植物生态学报 ›› 2019, Vol. 43 ›› Issue (7): 566-575.DOI: 10.17521/cjpe.2019.0044
所属专题: 全球变化与生态系统; 青藏高原植物生态学:生态系统生态学; 根系生态学
符义稳1,2,田大栓2,汪金松2,牛书丽2,3,赵垦田1,*()
收稿日期:
2019-02-28
接受日期:
2019-07-10
出版日期:
2019-07-20
发布日期:
2019-12-12
通讯作者:
赵垦田
基金资助:
FU Yi-Wen1,2,TIAN Da-Shuan2,WANG Jin-Song2,NIU Shu-Li2,3,ZHAO Ken-Tian1,*()
Received:
2019-02-28
Accepted:
2019-07-10
Online:
2019-07-20
Published:
2019-12-12
Contact:
ZHAO Ken-Tian
Supported by:
摘要:
氮利用效率是植物的关键功能性状, 同时紧密关联生态系统功能, 但是目前对氮利用效率的区域格局及影响因素仍然不清楚。该研究分析了内蒙古和青藏高原草原82个调查地点、139种植物叶片和根系的氮利用效率及其与环境因素、植物功能群之间的关系, 实验结果显示: 1)草甸草原植物叶片的氮利用效率为53 g·g -1, 显著大于高寒草甸(46 g·g -1)、荒漠草原(41 g·g -1)和典型草原(39 g·g -1)。高寒草甸根系氮利用效率为108 g·g -1, 显著高于其他生态系统。2)叶片氮利用效率比根系对温度更加敏感, 但随着干旱指数的增加, 两者均表现出显著的降低趋势。3)杂类草叶片和根系氮利用效率低于莎草科和禾本科植物, 豆科植物叶片和根系氮利用效率分别比非豆科植物低48%和60%。4)植物氮利用效率与土壤氮含量之间没有显著关系。总体上, 内蒙古和青藏高原草原植物叶片和根系氮利用效率的空间格局存在差异, 主要影响因素为植物功能群和干旱指数。本研究系统揭示内蒙古和青藏高原草原植物氮利用效率的空间格局及关键驱动因子, 有助于在全球变化背景下了解我国草地生产力维持机制, 同时为草原生态系统管理提供科学依据。
符义稳, 田大栓, 汪金松, 牛书丽, 赵垦田. 内蒙古和青藏高原草原植物叶片与根系氮利用效率空间格局及影响因素. 植物生态学报, 2019, 43(7): 566-575. DOI: 10.17521/cjpe.2019.0044
FU Yi-Wen, TIAN Da-Shuan, WANG Jin-Song, NIU Shu-Li, ZHAO Ken-Tian. Patterns and affecting factors of nitrogen use efficiency of plant leaves and roots in Nei Mongol and Qinghai-Xizang Plateau grasslands. Chinese Journal of Plant Ecology, 2019, 43(7): 566-575. DOI: 10.17521/cjpe.2019.0044
图1 沿水分梯度不同草原生态系统类型植物叶片和根系氮利用效率。不同小写字母表示差异显著(p < 0.05), n代表样本量。
Fig. 1 Differences of leaf and root nitrogen use efficiency (NUE) among different grassland ecosystems along a precipitation gradient. Different lowercase letters indicate a significant difference (p < 0.05), and n represents the sample size of observations.
图2 年平均气温和年降水量与草原植物叶片或根系氮利用效率之间的关系。n表示样本量。
Fig. 2 Relationships of leaf or root nitrogen use efficiency (NUE) with mean annual air temperature and mean annual precipitation. n represents the sample size of observations.
图3 干旱指数与草原植物叶片或根系氮利用效率之间的关系。不同小写字母表示差异显著(p < 0.05), n表示样本量。
Fig. 3 Relationships between drought index and leaf or root nitrogen use efficiency (NUE) in grassland plants. Different lowercase letters indicate a significant difference (p < 0.05), and n represents the sample size of observations.
图4 不同草原植物功能群的叶片和根系氮利用效率。不同小写字母表示差异显著(p < 0.05), n表示样本量。
Fig. 4 Leaf and root nitrogen use efficiency (NUE) among different grassland plant functional groups. Different lowercase letters indicate a significant difference (p < 0.05), and n represents the sample size of observations.
图5 土壤全氮或有效氮含量与草原植物叶片或根系氮利用效率之间的关系。n表示样本量。
Fig. 5 Relationships of grassland plant leaf or root nitrogen use efficiency (NUE) with soil total nitrogen or available nitrogen content. n represents the sample size of observations.
图6 生物(植物功能群)和非生物因素(年平均气温、年降水量和干旱指数)对植物叶片或根系氮利用效率(NUE)影响的直接和间接效应。图中线条粗细表示影响效应大小, 实线表示作用路径显著(p < 0.05), 虚线表示作用路径不显著(p > 0.05)。绿色表示负效应, 红色表示正效应。R2表示解释率。
Fig. 6 Direct and indirect impacts of biotic (plant functional group (PFG)) and abiotic (mean annual air temperature (MAT), mean annual precipition (MAP) and drought index (r)) factors on leaf or root nitrogen use efficiency (NUE) in grassland plants. Line thickness indicates relative effect size. Solid lines denote a significant influence (p < 0.05), whereas dashed lines indicate no significant impact (p > 0.05). Green color represents a negative effect, while red color denotes a positive impact. R2 indicates how much variation can be explained.
[1] | Aerts R, Chapin III FS ( 1999). The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Advances Ecological Research, 30, 1-67. |
[2] |
Aerts R, de Caluwe H ( 1994). Nitrogen use efficiency of Carex species in relation to nitrogen supply. Ecology, 75, 2362-2372.
DOI URL |
[3] |
An Y, Wan SQ, Zhou XH, Subedar AA, Wallace LL, Luo YQ ( 2005). Plant nitrogen concentration, use efficiency, and contents in a tallgrass prairie ecosystem under experimental warming. Global Change Biology, 11, 1733-1744.
DOI URL |
[4] | Bai CL ( 2013). Study on Nutrient Use and Stoichiometry of Dominant Plants in Desert Steppe. PhD dissertation, Inner Mongolia Agricultural University, Huhhot. |
[ 白春利 ( 2013). 荒漠草原优势植物养分利用及化学计量特征研究. 博士学位论文, 内蒙古农业大学, 呼和浩特.] | |
[5] |
Bai YF, Wu JG, Xing Q, Pan QM, Huang JH, Yang DL, Han XG ( 2008). Primary production and rain use efficiency across a precipitation gradient on the Mongolia Plateau. Ecology, 89, 2140-2153.
DOI URL PMID |
[6] | Berendse F, Aerts R ( 1987). Nitrogen-use-efficiency: A biologically meaningful definition? Functional Ecology, 1, 293-296. |
[7] |
Birk EM, Vitousek PM ( 1986). Nitrogen availability and nitrogen use efficiency in loblolly pine stands. Ecology, 67, 69-79.
DOI URL |
[8] |
Briske DD, Zhao ML, Han GD, Xiu CB, Kemp DR, Willms W, Havstad K, Kang L, Wang ZW, Wu JG, Han XG, Bai YF ( 2015). Strategies to alleviate poverty and grassland degradation in Inner Mongolia: Intensification vs production efficiency of livestock systems. Journal of Environmental Management, 152, 177-182.
DOI URL PMID |
[9] |
Burton J, Chen CG, Xu ZH, Ghadiri H ( 2007). Gross nitrogen transformations in adjacent native and plantation forests of subtropical Australia. Soil Biology & Biochemistry, 39, 426-433.
DOI URL PMID |
[10] |
Chapin III FS, Moilanen L ( 1991). Nutritional controls over nitrogen and phosphorus resorption from Alaskan birch leaves. Ecology, 72, 709-715.
DOI URL |
[11] |
Chu CJ, Maestre FT, Xiao S, Weiner J, Wang YS, Duan ZH, Wang G ( 2008). Balance between facilitation and resource competition determines biomass-density relationships in plant populations. Ecology Letters, 11, 1189-1197.
DOI URL PMID |
[12] |
Cramer MD, Hawkins HJ, Verboom GA ( 2009). The importance of nutritional regulation of plant water flux. Oecologia, 161, 15-24.
DOI URL PMID |
[13] | Du ZC, Yang ZG, Cui XY ( 2001). A comparative study on leaf area index of five plant communities in typical steppe region of Inner Mongolia. Grassland of China, 23, 13-18. |
[ 杜占池, 杨宗贵, 崔骁勇 ( 2001). 内蒙古典型草原地区5类植物群落叶面积指数的比较研究. 中国草地, 23, 13-18.] | |
[14] |
Elser JJ, Dobberfuhl DR, MacKay NA, Schampel JH ( 1996). Organism size, life history, and N:P stoichiometry: Toward a unified view of cellular and ecosystem processes. BioScience, 46, 674-684.
DOI URL |
[15] |
Field C, Merino J, Mooney HA ( 1983). Compromises between water-use efficiency and nitrogen-use efficiency in five species of California evergreens. Oecologia, 60, 384-389.
DOI URL PMID |
[16] |
Geng Y, Ma WH, Wang L, Baumann F, Kühn P, Scholten T, He JS ( 2017). Linking above- and belowground traits to soil and climate variables: An integrated database on China’s grassland species. Ecology, 98, 1471. DOI: 10.1002/ecy.1780.
DOI URL |
[17] |
Gong XY, Chen Q, Lin S, Brueck H, Dittert K, Taube F, Schnyder H ( 2011). Tradeoffs between nitrogen- and water-use efficiency in dominant species of the semiarid steppe of Inner Mongolia. Plant and Soil, 340, 227-238.
DOI URL |
[18] |
Han WX, Chen YH, Zhao FJ, Tang LY, Jiang RF, Zhang FS ( 2012). Floral, climatic and soil pH controls on leaf ash content in China’s terrestrial plants. Global Ecology and Biogeography, 21, 376-382.
DOI URL |
[19] |
He JS, Wang L, Flynn DFB, Wang XP, Ma WH, Fang JY ( 2008). Leaf nitrogen:phosphorus stoichiometry across Chinese grassland biomes. Oecologia, 155, 301-310.
DOI URL PMID |
[20] |
Hiremath AJ, Ewel JJ ( 2001). Ecosystem nutrient use efficiency, productivity, and nutrient accrual in model tropical communities. Ecosystems, 4, 669-682.
DOI URL |
[21] |
Hu ZQ, Yu GR, Fan JW, Zhong HP, Wang SQ, Li SG ( 2010). Precipitation-use efficiency along a 4500-km grassland transect. Global Ecology and Biogeography, 19, 842-851.
DOI URL |
[22] | Le Houerou HN ( 1984). Rain use efficiency: A unifying concept in arid-land ecology. Journal of Arid Environments, 7, 213-247. |
[23] |
Li XF, Zheng XB, Han SJ, Zheng JQ, Li TH ( 2010). Effects of nitrogen additions on nitrogen resorption and use efficiencies and foliar litterfall of six tree species in a mixed birch and poplar forest, northeastern China. Canadian Journal of Forest Research, 40, 2256-2261.
DOI URL |
[24] |
Liu HY, Mi ZR, Lin L, Wang YH, Zhang ZH, Zhang FW, Wang H, Liu LL, Zhu B, Cao GM, Zhao XQ, Sanders NJ, Classen AT, Reich PB, He JS ( 2018). Shifting plant species composition in response to climate change stabilizes grassland primary production. Proceedings of the National Academy of Sciences of the United States of America, 115, 4051-4056.
DOI URL PMID |
[25] | Lü XT ( 2010). Nutrient Use Responses of Dominant Plants to Biodiversity, Nitrogen and Water Amendment in A Temperate Steppe. PhD dissertation, Institute of Botany, Chinese Academy of Sciences, Beijing. |
[ 吕晓涛 ( 2010). 生物多样性、水分和氮素添加对典型草原优势植物养分利用的影响. 博士学位论文, 中囯科学院植物研究所, 北京.] | |
[26] |
McCulley RL, Burke IC, Lauenroth WK ( 2009). Conservation of nitrogen increases with precipitation across a major grassland gradient in the Central Great Plains of North America. Oecologia, 159, 571-581.
DOI URL PMID |
[27] |
Niu SL, Sherry RA, Zhou XH, Wan SQ, Luo YQ ( 2010). Nitrogen regulation of the climate-carbon feedback: Evidence from a long-term global change experiment. Ecology, 91, 3261-3273.
DOI URL PMID |
[28] |
Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE ( 2010). CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proceedings of the National Academy of Sciences of the United States of America, 107, 19368-19373.
DOI URL PMID |
[29] |
Patil RH, Laegdsmand M, Olesen JE, Porter JR ( 2010). Effect of soil warming and rainfall patterns on soil N cycling in Northern Europe. Agriculture, Ecosystems & Environment, 139, 195-205.
DOI URL PMID |
[30] | Peng YY, Peng HY, Han WX ( 2017). The comparison of nitrogen- and phosphorus-use efficiency between legume and non-nitrogen-fixing plant. Journal of China Agricultural University, 22, 48-55. |
[ 彭昀月, 彭慧元, 韩文轩 ( 2017). 豆科和非固氮植物氮磷利用效率的比较研究. 中国农业大学学报, 22, 48-55.] | |
[31] |
Poorter H, Evans JR ( 1998). Photosynthetic nitrogen-use efficiency of species that differ inherently in specific leaf area. Oecologia, 116, 26-37.
DOI URL PMID |
[32] |
Reed SC ( 2017). Disentangling the complexities of how legumes and their symbionts regulate plant nitrogen access and storage. New Phytologist, 213, 478-480.
DOI URL PMID |
[33] |
Reich PB ( 2009). Elevated CO2 reduces losses of plant diversity caused by nitrogen deposition. Science, 326, 1399-1402.
DOI URL PMID |
[34] |
Shi YJ, Gao S, Zhou DH, Liu MX, Wang JF, Knops JMH, Mu CS ( 2017). Fall nitrogen application increases seed yield, forage yield and nitrogen use efficiency more than spring nitrogen application in Leymus chinensis, a perennial grass. Field Crops Research, 214, 66-72.
DOI URL |
[35] |
Silver WL ( 1994). Is nutrient availability related to plant nutrient use in humid tropical forests? Oecologia, 98, 336-343.
DOI URL PMID |
[36] |
Steenvoorden JHAM ( 1988). How to reduce nitrogen losses in intensive-grassland management. Ecological Bulletins, 39, 126-130.
DOI URL PMID |
[37] | Su B, Han XG, Huang JH, Qu CM ( 2000). The nutrient use efficiency ( NUE) of plants and it’s implications on the strategy of plant adaptation to nutrient-stressed environments. Acta Ecologica Sinica, 20, 335-343. |
[ 苏波, 韩兴国, 黄建辉, 渠春梅 ( 2000). 植物的养分利用效率(NUE)及植物对养分胁迫环境的适应策略. 生态学报, 20, 335-343.] | |
[38] |
Thornthwaite CW ( 1948). An approach toward a rational classification of climate. Geographical Review, 38, 55-94.
DOI URL |
[39] |
Tian YH, Liu YQ, Jin JJ ( 2017). Effect of irrigation schemes on forage yield, water use efficiency, and nutrients in artificial grassland under arid conditions. Sustainability, 9, 2035.
DOI URL |
[40] |
Vázquez de Aldana BR, Berendse F ( 1997). Nitrogen-use efficiency in six perennial grasses from contrasting habitats. Functional Ecology, 11, 619-626.
DOI URL PMID |
[41] |
Vermeer JG, Berendse F ( 1983). The relationship between nutrient availability, shoot biomass and species richness in grassland and wetland communities. Vegetatio, 53, 121-126.
DOI URL |
[42] | Vitousek PM, Howarth RW ( 1991). Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry, 13, 87-115. |
[43] |
Wang JS, Sun J, Yu Z, Li Y, Tian DS, Wang BX, Li ZL, Niu SL ( 2019). Vegetation type controls root turnover in global grasslands. Global Ecology and Biogeography, 28, 442-455.
DOI URL |
[44] | Wang XX, Dong SK, Gao QZ, Zhang Y, Hu GZ, Luo WR ( 2018). The rate of soil nitrogen transformation decreased by the degradation of alpine grasslands in the Qinghai Tibet Plateau. Acta Prataculturae Sinica, 27(6), 1-9. |
[ 王学霞, 董世魁, 高清竹, 张勇, 胡国铮, 罗文蓉 ( 2018). 青藏高原退化高寒草地土壤氮矿化特征以及影响因素研究. 草业学报, 27(6), 1-9] | |
[45] |
Wang Y, Wesche K ( 2016). Vegetation and soil responses to livestock grazing in Central Asian grasslands: A review of Chinese literature. Biodiversity and Conservation, 25, 2401-2420.
DOI URL |
[46] |
Xu GH, Fan XR, Miller AJ ( 2012). Plant nitrogen assimilation and use efficiency. Annual Review of Plant Biology, 63, 153-182.
DOI URL PMID |
[47] |
Xu SJ, Fan XY, Wang LL, Zhang XF, An LZ ( 2015). The patterns of nitrogen and phosphorus stoichiometry across communities along altitudinal gradients in Qilian Mountains, China. Biochemical Systematics and Ecology, 62, 58-65.
DOI URL |
[48] |
Yang XX, Ren F, Zhou HK, He JS ( 2014). Responses of plant community biomass to nitrogen and phosphorus additions in an alpine meadow on the Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 38, 159-166.
DOI URL |
[ 杨晓霞, 任飞, 周华坤, 贺金生 ( 2014). 青藏高原高寒草甸植物群落生物量对氮、磷添加的响应. 植物生态学报, 38, 159-166.]
DOI URL |
|
[49] |
Yu HL, Fan JW, Harris W, Li YZ ( 2017). Relationships between below-ground biomass and foliar N:P stoichiometry along climatic and altitudinal gradients of the Chinese grassland transect. Plant Ecology, 218, 661-671.
DOI URL |
[50] |
Yu HY, Luedeling E, Xu JC ( 2010). Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 107, 22151-22156.
DOI URL PMID |
[51] |
Yuan ZY, Li LH, Han XG, Chen SP, Wang ZW, Chen QS, Bai WM ( 2006). Nitrogen response efficiency increased monotonically with decreasing soil resource availability: A case study from a semiarid grassland in northern China. Oecologia, 148, 564-572.
DOI URL PMID |
[52] |
Zhang Y, Chen HYH ( 2015). Individual size inequality links forest diversity and above-ground biomass. Journal of Ecology, 103, 1245-1252.
DOI URL |
[53] |
Zhang YL, Qi W, Zhou CP, Ding MJ, Liu LS, Gao JG, Bai WQ, Wang ZF, Zheng D ( 2014). Spatial and temporal variability in the net primary production of alpine grassland on the Tibetan Plateau since 1982. Journal of Geographical Sciences, 24, 269-287.
DOI URL |
[54] | Zhu JT, Li XY, Zhang XM, Lin LS, Yang SG ( 2010). Nitrogen allocation and partitioning within a leguminous and two non-leguminous plant species growing at the southern fringe of China’s Taklamakan Desert. Chinese Journal of Plant Ecology, 34, 1025-1032. |
[ 朱军涛, 李向义, 张希明, 林丽莎, 杨尚功 ( 2010). 塔克拉玛干沙漠南缘豆科与非豆科植物的氮分配. 植物生态学报, 34, 1025-1032.] | |
[55] |
Zuo XA, Zhang J, Lv P, Zhou X, Li YL, Luo YY, Luo YQ, Lian J, Yue XY ( 2016). Plant functional diversity mediates the effects of vegetation and soil properties on community-level plant nitrogen use in the restoration of semiarid sandy grassland. Ecological Indicators, 64, 272-280.
DOI URL |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 江康威 张青青 王亚菲 李宏 丁雨 杨永强 吐尔逊娜依·热依木. 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 徐子怡 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡[J]. 植物生态学报, 2024, 48(5): 612-622. |
[4] | 常晨晖 朱彪 朱江玲 吉成均 杨万勤. 森林粗木质残体分解研究进展[J]. 植物生态学报, 2024, 48(5): 541-560. |
[5] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[6] | 范宏坤, 曾涛, 金光泽, 刘志理. 小兴安岭不同生长型阔叶植物叶性状变异及权衡[J]. 植物生态学报, 2024, 48(3): 364-376. |
[7] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[8] | 刘聪聪, 何念鹏, 李颖, 张佳慧, 闫镤, 王若梦, 王瑞丽. 宏观生态学中的植物功能性状研究: 历史与发展趋势[J]. 植物生态学报, 2024, 48(1): 21-40. |
[9] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[10] | 袁雅妮, 周哲, 陈彬洲, 郭垚鑫, 岳明. 基于功能性状的锐齿槲栎林共存树种生态策略差异[J]. 植物生态学报, 2023, 47(9): 1270-1277. |
[11] | 孙佳慧, 史海兰, 陈科宇, 纪宝明, 张静. 植物细根功能性状的权衡关系研究进展[J]. 植物生态学报, 2023, 47(8): 1055-1070. |
[12] | 赵孟娟, 金光泽, 刘志理. 阔叶红松林3种典型蕨类叶功能性状的垂直变异[J]. 植物生态学报, 2023, 47(8): 1131-1143. |
[13] | 代景忠, 白玉婷, 卫智军, 张楚, 辛晓平, 闫玉春, 闫瑞瑞. 羊草功能性状对施肥的动态响应[J]. 植物生态学报, 2023, 47(7): 943-953. |
[14] | 周莹莹, 林华. 不同水热梯度下冠层优势树种叶片热力性状及适应策略的变化趋势[J]. 植物生态学报, 2023, 47(5): 733-744. |
[15] | 李伟, 张荣. 亚高寒草甸群落结构决定群落生产力实例验证[J]. 植物生态学报, 2023, 47(5): 713-723. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19