植物生态学报 ›› 2018, Vol. 42 ›› Issue (7): 713-722.DOI: 10.17521/cjpe.2018.0029
刘媛媛1,2,3,马进泽1,2,3,卜兆君1,2,3,*(),王升忠1,2,3,*(),张雪冰1,张婷玉1,刘莎莎1,2,3,付彪1,康媛1,2,3
出版日期:
2018-07-20
发布日期:
2018-11-03
通讯作者:
卜兆君,王升忠
基金资助:
LIU Yuan-Yuan1,2,3, MA Jin-Ze1,2,3, BU Zhao-Jun1,2,3,*(), WANG Sheng-Zhong1,2,3,*(), ZHANG Xue-Bing1, ZHANG Ting-Yu1, LIU Sha-Sha1,2,3, FU Biao1, KANG Yuan1,2,3
Online:
2018-07-20
Published:
2018-11-03
Contact:
Zhao-Jun BU,Sheng-Zhong WANG
Supported by:
摘要:
不同地理来源的泥炭地植物残体在同一环境中的分解速率一直缺乏比较研究。该研究沿纬度梯度, 选择大九湖、哈泥和满归3处泥炭地, 以三地的10种植物为分解材料, 使用分解袋包装, 埋藏于长白山哈泥泥炭地, 开展为期1年的分解实验, 研究地理来源及生物化学属性对泥炭地植物残体分解的影响。结果表明, 如不考虑物种差异, 从总体上看, 随着纬度增加, 3处泥炭地植物残体的初始氮(N)含量下降, 初始木质素含量、碳氮比(C/N)和木质素/N上升。经一年分解后残体分解速率因植物类群不同而不同, 桦木属(Betula)和薹草属(Carex)植物残体的干质量损失率均接近50%, 远大于泥炭藓属(Sphagnum)植物(约为10%)。3处来源地植物残体干质量损失率总体上无差异, 但比较同种植物残体发现, 来自中纬度泥炭地哈泥的中位泥炭藓(S. magellanicum)的干质量损失率(19%)远高于来自高纬度泥炭地满归的(9%)。制约残体分解的因素因植物类群不同而不同, 残体初始总酚/N是决定属间残体干质量损失率差异的重要指标。薹草属植物初始N含量和C/N与残体分解速率、泥炭藓属植物初始Klason木质素含量和总酚/N与残体分解速率均呈正相关关系。该研究一定程度上表明, 若以纬度降低指代气候变暖, 当前持续的气候变暖可能通过改变高纬度泥炭地的植物组成和植物的生物化学属性, 来改变植物残体分解速率, 进而影响泥炭地的碳汇功能。
刘媛媛, 马进泽, 卜兆君, 王升忠, 张雪冰, 张婷玉, 刘莎莎, 付彪, 康媛. 地理来源与生物化学属性对泥炭地植物残体分解的影响. 植物生态学报, 2018, 42(7): 713-722. DOI: 10.17521/cjpe.2018.0029
LIU Yuan-Yuan, MA Jin-Ze, BU Zhao-Jun, WANG Sheng-Zhong, ZHANG Xue-Bing, ZHANG Ting-Yu, LIU Sha-Sha, FU Biao, KANG Yuan. Effect of geographical sources and biochemical traits on plant litter decomposition in a peatland. Chinese Journal of Plant Ecology, 2018, 42(7): 713-722. DOI: 10.17521/cjpe.2018.0029
埋放地 Site for decomposition | 来源地 Site for collection | 物种 Species |
---|---|---|
哈泥 Hani | 大九湖 Dajiuhu | 泥炭藓 Sphagnum palustre |
签草 Carex doniana | ||
红桦 Betula albosinensis | ||
哈泥 Hani | 中央泥炭藓 S. centrale | |
中位泥炭藓 S. magellanicum | ||
毛薹草 C. lasiocarpa | ||
油桦 B. fruticosa var. ruprechtiana | ||
满归 Mangui | 中位泥炭藓 S. magellanicum | |
锈色泥炭藓S. fuscum | ||
瘤囊薹草 C. schmidtii | ||
柴桦 B. fruticosa |
表1 实验用植物残体的来源地与埋放地
Table 1 The sites for litter collection and litter decomposition
埋放地 Site for decomposition | 来源地 Site for collection | 物种 Species |
---|---|---|
哈泥 Hani | 大九湖 Dajiuhu | 泥炭藓 Sphagnum palustre |
签草 Carex doniana | ||
红桦 Betula albosinensis | ||
哈泥 Hani | 中央泥炭藓 S. centrale | |
中位泥炭藓 S. magellanicum | ||
毛薹草 C. lasiocarpa | ||
油桦 B. fruticosa var. ruprechtiana | ||
满归 Mangui | 中位泥炭藓 S. magellanicum | |
锈色泥炭藓S. fuscum | ||
瘤囊薹草 C. schmidtii | ||
柴桦 B. fruticosa |
图1 泥炭地每种植物残体及每处泥炭地所有植物残体的初始化学组成(平均值±标准误差, n = 5)。Ball, 桦木属; Ba, 红桦; Br, 油桦; Bf, 柴桦; Call, 薹草属; Cd, 签草; Cl, 毛薹草; Cs, 瘤囊薹草; Sall, 泥炭藓属; Sp, 泥炭藓; Sc, 中央泥炭藓; Sf, 锈色泥炭藓。D, 来源地为大九湖的平均值; H, 来源地为哈泥的平均值; M, 来源地为满归的平均值。不同大写字母表示不同属之间初始化学组成差异显著(p < 0.05), 不同小写字母表示不同种和不同来源地之间初始化学组成差异显著(p < 0.05)。
Fig. 1 Initial chemical composition of each plant litter in a peatland and initial chemical composition of all the plant litters from each peatland (mean ± SE, n = 5). Ball, the mean of Betula; Ba, B. albosinensis; Br, B. fruticosa var. ruprechtiana; Bf, B. fruticosa; Call, the mean of Carex; Cd, C. doniana; Cl, C. lasiocarpa; Cs, C. schmidtii; Sall, the mean of Sphagnum; Sp, S. palustre; Sc, S. centrale; Sm, S. magellanicum; Sf, S. fuscum. D, the mean of Dajiuhu; H, the mean of Hani; M, the mean of Mangui. Different capital letters indicate significant differences in initial chemical composition among genera (p < 0.05), and different lowercase letters indicate significant differences in initial chemical composition between both species in a genus or average of all the species among three sites (p < 0.05).
图2 泥炭地每种植物残体及每处泥炭地所有植物残体平均的初始化学计量比(平均值±标准误差, n = 5)。不同大写字母表示不同属之间初始化学计量比差异显著(p < 0.05)。不同小写字母表示不同种和3处来源地之间初始化学计量比差异显著(p < 0.05)。图注同图1。
Fig. 2 Initial stoichiometric ratio of each plant litter in a peatland and average initial stoichiometric ratios of all the plant litters from each peatland (mean ± SE, n = 5). Different capital letters indicate significant differences in initial stoichiometric ratios among genera (p < 0.05). Different lowercase letters indicate significant differences in initial stoichiometric ratios between both species in a genus and average of all the species from three sources (p < 0.05). See Fig. 1 for notes.
因素 Factor | 相关系数 Correlation coefficient | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
C | N | 总酚 Total phenolics | 木质素 Lignin | C/N | 总酚/C Total phenolics /C | 木质素/C Lignin/C | 总酚/N Total phenolics/N | 木质素/N Lignin/N | 总酚/木质素Total phenolics/Lignin | ||
种 Species | B | 106.293*** | 41.509*** | 62.296*** | 0.400 | 19.628*** | 69.213*** | 3.821 | 45.356*** | 24.485*** | 25.207*** |
<0.001 | <0.001 | <0.001 | 0.679 | <0.001 | <0.001 | 0.052 | <0.001 | <0.001 | <0.001 | ||
C | 2.657 | 8.308** | 45.047*** | 4.476* | 16.272*** | 40.042*** | 5.066* | 18.049*** | 15.195** | 16.497*** | |
0.111 | 0.005 | <0.001 | 0.035 | <0.001 | <0.001 | 0.025 | <0.001 | 0.001 | <0.001 | ||
S | 0.827 | 52.314*** | 6.552* | 3.242* | 73.627*** | 6.765** | 2.544 | 1.109 | 34.728*** | 9.823** | |
0.461 | <0.001 | 0.012 | 0.075 | <0.001 | 0.011 | 0.120 | 0.361 | <0.001 | 0.003 | ||
属 Genus | - | 129.384*** | 43.542*** | 257.553*** | 21.628*** | 24.742*** | 229.423*** | 47.086*** | 84.932*** | 28.998*** | 184.473*** |
<0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||
来源地 Source | - | 0.660 | 3.341* | 0.346 | 2.324 | 7.034** | 0.462 | 1.294 | 2.473 | 5.306** | 0.200 |
0.522 | 0.045 | 0.709 | 0.110 | 0.002 | 0.633 | 0.285 | 0.097 | 0.009 | 0.819 |
表2 泥炭地植物种、属和来源地对残体初始化学组成及其化学计量比影响的单因素方差分析
Table 2 One-way analysis of variance for the effect of species, genus and source of plants on initial chemical index and stoichiometric ratios of litters
因素 Factor | 相关系数 Correlation coefficient | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
C | N | 总酚 Total phenolics | 木质素 Lignin | C/N | 总酚/C Total phenolics /C | 木质素/C Lignin/C | 总酚/N Total phenolics/N | 木质素/N Lignin/N | 总酚/木质素Total phenolics/Lignin | ||
种 Species | B | 106.293*** | 41.509*** | 62.296*** | 0.400 | 19.628*** | 69.213*** | 3.821 | 45.356*** | 24.485*** | 25.207*** |
<0.001 | <0.001 | <0.001 | 0.679 | <0.001 | <0.001 | 0.052 | <0.001 | <0.001 | <0.001 | ||
C | 2.657 | 8.308** | 45.047*** | 4.476* | 16.272*** | 40.042*** | 5.066* | 18.049*** | 15.195** | 16.497*** | |
0.111 | 0.005 | <0.001 | 0.035 | <0.001 | <0.001 | 0.025 | <0.001 | 0.001 | <0.001 | ||
S | 0.827 | 52.314*** | 6.552* | 3.242* | 73.627*** | 6.765** | 2.544 | 1.109 | 34.728*** | 9.823** | |
0.461 | <0.001 | 0.012 | 0.075 | <0.001 | 0.011 | 0.120 | 0.361 | <0.001 | 0.003 | ||
属 Genus | - | 129.384*** | 43.542*** | 257.553*** | 21.628*** | 24.742*** | 229.423*** | 47.086*** | 84.932*** | 28.998*** | 184.473*** |
<0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||
来源地 Source | - | 0.660 | 3.341* | 0.346 | 2.324 | 7.034** | 0.462 | 1.294 | 2.473 | 5.306** | 0.200 |
0.522 | 0.045 | 0.709 | 0.110 | 0.002 | 0.633 | 0.285 | 0.097 | 0.009 | 0.819 |
因素 Factor | 干质量损失 Dry mass loss (%) | C损失 Carbon loss (%) | N损失 Nitrogen loss (%) | 总酚损失 Total phenolics loss (%) | 木质素损失 Lignin loss (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | ||
种 Species | B | 1.411 | 0.282 | 0.920 | 0.425 | 0.990 | 0.400 | 0.020 | 0.980 | 4.726* | 0.031 |
C | 16.381*** | <0.001 | 14.883** | 0.001 | 15.432*** | <0.001 | 8.005** | 0.006 | 2.229 | 0.150 | |
S | 2.524 | 0.122 | 2.902 | 0.094 | 38.145*** | <0.001 | 4.842* | 0.029 | 18.463*** | <0.001 | |
属 Genus | - | 57.069*** | <0.001 | 50.719*** | <0.001 | 0.387 | 0.681 | 417.741*** | <0.001 | 3.235* | 0.049 |
来源地 Source | - | 0.046 | 0.995 | 0.025 | 0.976 | 1.598 | 0.214 | 0.201 | 0.818 | 1.804 | 0.177 |
表3 泥炭地植物种、属和来源地对残体分解影响的单因素方差分析
Table 3 One-way analysis of variance for the effect of species, genus and source of plant litters on decomposition in a peatland
因素 Factor | 干质量损失 Dry mass loss (%) | C损失 Carbon loss (%) | N损失 Nitrogen loss (%) | 总酚损失 Total phenolics loss (%) | 木质素损失 Lignin loss (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | ||
种 Species | B | 1.411 | 0.282 | 0.920 | 0.425 | 0.990 | 0.400 | 0.020 | 0.980 | 4.726* | 0.031 |
C | 16.381*** | <0.001 | 14.883** | 0.001 | 15.432*** | <0.001 | 8.005** | 0.006 | 2.229 | 0.150 | |
S | 2.524 | 0.122 | 2.902 | 0.094 | 38.145*** | <0.001 | 4.842* | 0.029 | 18.463*** | <0.001 | |
属 Genus | - | 57.069*** | <0.001 | 50.719*** | <0.001 | 0.387 | 0.681 | 417.741*** | <0.001 | 3.235* | 0.049 |
来源地 Source | - | 0.046 | 0.995 | 0.025 | 0.976 | 1.598 | 0.214 | 0.201 | 0.818 | 1.804 | 0.177 |
图3 物种及来源地对植物残体干质量(A)、C (B)、N (C)、总酚(D)和木质素(E)损失的影响(平均值±标准误差, n = 5)。不同大写字母表示不同属之间在干质量、C、N、总酚和木质素损失存在显著差异(p < 0.05), 不同小写字母表示属内不同种和不同来源地所有植物物种之间在干质量、C、N、总酚和木质素损失存在显著差异(p < 0.05)。图注同图1。
Fig. 3 The effects of species and source on losses of litter dry mass (A), C (B), N (C), total phenolics (D) and lignin (E)(mean ± SE, n = 5). Different capital letters indicate significant differences in the effects of different genera on dry mass, C, N, total phenolics and lignin loss (p < 0.05). Different lowercase letters indicate significant differences in dry mass, C, N, total phenolics and lignin losses between different species in a same genus and among all species from different sources (p < 0.05). See Fig. 1 for notes.
图4 来源地对中位泥炭藓植物残体干质量(A)、C (B)、N (C)、总酚(D)和木质素(E)损失的影响(平均值±标准误差, n = 5)。**, p < 0.01; ***, p < 0.001。
Fig. 4 Effect of plant litter source on the losses of dry mass (A), C (B), N (C), total phenolics (D) and lignin (E) of Sphagnum magellanicum litters (mean ± SE, n = 5). **, p < 0.01; ***, p < 0.001.
相关系数 Correlation coefficient | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
C | N | 总酚 Total phenolics | 木质素 Lignin | C/N | 总酚/C Total phenolics/C | 木质素/C Lignin/C | 多酚/N Total phenolics/N | 木质素/N Lignin/N | 多酚/木质素 Total phenolics/Lignin | |
B | -0.291 | -0.301 | 0.370 | 0.264 | 0.286 | 0.404 | 0.280 | 0.433 | 0.281 | 0.345 |
C | 0.400 | 0.720** | 0.002 | -0.526* | -0.787** | -0.014 | -0.518* | -0.784** | -0.740** | 0.251 |
S | 0.469 | -0.493 | -0.403 | 0.544* | 0.516* | -0.403 | 0.543* | 0.472 | 0.523* | -0.444 |
总体 Total | 0.796* | 0.531 | 0.801** | -0.793** | -0.555 | 0.815** | -0.840** | 0.870** | -0.655 | 0.793* |
表4 泥炭地植物残体干质量损失与初始化学组分的相关分析
Table 4 Correlation analysis between dry mass loss and initial chemical traits in plant litters
相关系数 Correlation coefficient | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
C | N | 总酚 Total phenolics | 木质素 Lignin | C/N | 总酚/C Total phenolics/C | 木质素/C Lignin/C | 多酚/N Total phenolics/N | 木质素/N Lignin/N | 多酚/木质素 Total phenolics/Lignin | |
B | -0.291 | -0.301 | 0.370 | 0.264 | 0.286 | 0.404 | 0.280 | 0.433 | 0.281 | 0.345 |
C | 0.400 | 0.720** | 0.002 | -0.526* | -0.787** | -0.014 | -0.518* | -0.784** | -0.740** | 0.251 |
S | 0.469 | -0.493 | -0.403 | 0.544* | 0.516* | -0.403 | 0.543* | 0.472 | 0.523* | -0.444 |
总体 Total | 0.796* | 0.531 | 0.801** | -0.793** | -0.555 | 0.815** | -0.840** | 0.870** | -0.655 | 0.793* |
[1] |
Aerts R ( 1997). Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: A triangular relationship. Oikos, 79, 439-449.
DOI URL |
[2] |
Ayres E, Steltzer H, Simmons BL, Simpson RT, Steinweg JM, Wallenstein MD, Mellor N, Parton WJ, Moore JC, Wall DH ( 2009). Home-field advantage accelerates leaf litter decomposition in forests. Soil Biology & Biochemistry, 41, 606-610.
DOI URL |
[3] | Bai GR, Wang SZ, Gao J, Yu JL ( 2004). Liquid-heat conditions and microbic decomposition on the forming of turf deposits. Journal of Shanghai Normal University (Natural Sciences), 33(3), 91-97. |
[ 白光润, 王淑珍, 高峻, 于金莲 ( 2004). 中国亚热带、热带泥炭形成的水热条件与微生物分解相关性. 上海师范大学学报(自然科学版), 33(3), 91-97.] | |
[4] |
Berg B, Berg MP, Bottner P, Box E, Breymeyer A, Anta RCD, Couteaux M, Escudero A, Gallardo A, Kratz WR, Madeira M, M?lk?nen E, McClaugherty CA, Meentemeyer V, Mu?oz F, Piussi P, Remacle JA, Santo AVD ( 1993). Litter mass loss rates in pine forest of Europe and Eastern United States: Some relationships with climate and litter quality. Biogeochemistry, 20(3), 127-159.
DOI URL |
[5] |
Bragazza L, Freeman C, Jones T, Rydin H, Limpens J, Fenner N, Ellis T, Gerdol R, Hájek M, Hájek T, Iacumin P, Kutnar L, Tahvanainen T, Toberman H ( 2006). Atmospheric nitrogen deposition promotes carbon loss from peat bogs. Proceedings of the National Academy of Sciences of the United States of America, 103, 19386-19389.
DOI URL PMID |
[6] |
Bragazza L, Siffi C, Iacumin P, Gerdol R ( 2007). Mass loss and nutrient release during litter decay in peatland: The role of microbial adaptability to litter chemistry. Soil Biology & Biochemistry, 39, 257-267.
DOI URL |
[7] |
Breeuwer A, Heijmans M, Robroek BJM, Limpens J, Berendse F ( 2008). The effect of increased temperature and nitrogen deposition on decomposition in bogs. Oikos, 117, 1258-1268.
DOI URL |
[8] |
Bubier JL, Moore TR, Bledzki LA ( 2007). Effects of nutrient addition on vegetation and carbon cycling in an ombrotrophic bog. Global Change Biology, 13, 1168-1186.
DOI URL |
[9] |
Bu ZJ, Joosten H, Li HK, Zhao GL, Zheng XX, Ma JZ, Zeng J ( 2011 a). The response of peatlands to climate warming: A review. Acta Ecologica Sinica, 31, 157-162.
DOI URL |
[10] |
Bu ZJ, Rydin H, Chen X ( 2011 b). Direct and interaction-mediated effects of environmental changes on peatland bryophytes. Oecologia, 166, 555-563.
DOI URL PMID |
[11] |
Carvalhais N, Forkel M, Khomik M, Bellarby J, Jung M, Migliavacca M, Mu M, Saatchi S, Santoro M, Thurner M, Weber U, Ahrens B, Beer C, Cescatti A, Randerson JT, Reichstein M ( 2014). Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature, 514, 213-217.
DOI URL PMID |
[12] |
Chen YH, Han WX, Tang LY, Tang ZY, Fang JY ( 2013). Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate, soil and plant growth form. Ecography, 36, 178-184.
DOI URL |
[13] |
Coq S, Weigel J, Butenschoen O, Bonal D, H?ttenschwiler S ( 2011). Litter composition rather than plant presence affects decomposition of tropical litter mixtures. Plant and Soil, 343, 273-286.
DOI URL |
[14] |
Dorrepaal E, Cornelissen JHC, Aerts R, Wallén B, van Logtestijn RSP ( 2005). Are growth forms consistent predictors of leaf litter quality and decomposability across peatlands along a latitudinal gradient? Journal of Ecology, 93, 817-828.
DOI URL |
[15] |
Dyer ML, Meentemeyer V, Berg B ( 1990). Apparent controls of mass loss rate of leaf litter on a regional scale. Scandinavian Journal of Forest Research, 5, 311-323.
DOI URL |
[16] | Gogo S, Laggoun-Défarge F, Merzouki F, Mounier S, Guirimand-Dufour A, Jozja N, Huguet A, Delarue F, Défarge C ( 2016). In situ and laboratory non-additive litter mixture effect on C dynamics of Sphagnum rubellum and Molinia caerulea litters. Journal of Soils & Sediments, 16, 13-27. |
[17] |
Hobbie SE ( 2008). Nitrogen effects on decomposition: A five-year experiment in eight temperate sites. Ecology, 89, 2633-2644.
DOI URL PMID |
[18] |
Irons III JG, Oswood MW, Stout RJ, Pringle CM ( 1994). Latitudinal patterns in leaf litter breakdown: Is temperature really important? Freshwater Biology, 32, 401-411.
DOI URL |
[19] | Johnson LC, Damman AWH ( 1993). Decay and its regulation in Sphagnum peatlands. Advances in Bryology, 5, 249-296. |
[20] |
Johnson LC, Damman AWH ( 1991). Species-controlled Sphagnum decay on a South Swedish raised bog. Oikos, 61, 234-242.
DOI URL |
[21] |
K?rner C ( 1989). The nutritional status of plants from high altitudes. Oecologia, 81, 379-391.
DOI URL |
[22] | Li W, Bu ZJ, Zhang BJ, Long C, Tang RJ, Cui QW ( 2013). Decomposition of Sphagnum litter in 4 peatlands of the Changbai Mountains along an altitudinal gradient. Journal of Mountain Science , 31, 442-447. |
[ 李伟, 卜兆君, 张兵将, 龙川, 唐瑞江, 崔钱王 ( 2013). 长白山不同海拔泥炭地泥炭藓残体的分解. 山地学报, 31, 442-447.] | |
[23] |
Medvedeff CA, Bridgham SD, Pfeifer-Meister L, Keller JK ( 2015). Can Sphagnum leachate chemistry explain differences in anaerobic decomposition in peatlands? Soil Biology & Biochemistry, 86, 34-41.
DOI URL |
[24] |
Melillo JM, Aber JD, Muratore JF ( 1982). Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology, 63, 621-626.
DOI URL |
[25] |
Moore TR, Basiliko N ( 2006). Decomposition in boreal peatlands. In: Wieder RK, Vitt DH eds. Boreal Peatland Ecosystems. Springer-Verlag, Berlin.
DOI URL |
[26] |
Moore TR, Trofymow JA, Siltanen M, Prescott C, Group CW ( 2005). Patterns of decomposition and carbon, nitrogen, and phosphorus dynamic. Canadian Journal of Forest Research, 35, 133-142.
DOI URL |
[27] |
Müller T, Magid J, Jensen LS, Nielsen NE ( 2003). Decomposition of plant residues of different quality in soil—DAISY model calibration and simulation based on experimental data. Ecological Modelling, 166, 3-18.
DOI URL |
[28] |
Ouyang LM, Wang C, Wang WQ, Tong C ( 2013). Carbon, nitrogen and phosphorus stoichiometric characteristics during the decomposition of Spartina alterniflora and Cyperus malaccensis var. brevifolius litters. Acta Ecologica Sinica, 33, 389-394.
DOI URL |
[ 欧阳林梅, 王纯, 王维奇, 仝川 ( 2013). 互花米草与短叶茳芏枯落物分解过程中碳氮磷化学计量学特征. 生态学报, 33, 389-394.]
DOI URL |
|
[29] | Palozzi JE, Lindo Z ( 2017). Pure and mixed litters of Sphagnum and Carex exhibit a home-field advantage in Boreal peatlands. Soil Biology & Biochemistry, 115, 161-168. |
[30] | Rydin H, Jeglum JK ( 2013). The Biology of Peatlands. Oxford University Press, Oxford. |
[31] |
Singleton VL, Orthofer R, Lamuela-Raventós RM ( 1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 299, 152-178.
DOI URL |
[32] |
Straková P, Anttila J, Spetz P, Kitunen V, Tapanila T, Laiho R ( 2010). Litter quality and its response to water level drawdown in boreal peatlands at plant species and community level. Plant and Soil, 335, 501-520.
DOI URL |
[33] |
Stubbs TL, Kennedy AC, Reisenauer PE, Burns JW ( 2009). Chemical composition of residue from cereal crops and cultivars in dryland ecosystems. Agronomy Journal, 101, 538-545.
DOI URL |
[34] | Tahvanainen T, Haraguchi A ( 2013). Effect of pH on phenol oxidase activity on decaying Sphagnum mosses. European Journal of Soil Biology, 54, 41-47. |
[35] |
Wang HJ, Richardson CJ, Ho MC ( 2015). Dual controls on carbon loss during drought in peatlands. Nature Climate Change, 5, 584-587.
DOI URL |
[36] | Wang H, Yan PF, Zhan PF, Zhang XN, Liu ZY, Guo YJ, Xiao DR ( 2018). The relative contributions of litter quality, simulated rising temperature, and habitat to litter decomposition. Chinese Journal of Applied Ecology, 29, 474-482. |
[ 王行, 闫鹏飞, 展鹏飞, 张晓宁, 刘振亚, 郭玉静, 肖德荣 ( 2018). 凋落物植物质量、模拟增温及生境对凋落物分解的相对贡献. 应用生态学报, 29, 474-482.] | |
[37] |
Wang J, Huang JH ( 2001). Comparison of major nutrient release patterns in leaf litter decomposition in warm temperate zone of China. Acta Phytoecologica Sinica, 25, 375-380.
DOI URL |
[ 王瑾, 黄建辉 ( 2001). 暖温带地区主要树种叶片凋落物分解过程中主要元素释放的比较. 植物生态学报, 25, 375-380.]
DOI URL |
|
[38] | Zeng J, Bu ZJ, Wang M, Ma JZ, Zhao HY, Li HK, Wang SZ ( 2013). Effects of nitrogen deposition on peatland: A review. Chinese Journal of Ecology, 32, 473-481. |
[ 曾竞, 卜兆君, 王猛, 马进泽, 赵红艳, 李鸿凯, 王升忠 ( 2013). 氮沉降对泥炭地影响的研究进展. 生态学杂志, 32, 473-481.] | |
[39] | Zhang JE (2007). Commonly Used Experimental Research Methods and Techniques in Ecology. Chemical Industry Press, Beijing. |
[ 章家恩 (2007). 生态学常用实验研究方法与技术. 化学工业出版社, 北京.] | |
[40] |
Zhang LH, Zhang SJ, Ye GF, Shao HB, Lin GH, Brestic M ( 2013). Changes of tannin and nutrients during decomposition of branchlets of Casuarina equisetifolia plantation in subtropical coastal areas of China. Plant Soil & Environment, 59, 74-79.
DOI URL |
[1] | 江康威 张青青 王亚菲 李宏 丁雨 杨永强 吐尔逊娜依·热依木. 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 李伟, 张荣. 亚高寒草甸群落结构决定群落生产力实例验证[J]. 植物生态学报, 2023, 47(5): 713-723. |
[3] | 罗明没, 陈悦, 杨刚, 胡斌, 李玮, 陈槐. 若尔盖退化泥炭地土壤原核微生物群落结构对水位恢复的短期响应[J]. 植物生态学报, 2021, 45(5): 552-561. |
[4] | 宗宁, 石培礼, 赵广帅, 郑莉莉, 牛犇, 周天财, 侯阁. 降水量变化对藏北高寒草地养分限制的影响[J]. 植物生态学报, 2021, 45(5): 444-455. |
[5] | 嘎玛达尔基, 杨泽, 谭星儒, 王珊珊, 李伟晶, 游翠海, 王彦兵, 张兵伟, 任婷婷, 陈世苹. 凋落物输入变化和氮添加对半干旱草原群落生产力及功能群组成的影响[J]. 植物生态学报, 2020, 44(8): 791-806. |
[6] | 符义稳, 田大栓, 汪金松, 牛书丽, 赵垦田. 内蒙古和青藏高原草原植物叶片与根系氮利用效率空间格局及影响因素[J]. 植物生态学报, 2019, 43(7): 566-575. |
[7] | 冯璐, 卜兆君, 吴玉环, 刘莎莎, 刘超. 泥炭地特征性环境因子促进泥炭藓持久孢子库的形成[J]. 植物生态学报, 2019, 43(6): 512-520. |
[8] | 杨倩, 王娓, 曾辉. 氮添加对内蒙古退化草地植物群落多样性和生物量的影响[J]. 植物生态学报, 2018, 42(4): 430-441. |
[9] | 李瑞, 胡朝臣, 许士麒, 吴迪, 董玉平, 孙新超, 毛瑢, 王宪伟, 刘学炎. 大兴安岭泥炭地植物叶片碳氮磷含量及其化学计量学特征[J]. 植物生态学报, 2018, 42(12): 1154-1167. |
[10] | 王晶, 王姗姗, 乔鲜果, 李昂, 薛建国, 哈斯木其尔, 张学耀, 黄建辉. 氮素添加对内蒙古退化草原生产力的短期影响[J]. 植物生态学报, 2016, 40(10): 980-990. |
[11] | 宋彦涛, 周道玮, 李强, 王平, 黄迎新. 松嫩草地80种草本植物叶片氮磷化学计量特征[J]. 植物生态学报, 2012, 36(3): 222-230. |
[12] | 刘超, 王洋, 王楠, 王根轩. 陆地生态系统植被氮磷化学计量研究进展[J]. 植物生态学报, 2012, 36(11): 1205-1216. |
[13] | 张志东, 臧润国. 海南岛霸王岭热带天然林景观中主要木本植物关键种的潜在分布[J]. 植物生态学报, 2007, 31(6): 1079-1091. |
[14] | 白永飞, 张丽霞, 张焱, 陈佐忠. 内蒙古锡林河流域草原群落植物功能群组成沿水热梯度变化的样带研究[J]. 植物生态学报, 2002, 26(3): 308-316. |
[15] | 白永飞, 陈佐忠. 锡林河流域羊草草原植物种群和功能群的长期变异性及其对群落稳定性的影响[J]. 植物生态学报, 2000, 24(6): 641-647. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19