FS30EN40MS20DG10- SC2 | FS40EN10MS30DG20- SC9 | FS40EN20MS10DG30- SC20 | FS40EN20MS30DG10- SC5 | FS40EN30MS10DG20- SC12 | FS40EN30MS20DG10- SC22 |
变异来源 Source of variation | df | 平方和 Sum of square | 方差 Mean square | F | p |
---|---|---|---|---|---|
物种丰富度 Species richness | 3 | 5.61 | 1.870 | 4.924 | 0.00 256 |
误差 Error | 191 | 72.53 | 0.380 | ||
物种组合 Species combination | 14 | 26.05 | 1.861 | 6.428 | 2.07e-10 |
误差 Error | 180 | 52.10 | 0.289 | ||
物种组成 Species composition | 24 | 21.22 | 0.884 | 4.778 | 1.33e-08 |
误差 Error | 100 | 18.50 | 0.185 |
表2 物种丰富度、物种组合及物种组成对地上生物量影响的方差分析
Table 2 Variance analysis of the effects of species richness, species combination and species composition on aboveground biomass
变异来源 Source of variation | df | 平方和 Sum of square | 方差 Mean square | F | p |
---|---|---|---|---|---|
物种丰富度 Species richness | 3 | 5.61 | 1.870 | 4.924 | 0.00 256 |
误差 Error | 191 | 72.53 | 0.380 | ||
物种组合 Species combination | 14 | 26.05 | 1.861 | 6.428 | 2.07e-10 |
误差 Error | 180 | 52.10 | 0.289 | ||
物种组成 Species composition | 24 | 21.22 | 0.884 | 4.778 | 1.33e-08 |
误差 Error | 100 | 18.50 | 0.185 |
图1 物种丰富度与群落地上生物量之间的关系(平均值±标准误)。不同小写字母表示差异显著(p < 0.05)。
Fig. 1 Relationship between species richness and aboveground biomass of community (mean ± SE). Different lowercase letters indicate significant difference (p < 0.05).
图2 不同物种丰富度下的群落相对产量总和(A)、多样性净效应(B)、互补效应(C)和取样效应(D)的大小(平均值±标准误)。
Fig. 2 Magnitude of total relative yield (A), net effect of diversity (B), complementary effect (C), and sampling effect (D) of communities with different species richness (mean ± SE).
图3 不同物种组合的群落地上生物量间的比较(平均值±标准误)。A, 单播群落。B, 2物种混播群落。C, 3物种混播群落。D, 各组合群落。DG, 鸭茅; EN, 垂穗披碱草; FS, 中华羊茅; MS, 紫花苜蓿。不同小写字母表示差异显著(p < 0.05)。
Fig. 3 Comparison between aboveground biomass of communities with different species combinations (mean ± SE). A, Monoculture community. B, Mixed sowing community of two species. C, Mixed sowing community of three species. D, Mixed sowing community of four species. DG, Dactylis glomerata; EN, Elymus nutans; FS, Festuca sinensis; MS, Medicago sativa. Different lowercase letters indicate significant difference (p < 0.05).
图4 不同物种组成群落的地上生物量间的比较(平均值±标准误)。不同小写字母差异显著(p < 0.05)。横坐标标签对应物种组成见表1。
Fig. 4 Comparison between aboveground biomass of communities with different species composition (mean ± SE). Different lowercase letters indicate significant difference (p < 0.05). Species composition corresponding to abscissa label see Table 1.
图5 混播群落与组成群落各物种的地上生物量的变化。Ab, 混播群落地上生物量; Ab-DG, 混播群落中鸭茅的地上生物量; Ab-EN, 混播群落中垂穗披碱草的地上生物量; Ab-FS, 混播群落中中华羊茅的地上生物量; Ab-MS, 混播群落中紫花苜蓿的地上生物量。横坐标轴标签对应物种组成见表1。
Fig. 5 Variation on aboveground biomass of the mixed community and each species constituting the community. Ab, aboveground biomass of mixed community; Ab-DG, aboveground biomass of Dactylis glomerata in mixed community; Ab-EN, aboveground biomass of Elymus nutans in mixed community; Ab-FS, aboveground biomass of Festuca sinensis in mixed community; Ab-MS, aboveground biomass of Medicago sativa in mixed community. Species composition corresponding to abscissa label see Table 1.
图6 混播群落中各物种对群落地上生物量的实际贡献比例。折线表示混播群落中各物种对群落地上生物量的贡献比例的变化; 直线表示以单播群落地上生物量为基础的混播群落中各物种对群落地上生物量的期望贡献比例。A、B、C、D、E和F分别表示物种组合为FS-EN、FS-MS、FS-DG、EN-MS、EN-DG和MS-DG的混播群落。DG, 鸭茅; EN, 垂穗披碱草; FS, 中华羊茅; MS, 紫花苜蓿。
Fig. 6 Actual contribution proportion of species constituting the community to aboveground biomass in the mixed community. The broken line represents the change of the proportion of each species’ contribution to aboveground biomass in the mixed community. The straight line represents the expected contribution proportion of each species in a mixed community based on the aboveground biomass of the mixed community. A, B, C, D, E and F represent mixed communities with species combinations classified as FS-EN, FS-MS, FS-DG, EN-MS, EN-DG, and MS-DG, respectively. DG, Dactylis glomerata; EN, Elymus nutans; FS, Festuca sinensis; MS, Medicago sativa.
[1] |
Armas C, Pugnaire FI (2005). Plant interactions govern population dynamics in a semi-arid plant community. Journal of Ecology, 93, 978-989.
DOI URL |
[2] |
Baer SG, Blair JM, Collins SL, Knapp AK (2004). Plant community responses to resource availability and heterogeneity during restoration. Oecologia, 139, 617-629.
PMID |
[3] | Barry KE, Mommer L, van Ruijven J, Wirth C, Wright AJ, Bai YF, Connolly J, de Deyn GB, de Kroon H, Isbell F, Milcu A, Roscher C, Scherer-Lorenzen M, Schmid B, Weigelt A (2019). The future of complementarity: disentangling causes from consequences. Trends in Ecology & Evolution, 34, 167-180. |
[4] |
Belote RT, Prisley S, Jones RH, Fitzpatrick M, de Beurs K (2011). Forest productivity and tree diversity relationships depend on ecological context within mid-Atlantic and Appalachian forests (USA). Forest Ecology and Management, 261, 1315-1324.
DOI URL |
[5] | Bilá K, Moretti M, Bello F, Dias AT, Pezzatti GB, Van Oosten AR, Berg MP (2014). Disentangling community functional components in a litter-macrodetritivore model system reveals the predominance of the mass ratio hypothesis. Ecology and Evolution, 4, 408-416. |
[6] |
Bowker MA, Rengifo-Faiffer MC, Antoninka AJ, Grover HS, Coe KK, Fisher K, Mishler BD, Oliver M, Stark LR (2021). Community composition influences ecosystem resistance and production more than species richness or intraspecific diversity. Oikos, 130, 1399-1410.
DOI URL |
[7] |
Brun P, Violle C, Mouillot D, Mouquet N, Enquist BJ, Munoz F, Münkemüller T, Ostling A, Zimmermann NE, Thuiller W (2022). Plant community impact on productivity: trait diversity or key (stone) species effects? Ecology Letters, 25, 913-925.
DOI URL |
[8] |
Callaway RM, Walker LR (1997). Competition and facilitation: a synthetic approach to interactions in plant communities. Ecology, 78, 1958-1965.
DOI URL |
[9] |
Cardinale BJ, Hillebrand H, Harpole WS, Gross K, Ptacnik R (2009). Separating the influence of resource “availability” from resource “imbalance” on productivity-diversity relationships. Ecology Letters, 12, 475-487.
DOI PMID |
[10] |
Chu CJ, Maestre FT, Xiao S, Weiner J, Wang YS, Duan ZH, Wang G (2008). Balance between facilitation and resource competition determines biomass-density relationships in plant populations. Ecology Letters, 11, 1189-1197.
DOI URL |
[11] | Chun JH, Lim JH, Lee CB (2020). Different contribution of species and functional trait diversity to aboveground biomass dynamics in a forest long-term ecological research site, south Korea. The Journal of Animal and Plant Sciences, 30, 730-741. |
[12] |
Du Q, Zhou L, Chen P, Liu XM, Song C, Yang F, Wang XC, Liu WG, Sun X, Du JB, Liu J, Shu K, Yang WY, Yong TW (2020). Relay-intercropping soybean with maize maintains soil fertility and increases nitrogen recovery efficiency by reducing nitrogen input. The Crop Journal, 8, 140-152.
DOI URL |
[13] | Du GZ, Qin GL, Li ZZ, Liu ZH, Dong GS (2003). Relationship between species richness and productivity in an alpine meadow plant community. Acta Phytoecologica Sinica, 27, 125-132. |
[杜国祯, 覃光莲, 李自珍, 刘正恒, 董高生 (2003). 高寒草甸植物群落中物种丰富度与生产力的关系研究. 植物生态学报, 27, 125-132.]
DOI |
|
[14] |
Fraser LH, Pither J, Jentsch A, Sternberg M, Zobel M, Askarizadeh D, Bartha S, Beierkuhnlein C, Bennett JA, Bittel A, Boldgiv B, Boldrini II, Bork E, Brown L, Cabido M, et al. (2021). Worldwide evidence of a unimodal relationship between productivity and plant species richness. Science, 349, 302-305.
DOI URL |
[15] |
Gillman LN, Wright SD (2006). The influence of productivity on the species richness of plants: a critical assessment. Ecology, 87, 1234-1243.
PMID |
[16] |
Goldberg DE, Werner PA (1983). Equivalence of competitors in plant communities: a null hypothesis and a field experimental approach. American Journal of Botany, 70, 1098-1104.
DOI URL |
[17] |
Grace JB, Anderson TM, Seabloom EW, Borer ET, Adler PB, Harpole WS, Hautier Y, Hillebrand H, Lind EM, Pärtel M, Bakker JD, Buckley YM, Crawley MJ, Damschen EI, Davies KF, et al. (2016). Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature, 529, 390-393.
DOI |
[18] |
Grace JB, Michael Anderson T, Smith MD, Seabloom E, Andelman SJ, Meche G, Weiher E, Allain LK, Jutila H, Sankaran M, Knops J, Ritchie M, Willig MR (2007). Does species diversity limit productivity in natural grassland communities? Ecology Letters, 10, 680-689.
PMID |
[19] |
Jiang L, Wan SQ, Li LH (2009). Species diversity and productivity: Why do results of diversity-manipulation experiments differ from natural patterns? Journal of Ecology, 97, 603-608.
DOI URL |
[20] |
Kirkman LK, Mitchell RJ, Helton RC, Drew MB (2001). Productivity and species richness across an environmental gradient in a fire dependent ecosystem. American Journal of Botany, 88, 2119-2128.
PMID |
[21] |
Li Q, Song YT, Li GD, Yu PJ, Wang P, Zhou DW (2015). Grass-legume mixtures impact soil N, species recruitment, and productivity in temperate steppe grassland. Plant and Soil, 394, 271-285.
DOI URL |
[22] |
Li QD, Liu MX, Xia SJ, Nan XN, Jiang XX (2019). Changes in species-abundance relationships of plant communities with slopes in alpine meadows of Gannan, China. Chinese Journal of Plant Ecology, 43, 418-426.
DOI URL |
[李全弟, 刘旻霞, 夏素娟, 南笑宁, 蒋晓轩 (2019). 甘南高寒草甸群落的物种-多度关系沿坡向的变化. 植物生态学报, 43, 418-426.]
DOI |
|
[23] |
Li YZ, Mayfield MM, Wang B, Xiao JL, Kral K, Janik D, Holik J, Chu CJ (2021). Beyond direct neighbourhood effects: higher-order interactions improve modelling and predicting tree survival and growth. National Science Review, 8, nwaa244. DOI: 10.1093/nsr/nwaa244.
DOI |
[24] |
Li YZ, Xiao JL, Liu HL, Wang YS, Chu CJ (2020). Advances in higher-order interactions between organisms. Biodiversity Science, 28, 1333-1344.
DOI URL |
[李远智, 肖俊丽, 刘翰伦, 王酉石, 储诚进 (2020). 生物间高阶相互作用研究进展. 生物多样性, 28, 1333-1344.] | |
[25] |
Lian TX, Mu YH, Jin J, Ma QB, Cheng YB, Cai ZD, Nian H (2019). Impact of intercropping on the coupling between soil microbial community structure, activity, and nutrient-use efficiencies. PeerJ, 7, e6412. DOI: 10.7717/peerj.6412.
DOI |
[26] | Liu MX, Zhang YY, Li QD, Li BW, Sun RD, Song JY (2021). Species abundance distribution characteristics of alpine meadow plant community in Gannan. China Environmental Science, 41, 1405-1414. |
[刘旻霞, 张娅娅, 李全弟, 李博文, 孙瑞弟, 宋佳颖 (2021). 甘南高寒草甸植物群落物种多度分布特征. 中国环境科学, 41, 1405-1414.] | |
[27] |
Loreau M, Hector A (2001). Partitioning selection and complementarity in biodiversity experiments. Nature, 412, 72-76.
DOI URL |
[28] |
Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Grime JP, Tilman D, Wardle DA (2001). Biodiversity and ecosystem functioning: current knowledge and future challenges. Science, 294, 804-808.
DOI PMID |
[29] |
Lv JX, Dong Y, Dong K, Zhao Q, Yang ZX, Chen L (2020). Intercropping with wheat suppressed Fusarium wilt in faba bean and modulated the composition of root exudates. Plant and Soil, 448, 153-164.
DOI |
[30] |
Marquard E, Weigelt A, Roscher C, Gubsch M, Lipowsky A, Schmid B (2009). Positive biodiversity-productivity relationship due to increased plant density. Journal of Ecology, 97, 696-704.
DOI URL |
[31] |
Matsinos YG, Troumbis AY (2002). Modeling competition, dispersal and effects of disturbance in the dynamics of a grassland community using a cellular automaton model. Ecological Modelling, 149, 71-83.
DOI URL |
[32] |
Nuttle T, Royo AA, Adams MB, Carson WP (2013). Historic disturbance regimes promote tree diversity only under low browsing regimes in eastern deciduous forest. Ecological Monographs, 83, 3-17.
DOI URL |
[33] |
Pärtel M, Laanisto L, Zobel M (2007). Contrasting plant productivity-diversity relationships across latitude: the role of evolutionary. Ecology, 88, 1091-1097.
DOI URL |
[34] |
Peng ZY, Liu HY, Jiang LB, Liu X, Dai JY, Xu CY, Chen ZT, Wu L, Liu F, Liang BY (2021). Effect paths of environmental factors and community attributes on aboveground net primary productivity of a temperate grassland. Land Degradation & Development, 32, 3823-3832.
DOI URL |
[35] |
Sonkoly J, Kelemen A, Valkó O, Deák B, Kiss R, Tóth K, Miglécz T, Tóthmérész B, Török P (2019). Both mass ratio effects and community diversity drive biomass production in a grassland experiment. Scientific Reports, 9, 1848. DOI: 10.1038/s41598-018-37190-6.
DOI |
[36] |
Wang ZH, Chiarucci A, Arratia JF (2019). Integrative models explain the relationships between species richness and productivity in plant communities. Scientific Reports, 9, 13730. DOI: 10.1038/s41598-019-50016-3.
DOI |
[37] | Wang XY, Gao YZ (2019). Advances in the mechanism of cereal/legume inter-cropping promotion of symbiotic nitrogen fixation. Chinese Science Bulletin, 65, 142-149. |
[王新宇, 高英志 (2019). 禾本科/豆科间作促进豆科共生固氮机理研究进展. 科学通报, 65,142-149.] | |
[38] |
Xiao JX, Yin XH, Ren JB, Zhang MY, Tang L, Zheng Y (2018). Complementation drives higher growth rate and yield of wheat and saves nitrogen fertilizer in wheat and faba bean intercropping. Field Crops Research, 221, 119-129.
DOI URL |
[39] |
Yuan ZQ, Wei PP, Gao BQ, Zhang R (2012). Effect of sampling scale on the relationship between species diversity and productivity in subalpine meadows. Chinese Journal of Plant Ecology, 36, 1248-1255.
DOI URL |
[袁自强, 魏盼盼, 高本强, 张荣 (2012). 取样尺度对亚高寒草甸物种多样性与生产力关系的影响. 植物生态学报, 36, 1248-1255.]
DOI |
|
[40] |
Zhang Q, Niu JM, Buyantuyev A, Zhang J, Ding Y, Dong JJ (2011). Productivity-species richness relationship changes from unimodal to positive linear with increasing spatial scale in the Inner Mongolia steppe. Ecological Research, 26, 649-658.
DOI URL |
[41] | Zhu Y, Wang DL, Zhong ZW (2017). Characteristics, causes, and consequences of trait-mediated indirect interactions in ecosystems. Acta Ecologica Sinica, 37, 7781-7790. |
[朱玉, 王德利, 钟志伟 (2017). 生态系统基于性状调节的物种间接作用: 特征、成因及后果. 生态学报, 37, 7781-7790.] |
[1] | 江康威 张青青 王亚菲 李宏 丁雨 杨永强 吐尔逊娜依·热依木. 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 张中扬, 宋希强, 任明迅, 张哲. 附生维管植物生境营建作用的生态学功能[J]. 植物生态学报, 2023, 47(7): 895-911. |
[3] | 钟姣, 姜超, 刘世荣, 龙文兴, 孙建新. 海南长臂猿食源植物的潜在物种丰富度分布格局[J]. 植物生态学报, 2023, 47(4): 491-505. |
[4] | 崔光帅, 罗天祥, 梁尔源, 张林. 干旱半干旱区灌丛对草本植物的促进作用研究进展[J]. 植物生态学报, 2022, 46(11): 1321-1333. |
[5] | 宗宁, 石培礼, 赵广帅, 郑莉莉, 牛犇, 周天财, 侯阁. 降水量变化对藏北高寒草地养分限制的影响[J]. 植物生态学报, 2021, 45(5): 444-455. |
[6] | 黎松松, 王宁欣, 郑伟, 朱亚琼, 王祥, 马军, 朱进忠. 一年生和多年生豆禾混播草地超产与多样性效应的比较[J]. 植物生态学报, 2021, 45(1): 23-37. |
[7] | 嘎玛达尔基, 杨泽, 谭星儒, 王珊珊, 李伟晶, 游翠海, 王彦兵, 张兵伟, 任婷婷, 陈世苹. 凋落物输入变化和氮添加对半干旱草原群落生产力及功能群组成的影响[J]. 植物生态学报, 2020, 44(8): 791-806. |
[8] | 符义稳, 田大栓, 汪金松, 牛书丽, 赵垦田. 内蒙古和青藏高原草原植物叶片与根系氮利用效率空间格局及影响因素[J]. 植物生态学报, 2019, 43(7): 566-575. |
[9] | 刘媛媛, 马进泽, 卜兆君, 王升忠, 张雪冰, 张婷玉, 刘莎莎, 付彪, 康媛. 地理来源与生物化学属性对泥炭地植物残体分解的影响[J]. 植物生态学报, 2018, 42(7): 713-722. |
[10] | 杨倩, 王娓, 曾辉. 氮添加对内蒙古退化草地植物群落多样性和生物量的影响[J]. 植物生态学报, 2018, 42(4): 430-441. |
[11] | 车应弟, 刘旻霞, 李俐蓉, 焦骄, 肖卫. 基于功能性状及系统发育的亚高寒草甸群落构建[J]. 植物生态学报, 2017, 41(11): 1157-1167. |
[12] | 王晶, 王姗姗, 乔鲜果, 李昂, 薛建国, 哈斯木其尔, 张学耀, 黄建辉. 氮素添加对内蒙古退化草原生产力的短期影响[J]. 植物生态学报, 2016, 40(10): 980-990. |
[13] | 雒珺瑜, 刘传亮, 张帅, 王春义, 吕丽敏, 李春花, 李付广, 崔金杰. 转RRM2基因棉生长势和产量及对棉田节肢动物群落的影响[J]. 植物生态学报, 2014, 38(7): 785-794. |
[14] | 高本强,袁自强,王斌先,高慧,张荣. 施肥和刈割对亚高山草甸物种多样性与生产力及其关系的影响[J]. 植物生态学报, 2014, 38(5): 417-424. |
[15] | 吴裕鹏, 许涵, 李意德, 骆土寿, 陈德祥, 林明献, 杨怀. 海南尖峰岭热带山地雨林不同空间尺度和径级水平的物种丰富度与个体密度关联[J]. 植物生态学报, 2014, 38(4): 325-333. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19