植物生态学报 ›› 2023, Vol. 47 ›› Issue (8): 1055-1070.DOI: 10.17521/cjpe.2022.0456
收稿日期:
2022-11-11
接受日期:
2023-03-13
出版日期:
2023-08-20
发布日期:
2023-03-13
通讯作者:
*张静(基金资助:
SUN Jia-Hui, SHI Hai-Lan, CHEN Ke-Yu, JI Bao-Ming, ZHANG Jing*()
Received:
2022-11-11
Accepted:
2023-03-13
Online:
2023-08-20
Published:
2023-03-13
Contact:
*ZHANG Jing(Supported by:
摘要:
植物功能性状的权衡关系反映不同植物在资源投资和收益上的权衡策略, 对于深入理解植物对环境的生态适应机制具有重要意义。但由于土壤环境的异质性和技术手段的局限性, 目前地下根系功能性状及其相互关系的研究相对滞后于地上功能性状的研究。细根通常指直径≤2 mm的根, 植物对土壤资源的获取与利用依赖于细根构型、形态、化学和生物等一系列功能属性, 其中包括细根通过与菌根真菌共生来获取土壤资源。最近提出的根系经济空间(root economics space)表明植物在资源获取效率与维持成本之间的权衡策略存在多样性, 除传统的快速(高氮含量和代谢率)和缓慢(高组织密度)投资回报之间的权衡维度外, 还存在以高比根长为特征的“自己动手”获取资源和将光合碳分配给菌根真菌的“外包”资源获取的权衡维度。具体到功能性状上则表现为细根表观性状与菌根真菌存在明显的功能互补关系, 大多数针对木本植物的研究发现细根直径小的物种主要通过增加比根长来提升获取土壤资源的能力, 而细根直径大的物种则主要依赖菌根真菌来获取资源, 然而迄今仍缺乏菌根真菌与宿主植物资源收益和构建成本之间权衡的直接量化研究。未来关于细根功能性状的研究应该加强以下几个方面的研究: 1)在研究方法上, 迫切需要建立一套统一的根系分类、取样、储存方法以及确定根系功能性状的定义及其研究方法; 2)在性状指标上, 增强对细根硬性状(如根系分泌物、根系呼吸等生理属性)的研究; 3)在功能性状权衡关系的研究上, 需要继续深入探究植物根系和菌根真菌之间构建成本和资源收益的关系。
孙佳慧, 史海兰, 陈科宇, 纪宝明, 张静. 植物细根功能性状的权衡关系研究进展. 植物生态学报, 2023, 47(8): 1055-1070. DOI: 10.17521/cjpe.2022.0456
SUN Jia-Hui, SHI Hai-Lan, CHEN Ke-Yu, JI Bao-Ming, ZHANG Jing. Research advances on trade-off relationships of plant fine root functional traits. Chinese Journal of Plant Ecology, 2023, 47(8): 1055-1070. DOI: 10.17521/cjpe.2022.0456
分类方法 Approach | 描述 Description | 优点 Advantage | 缺点 Disadvantage |
---|---|---|---|
传统分类方法 Traditional classification | 直径≤2 mm的细根集合 Roots ≤2 mm in diameter grouped together | 快速, 不需要事先了解采样地点和物种 Fast, requires no prior knowledge of site or species | 根系性状和生物量数据很难跨物种和地点进行解释和比较, 不适用于多物种相同直径的根系比较 Root trait and biomass data are difficult to interpret and compare across species and sites, it is not applicable to the comparison of root systems with the same diameter of multiple species |
根序分类方法 Order-based classification | 直径≤2 mm的根按根序分类 Roots ≤2 mm in diameter separated into individual root orders | 可以跨越物种和地点比较根性状 Consistent and accurate comparisons of root traits across species and sites | 工作量较大且耗时 Labor-intensive and time-consuming |
功能分类方法 Functional classification | 根据根系分级与解剖特征, 将直径≤2 mm的细根分为具有吸收和运输作用的根 Roots ≤2 mm in diameter were separated into absorptive and transport fine roots according to root orders and anatomical traits | 适用于功能相似的根之间进行比较, 比顺序分类方法快速 Enables comparisons among functionally similar roots, faster than order-based | 需要事先了解根系解剖特征, 根据解剖特征来确定分支层次中的功能划分 Might require a prior assessment of root anatomical traits to determine functional divisions within branching hierarchy |
表1 细根分类方法的优缺点(引自McCormack et al., 2015)
Table 1 Advantages and disadvantages of fine-root classification approaches (referred from McCormack et al., 2015)
分类方法 Approach | 描述 Description | 优点 Advantage | 缺点 Disadvantage |
---|---|---|---|
传统分类方法 Traditional classification | 直径≤2 mm的细根集合 Roots ≤2 mm in diameter grouped together | 快速, 不需要事先了解采样地点和物种 Fast, requires no prior knowledge of site or species | 根系性状和生物量数据很难跨物种和地点进行解释和比较, 不适用于多物种相同直径的根系比较 Root trait and biomass data are difficult to interpret and compare across species and sites, it is not applicable to the comparison of root systems with the same diameter of multiple species |
根序分类方法 Order-based classification | 直径≤2 mm的根按根序分类 Roots ≤2 mm in diameter separated into individual root orders | 可以跨越物种和地点比较根性状 Consistent and accurate comparisons of root traits across species and sites | 工作量较大且耗时 Labor-intensive and time-consuming |
功能分类方法 Functional classification | 根据根系分级与解剖特征, 将直径≤2 mm的细根分为具有吸收和运输作用的根 Roots ≤2 mm in diameter were separated into absorptive and transport fine roots according to root orders and anatomical traits | 适用于功能相似的根之间进行比较, 比顺序分类方法快速 Enables comparisons among functionally similar roots, faster than order-based | 需要事先了解根系解剖特征, 根据解剖特征来确定分支层次中的功能划分 Might require a prior assessment of root anatomical traits to determine functional divisions within branching hierarchy |
性状类型 Type of trait | 性状指标 Trait index | 缩写(单位) Abbreviation (unit) | 描述 Description |
---|---|---|---|
构型性状 Architectural trait | 根长密度 Root length density | RLD (cm·cm-3) | 单位体积土壤中的根长, 反映根系对养分获取的能力 The length of roots per unit soil volume, reflects the ability of the roots to acquire nutrients |
根分支强度 Root branching intensity | RBI (cm-1) | 单位2级根长度上的1级根数量, 反映根系从土壤中获取水分和养分的能力 The number of laterals on a given length unit of parent root, reflects the ability of the root to explore the soil for water and nutrients | |
根分布深度 Root depth | RD (cm) | 反映植物吸收与利用土壤资源的能力 Reflects the ability of the plant to acquire soil resources | |
形态性状 Morphological trait | 根直径 Root diameter | D (mm) | 影响根资源获取、生理功能 Affects the root resource acquisition and physiological function |
比根长 Specific root length | SRL (m·g-1) | 单位生物量的根长度, 反映根系吸收水分和养分的能力, 衡量根系的消耗与效益 The length of root per unit dry mass, reflects the potential extent of soil exploration (for nutrients and water) per unit cost (in terms of plant biomass allocation) and measures the root consumption and benefits | |
比根面积 Specific root area | SRA (g·cm-2) | 单位生物量的根面积, 反映根系对土壤资源的获取能力 The area of root per unit dry mass, reflects the ability of the root to acquire soil resources | |
根组织密度 Root tissue density | RTD (g·cm-3) | 单位体积的根质量, 反映根系资源获取和防御能力 Root mass per unit volume, reflects the root resource acquisition and defense capability | |
根干物质含量 Root dry matter content | RDMC (mg·g-1) | 单位鲜质量的根干质量, 反映根系的资源获取能力 The dry mass of root per unit fresh root mass, reflects the ability of root system to acquire soil resources | |
生理性状 Physiological trait | 根寿命 Root lifespan | (d) | 单位生物量的根系组织存活的时间, 决定根系养分和碳消耗与循环的速率, 属于硬性状 The survival time of root tissue per unit of biomass, determines the rate at which root nutrients and carbon are consumed and recycled, hard trait |
根系呼吸速率 Root respiration rate | Rr (μmol·g-1·s-1) | 单位根质量和时间内CO2通量, 属于硬性状 The flux rate of CO2 per unit root mass and time, hard trait | |
根系分泌速率 Root exudation rate | RER (mg·g-1·h-1) | 单位根质量和时间内根系分泌碳通量, 属于硬性状 The flux rate of root exudates was calculated by dividing the total carbon content by incubation time and root dry mass, hard trait | |
根系磷酸酶活性 Root phosphatase activity | RPA (μmol·g-1·h-1) | 单位根质量和时间内磷酸单脂酶含量 The content of phosphomonoesterase in per unit root dry mass and time | |
生物性状 Biotic trait | 菌根侵染率 Mycorrhizal fungal colonization | RLC (%) | 菌根真菌的侵染比例 The proportion of mycorrhizal colonization |
菌丝密度 Hyphal length density | HLD (m·g-1) | 单位土干质量的菌丝长度 The length of fungal hypha per unit of dry soil mass | |
化学性状 Chemical trait | 根碳含量 Root carbon content | RC (mg·g-1) | 单位根干质量的碳含量, 影响根资源获取及代谢速率 The mass of carbon content per root dry mass, affects the root resource acquisition and metabolic rate |
根氮含量 Root nitrogen content | RN (mg·g-1) | 单位根干质量的氮含量, 影响根资源获取及代谢速率 The mass of nitrogen content per root dry mass, affects the root resource acquisition and metabolic rate | |
解剖性状 Anatomical trait | 皮层厚度 Cortical thickness | CT (mm) | 反映根系对土壤资源的获取能力 Reflects the ability of the root to acquire soil resources |
中柱直径 Stele diameter | SD (mm) | 反映根系对土壤养分的运输能力 Reflects the ability of the root to transport soil resources |
表2 根系功能性状指标
Table 2 Indexes of root functional traits
性状类型 Type of trait | 性状指标 Trait index | 缩写(单位) Abbreviation (unit) | 描述 Description |
---|---|---|---|
构型性状 Architectural trait | 根长密度 Root length density | RLD (cm·cm-3) | 单位体积土壤中的根长, 反映根系对养分获取的能力 The length of roots per unit soil volume, reflects the ability of the roots to acquire nutrients |
根分支强度 Root branching intensity | RBI (cm-1) | 单位2级根长度上的1级根数量, 反映根系从土壤中获取水分和养分的能力 The number of laterals on a given length unit of parent root, reflects the ability of the root to explore the soil for water and nutrients | |
根分布深度 Root depth | RD (cm) | 反映植物吸收与利用土壤资源的能力 Reflects the ability of the plant to acquire soil resources | |
形态性状 Morphological trait | 根直径 Root diameter | D (mm) | 影响根资源获取、生理功能 Affects the root resource acquisition and physiological function |
比根长 Specific root length | SRL (m·g-1) | 单位生物量的根长度, 反映根系吸收水分和养分的能力, 衡量根系的消耗与效益 The length of root per unit dry mass, reflects the potential extent of soil exploration (for nutrients and water) per unit cost (in terms of plant biomass allocation) and measures the root consumption and benefits | |
比根面积 Specific root area | SRA (g·cm-2) | 单位生物量的根面积, 反映根系对土壤资源的获取能力 The area of root per unit dry mass, reflects the ability of the root to acquire soil resources | |
根组织密度 Root tissue density | RTD (g·cm-3) | 单位体积的根质量, 反映根系资源获取和防御能力 Root mass per unit volume, reflects the root resource acquisition and defense capability | |
根干物质含量 Root dry matter content | RDMC (mg·g-1) | 单位鲜质量的根干质量, 反映根系的资源获取能力 The dry mass of root per unit fresh root mass, reflects the ability of root system to acquire soil resources | |
生理性状 Physiological trait | 根寿命 Root lifespan | (d) | 单位生物量的根系组织存活的时间, 决定根系养分和碳消耗与循环的速率, 属于硬性状 The survival time of root tissue per unit of biomass, determines the rate at which root nutrients and carbon are consumed and recycled, hard trait |
根系呼吸速率 Root respiration rate | Rr (μmol·g-1·s-1) | 单位根质量和时间内CO2通量, 属于硬性状 The flux rate of CO2 per unit root mass and time, hard trait | |
根系分泌速率 Root exudation rate | RER (mg·g-1·h-1) | 单位根质量和时间内根系分泌碳通量, 属于硬性状 The flux rate of root exudates was calculated by dividing the total carbon content by incubation time and root dry mass, hard trait | |
根系磷酸酶活性 Root phosphatase activity | RPA (μmol·g-1·h-1) | 单位根质量和时间内磷酸单脂酶含量 The content of phosphomonoesterase in per unit root dry mass and time | |
生物性状 Biotic trait | 菌根侵染率 Mycorrhizal fungal colonization | RLC (%) | 菌根真菌的侵染比例 The proportion of mycorrhizal colonization |
菌丝密度 Hyphal length density | HLD (m·g-1) | 单位土干质量的菌丝长度 The length of fungal hypha per unit of dry soil mass | |
化学性状 Chemical trait | 根碳含量 Root carbon content | RC (mg·g-1) | 单位根干质量的碳含量, 影响根资源获取及代谢速率 The mass of carbon content per root dry mass, affects the root resource acquisition and metabolic rate |
根氮含量 Root nitrogen content | RN (mg·g-1) | 单位根干质量的氮含量, 影响根资源获取及代谢速率 The mass of nitrogen content per root dry mass, affects the root resource acquisition and metabolic rate | |
解剖性状 Anatomical trait | 皮层厚度 Cortical thickness | CT (mm) | 反映根系对土壤资源的获取能力 Reflects the ability of the root to acquire soil resources |
中柱直径 Stele diameter | SD (mm) | 反映根系对土壤养分的运输能力 Reflects the ability of the root to transport soil resources |
[1] |
Adams TS, McCormack ML, Eissenstat DM (2013). Foraging strategies in trees of different root morphology: the role of root lifespan. Tree Physiology, 33, 940-948.
DOI PMID |
[2] |
Asefa M, Worthy SJ, Cao M, Song XY, Lozano YM, Yang J (2022). Above- and below-ground plant traits are not consistent in response to drought and competition treatments. Annals of Botany, 130, 939-950.
DOI URL |
[3] |
Atkin OK, Bloomfield KJ, Reich PB, Tjoelker MG, Asner GP, Bonal D, Bönisch G, Bradford MG, Cernusak LA, Cosio EG, Creek D, Crous KY, Domingues TF, Dukes JS, Egerton JJG, et al. (2015). Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. New Phytologist, 206, 614-636.
DOI PMID |
[4] |
Augé RM, Toler HD, Saxton AM (2015). Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza, 25, 13-24.
DOI PMID |
[5] | Bardgett RD (2017). Plant trait-based approaches for interrogating belowground function. Biology and Environment, 117B, 1. DOI: 10.3318/BIOE.2017.03. |
[6] |
Bardgett RD, Mommer L, de Vries FT (2014). Going underground: root traits as drivers of ecosystem processes. Trends in Ecology & Evolution, 29, 692-699.
DOI URL |
[7] | Bergmann J, Weigelt A, van der Plas F, Laughlin DC, Kuyper TW, Guerrero-Ramirez N, Valverde-Barrantes OJ, Bruelheide H, Freschet GT, Iversen CM, Kattge J, McCormack ML, Meier IC, Rillig MC, Roumet C, et al. (2020). The fungal collaboration gradient dominates the root economics space in plants. Science Advances, 6, eaba3756. DOI: 10.1126/sciadv.aba3756. |
[8] |
Bernard-Verdier M, Navas ML, Vellend M, Violle C, Fayolle A, Garnier E (2012). Community assembly along a soil depth gradient: contrasting patterns of plant trait convergence and divergence in a Mediterranean rangeland. Journal of Ecology, 100, 1422-1433.
DOI URL |
[9] |
Brundrett MC (2002). Coevolution of roots and mycorrhizas of land plants. New Phytologist, 154, 275-304.
DOI PMID |
[10] |
Burton AJ, Pregitzer KS, Hendrick RL (2000). Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests. Oecologia, 125, 389-399.
DOI PMID |
[11] | Butler EE, Datta A, Flores-Moreno H, Chen M, Wythers KR, Fazayeli F, Banerjee A, Atkin OK, Kattge J, Amiaud B, Blonder B, Boenisch G, Bond-Lamberty B, Brown KA, Byun C, et al. (2017). Mapping local and global variability in plant trait distributions. Proceedings of the National Academy of Sciences of the United States of America, 114, E10937-E10946. |
[12] |
Caplan JS, Stone BWG, Faillace CA, Lafond JJ, Baumgarten JM, Mozdzer TJ, Dighton J, Meiners SJ, Grabosky JC, Ehrenfeld JG (2017). Nutrient foraging strategies are associated with productivity and population growth in forest shrubs. Annals of Botany, 119, 977-988.
DOI PMID |
[13] |
Chapin III FS, Bloom AJ, Field CB, Waring RH (1987). Plant responses to multiple environmental factors: physiological ecology provides tools for studying how interacting environmental resources control plant growth. BioScience, 37, 49-57.
DOI URL |
[14] | Chaudhary VB, Holland EP, Charman-Anderson S, Guzman A, Bell-Dereske L, Cheeke TE, Corrales A, Duchicela J, Egan C, Gupta MM, Hannula SE, Hestrin R, Hoosein S, Kumar A, Mhretu G, et al. (2022). What are mycorrhizal traits? Trends in Ecology & Evolution, 37, 573-581. |
[15] |
Chen WL, Koide RT, Eissenstat DM (2018). Nutrient foraging by mycorrhizas: from species functional traits to ecosystem processes. Functional Ecology, 32, 858-869.
DOI URL |
[16] |
Chen WL, Zeng H, Eissenstat DM, Guo DL (2013). Variation of first-order root traits across climatic gradients and evolutionary trends in geological time. Global Ecology and Biogeography, 22, 846-856.
DOI URL |
[17] |
Cheng L, Chen WL, Adams TS, Wei X, Li L, McCormack ML, DeForest JL, Koide RT, Eissenstat DM (2016). Mycorrhizal fungi and roots are complementary in foraging within nutrient patches. Ecology, 97, 2815-2823.
DOI PMID |
[18] |
Cheng XR, Huang MB, Shao MG, Warrington DN (2009). A comparison of fine root distribution and water consumption of mature Caragana korshinkii Kom grown in two soils in a semiarid region, China. Plant and Soil, 315, 149-161.
DOI URL |
[19] |
Clement CR, Hopper MJ, Jones LHP, Leafe EL (1978). The uptake of nitrate by Lolium perenne from flowing nutrient solution: II. Effect of light, defoliation, and relationship to CO2 flux. Journal of Experimental Botany, 29, 1173-1183.
DOI URL |
[20] | Cochavi A, Cohen IH, Rachmilevitch S (2020). The role of different root orders in nutrient uptake. Environmental and Experimental Botany, 179, 104212. DOI: 10.1016/j.envexpbot.2020.104212. |
[21] |
Comas LH, Mueller KE, Taylor LL, Midford PE, Callahan HS, Beerling DJ (2012). Evolutionary patterns and biogeochemical significance of angiosperm root traits. International Journal of Plant Sciences, 173, 584-595.
DOI URL |
[22] |
Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380.
DOI URL |
[23] |
Craine JM, Froehle J, Tilman DG, Wedin DA, Chapin FS (2001). The relationships among root and leaf traits of 76 grassland species and relative abundance along fertility and disturbance gradients. Oikos, 93, 274-285.
DOI URL |
[24] |
Dakora FD, Phillips DA (2002). Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant and Soil, 245, 35-47.
DOI URL |
[25] |
de la Riva EG, Marañón T, Pérez-Ramos IM, Navarro-Fernández CM, Olmo M, Villar R, (2018). Root traits across environmental gradients in Mediterranean woody communities: Are they aligned along the root economics spectrum? Plant and Soil, 424, 35-48.
DOI URL |
[26] |
Díaz S, Cabido M (2001). Vive la différence: plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution, 16, 646-655.
DOI URL |
[27] |
Díaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserrat-Martí G, Grime JP, Zarrinkamar F, Asri Y, Band SR, Basconcelo S, Castro-Díez P, Funes G, Hamzehee B, et al. (2004). The plant traits that drive ecosystems: evidence from three continents. Journal of Vegetation Science, 15, 295-304.
DOI URL |
[28] |
Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Colin Prentice I, Garnier E, Bönisch G, Westoby M, Poorter H, Reich PB, et al. (2016). The global spectrum of plant form and function. Nature, 529, 167-171.
DOI |
[29] |
Eissenstat DM, Caldwell MM (1988). Competitive ability is linked to rates of water extraction. Oecologia, 75, 1-7.
DOI PMID |
[30] |
Eissenstat DM, Kucharski JM, Zadworny M, Adams TS, Koide RT (2015). Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest. New Phytologist, 208, 114-124.
DOI PMID |
[31] | Eissenstat DM, Yanai RD (1997). The ecology of root lifespan. Advances in Ecological Research, 27, 1-60. |
[32] | Fitter AH (1996). Characteristics and functions of root systems//Waisel Y, Eshel E, Kafkafi U. Plant Roots: the Hidden Half. 2nd ed. Marcel Dekker, New York, 1-20. |
[33] |
Fitter AH (2004). Magnolioid roots-hairs, architecture and mycorrhizal dependency. New Phytologist, 164, 15-16.
DOI URL |
[34] |
Freschet GT, Roumet C (2017). Sampling roots to capture plant and soil functions. Functional Ecology, 31, 1506-1518.
DOI URL |
[35] | Freschet GT, Roumet C, Comas LH, Weemstra M, Bengough AG, Rewald B, Bardgett RD, de Deyn GB, Johnson D, Klimešová J, Lukac M, McCormack ML, Meier IC, Pagès L, Poorter H, et al. (2021). Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs. New Phytologist, 232, 1123-1158. |
[36] | Gardner WK, Barber DG, Parbery DA (1983). The acquisition of phosphorus by Lupinus albus L. Plant and Soil, 68, 107-124. |
[37] |
Gill RA, Jackson RB (2000). Global patterns of root turnover for terrestrial ecosystems. New Phytologist, 147, 13-31.
DOI URL |
[38] |
Gregory PJ, McGowan M, Biscoe PV (1978). Water relations of winter wheat: 2. Soil water relations. The Journal of Agricultural Science, 91, 103-116.
DOI URL |
[39] |
Grime JP (1977). Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. The American Naturalist, 111, 1169-1194.
DOI URL |
[40] |
Guo DL, Xia MX, Wei X, Chang WJ, Liu Y, Wang ZQ (2008). Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytologist, 180, 673-683.
DOI PMID |
[41] |
Hajek P, Hertel D, Leuschner C (2014). Root order- and root age-dependent response of two poplar species to belowground competition. Plant and Soil, 377, 337-355.
DOI URL |
[42] |
Hallik L, Niinemets Ü, Wright IJ (2009). Are species shade and drought tolerance reflected in leaf-level structural and functional differentiation in Northern Hemisphere temperate woody flora? New Phytologist, 184, 257-274.
DOI PMID |
[43] |
Han MG, Chen Y, Li R, Yu M, Fu LC, Li SF, Su JR, Zhu B (2022). Root phosphatase activity aligns with the collaboration gradient of the root economics space. New Phytologist, 234, 837-849.
DOI URL |
[44] |
Han MG, Zhu B (2020). Linking root respiration to chemistry and morphology across species. Global Change Biology, 27, 190-201.
DOI URL |
[45] |
He NP, Li Y, Liu CC, Xu L, Li MX, Zhang JH, He JS, Tang ZY, Han XG, Ye Q, Xiao CW, Yu Q, Liu SR, Sun W, Niu SL, et al. (2020). Plant trait networks: improved resolution of the dimensionality of adaptation. Trends in Ecology & Evolution, 35, 908-918.
DOI URL |
[46] |
Hendrick RL, Pregitzer KS (1992). The demography of fine roots in a northern hardwood forest. Ecology, 73, 1094-1104.
DOI URL |
[47] |
Hendrick RL, Pregitzer KS (1993). The dynamics of fine root length, biomass, and nitrogen content in two northern hardwood ecosystems. Canadian Journal of Forest Research, 23, 2507-2520.
DOI URL |
[48] |
Hendricks JJ, Nadelhoffer KJ, Aber JD (1993). Assessing the role of fine roots in carbon and nutrient cycling. Trends in Ecology & Evolution, 8, 174-178.
DOI URL |
[49] |
Hodge A (2004). The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytologist, 162, 9-24.
DOI URL |
[50] |
Hodge A, Berta G, Doussan C, Merchan F, Crespi M (2009). Plant root growth, architecture and function. Plant and Soil, 321, 153-187.
DOI URL |
[51] |
Holdaway RJ, Richardson SJ, Dickie IA, Peltzer DA, Coomes DA (2011). Species- and community-level patterns in fine root traits along a 120 000-year soil chronosequence in temperate rain forest. Journal of Ecology, 99, 954-963.
DOI URL |
[52] | Hu YJ, Rillig MC, Xiang D, Hao ZP, Chen BD (2013). Changes of AM fungal abundance along environmental gradients in the arid and semi-arid grasslands of northern China. PLoS ONE, 8, e57593. DOI: 10.1371/journal.pone.0057593. |
[53] |
Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996). A global analysis of root distributions for terrestrial biomes. Oecologia, 108, 389-411.
DOI PMID |
[54] | Johnson NC, Angelard C, Sanders IR, Kiers ET (2013). Predicting community and ecosystem outcomes of mycorrhizal responses to global change. Ecology Letters, 16, 140-153. |
[55] | Kattge J, Díaz S, Lavorel S, Prentice IC, Leadley P, Bönisch G, Garnier E, Westoby M, Reich PB, Wright IJ, Cornelissen JHC, Violle C, Harrison SP, van Bodegom PM, Reichstein M, et al. (2011). TRY—A global database of plant traits. Global Change Biology, 17, 5078. DOI: 10.1111/j.1365-2486.2011.02451.x. |
[56] |
Koide RT (1991). Nutrient supply, nutrient demand and plant response to mycorrhizal infection. New Phytologist, 117, 365-386.
DOI PMID |
[57] |
Kong DL, Ma CG, Zhang Q, Li L, Chen XY, Zeng H, Guo DL (2014). Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytologist, 203, 863-872.
DOI PMID |
[58] | Kong DL, Wang JJ, Kardol P, Wu H, Zeng H, Deng X, Deng Y (2015). The root economics spectrum: divergence of absorptive root strategies with root diameter. Biogeosciences Discussions, 12, 13041-13067. |
[59] |
Kong DL, Wang JJ, Kardol P, Wu HF, Zeng H, Deng XB, Deng Y (2016). Economic strategies of plant absorptive roots vary with root diameter. Biogeosciences, 13, 415-424.
DOI URL |
[60] |
Kong DL, Wang JJ, Wu HF, Valverde-Barrantes OJ, Wang RL, Zeng H, Kardol P, Zhang HY, Feng YL (2019). Nonlinearity of root trait relationships and the root economics spectrum. Nature Communications, 10, 2203. DOI: 10.1038/s41467-019-10245-6.
PMID |
[61] |
Kong DL, Wu HF, Wang M, Simmons M, Lü XT, Yu Q, Han XG (2010). Structural and chemical differences between shoot- and root-derived roots of three perennial grasses in a typical steppe in Inner Mongolia China. Plant and Soil, 336, 209-217.
DOI URL |
[62] |
Kramer-Walter KR, Bellingham PJ, Millar TR, Smissen RD, Richardson SJ, Laughlin DC (2016). Root traits are multidimensional: specific root length is independent from root tissue density and the plant economic spectrum. Journal of Ecology, 104, 1299-1310.
DOI URL |
[63] |
Laliberté E (2017). Below-ground frontiers in trait-based plant ecology. New Phytologist, 213, 1597-1603.
DOI PMID |
[64] |
Lei LJ, Kong DL, Li XM, Zhou ZX, Li GY (2016). Plant functional traits, functional diversity, and ecosystem functioning: current knowledge and perspectives. Biodiversity Science, 24, 922-931.
DOI |
[雷羚洁, 孔德良, 李晓明, 周振兴, 李国勇 (2016). 植物功能性状、功能多样性与生态系统功能: 进展与展望. 生物多样性, 24, 922-931.]
DOI |
|
[65] |
Li HB, Liu BT, McCormack ML, Ma ZQ, Guo DL (2017). Diverse belowground resource strategies underlie plant species coexistence and spatial distribution in three grasslands along a precipitation gradient. New Phytologist, 216, 1140-1150.
DOI PMID |
[66] |
Lienin P, Kleyer M (2012). Plant trait responses to the environment and effects on ecosystem properties. Basic and Applied Ecology, 13, 301-311.
DOI URL |
[67] |
Liu BT, Li HB, Zhu B, Koide RT, Eissenstat DM, Guo DL (2015). Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species. New Phytologist, 208, 125-136.
DOI PMID |
[68] | Liu XJ, Ma KP (2015). Plant functional traits—Concepts, applications and future directions. Scientia Sinica (Vitae), 45, 325-339. |
[刘晓娟, 马克平 (2015). 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.] | |
[69] |
Liu Y, Wang GL, Yu KX, Li P, Xiao L, Liu GB (2018). A new method to optimize root order classification based on the diameter interval of fine root. Scientific Reports, 8, 2960. DOI: 10.1038/s41598-018-21248-6.
PMID |
[70] |
Liu YJ, Shi GX, Mao L, Cheng G, Jiang SJ, Ma XJ, An LZ, Du GZ, Collins Johnson N, Feng HY (2012). Direct and indirect influences of 8 yr of nitrogen and phosphorus fertilization on Glomeromycota in an alpine meadow ecosystem. New Phytologist, 194, 523-535.
DOI PMID |
[71] |
Lõhmus K, Oja T, Lasn R (1989). Specific root area: a soil characteristic. Plant and Soil, 119, 245-249.
DOI URL |
[72] | Long YQ, Kong DL, Chen ZX, Zeng H (2013). Variation of the linkage of root function with root branch order. PLoS ONE, 8, e57153. DOI: 10.1371/journal.pone.0057153. |
[73] |
Lynch JP (2013). Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Annals of Botany, 112, 347-357.
DOI PMID |
[74] | Lynch JP (2015). Root phenes that reduce the metabolic costs of soil exploration: opportunities for 21st century agriculture. Plant, Cell & Environment, 38, 1775-1784. |
[75] |
Ma ZQ, Guo DL, Xu XL, Lu MZ, Bardgett RD, Eissenstat DM, McCormack ML, Hedin LO (2018). Evolutionary history resolves global organization of root functional traits. Nature, 555, 94-97.
DOI URL |
[76] |
Makita N, Hirano Y, Dannoura M, Kominami Y, Mizoguchi T, Ishii H, Kanazawa Y (2009). Fine root morphological traits determine variation in root respiration of Quercus serrata. Tree Physiology, 29, 579-585.
DOI PMID |
[77] |
Makita N, Hirano Y, Sugimoto T, Tanikawa T, Ishii H (2015). Intraspecific variation in fine root respiration and morphology in response to in situ soil nitrogen fertility in a 100-year-old Chamaecyparis obtusa forest. Oecologia, 179, 959-967.
DOI PMID |
[78] |
Manschadi AM, Hammer GL, Christopher JT, de Voil P (2008). Genotypic variation in seedling root architectural traits and implications for drought adaptation in wheat (Triticum aestivum L.). Plant and Soil, 303, 115-129.
DOI URL |
[79] |
Mason CM, Donovan LA (2015). Evolution of the leaf economics spectrum in herbs: evidence from environmental divergences in leaf physiology across Helianthus (Asteraceae). Evolution, 69, 2705-2720.
DOI URL |
[80] |
Matamala R, Gonzàlez-Meler MA, Jastrow JD, Norby RJ, Schlesinger WH (2003). Impacts of fine root turnover on forest NPP and soil C sequestration potential. Science, 302, 1385-1387.
DOI PMID |
[81] |
McCormack ML, Adams TS, Smithwick EAH, Eissenstat DM (2012). Predicting fine root lifespan from plant functional traits in temperate trees. New Phytologist, 195, 823-831.
DOI PMID |
[82] |
McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, Guo DL, Helmisaari HS, Hobbie EA, Iversen CM, Jackson RB, Leppälammi-Kujansuu J, Norby RJ, Phillips RP, Pregitzer KS, Pritchard SG, et al. (2015). Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytologist, 207, 505-518.
DOI PMID |
[83] |
McCormack ML, Guo DL, Iversen CM, Chen WL, Eissenstat DM, Fernandez CW, Li L, Ma CG, Ma ZQ, Poorter H, Reich PB, Zadworny M, Zanne A (2017). Building a better foundation: improving root-trait measurements to understand and model plant and ecosystem processes. New Phytologist, 215, 27-37.
DOI PMID |
[84] |
McCormack ML, Iversen CM (2019). Physical and functional constraints on viable belowground acquisition strategies. Frontiers in Plant Science, 10, 1215. DOI: 10.3389/fpls.2019.01215.
PMID |
[85] |
McCormack ML, Kaproth MA, Cavender-Bares J, Carlson E, Hipp AL, Han Y, Kennedy PG (2020). Climate and phylogenetic history structure morphological and architectural trait variation among fine-root orders. New Phytologist, 228, 1824-1834.
DOI URL |
[86] |
Meier IC, Leuschner C (2010). Variation of soil and biomass carbon pools in beech forests across a precipitation gradient. Global Change Biology, 16, 1035-1045.
DOI URL |
[87] | Meng TT, Ni J, Wang GH (2007). Plant functional traits environments and ecosystem functioning. Journal of Plant Ecology (Chinese Version), 31, 150-165. |
[孟婷婷, 倪健, 王国宏 (2007). 植物功能性状与环境和生态系统功能. 植物生态学报, 31, 150-165.]
DOI |
|
[88] |
Miao Y, Wu HF, Ma CE, Kong DL (2013). Relationship between mycorrhizal fungi and functional traits in absorption roots: research progress and synthesis. Chinese Journal of Plant Ecology, 37, 1035-1042.
DOI |
[苗原, 吴会芳, 马承恩, 孔德良 (2013). 菌根真菌与吸收根功能性状的关系: 研究进展与评述. 植物生态学报, 37, 1035-1042.]
DOI |
|
[89] |
Miyatani K, Tanikawa T, Makita N, Hirano Y (2018). Relationships between specific root length and respiration rate of fine roots across stands and seasons in Chamaecyparis obtusa. Plant and Soil, 423, 215-227.
DOI URL |
[90] |
Nadelhoffer KJ (2000). The potential effects of nitrogen deposition on fine-root production in forest ecosystems. New Phytologist, 147, 131-139.
DOI URL |
[91] |
Norby RJ, Jackson RB (2000). Root dynamics and global change: seeking an ecosystem perspective. New Phytologist, 147, 3-12.
DOI URL |
[92] |
O’Leary BM, Asao S, Millar AH, Atkin OK (2019). Core principles which explain variation in respiration across biological scales. New Phytologist, 222, 670-686.
DOI PMID |
[93] |
Ordoñez JC, van Bodegom PM, Witte JPM, Wright IJ, Reich PB, Aerts R (2009). A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Global Ecology and Biogeography, 18, 137-149.
DOI URL |
[94] |
Ostonen I, Helmisaari HS, Borken W, Tedersoo L, Kukumägi M, Bahram M, Lindroos AJ, Nöjd P, Uri V, Merilä P, Asi E, Lõhmus K (2011). Fine root foraging strategies in Norway spruce forests across a European climate gradient. Global Change Biology, 17, 3620-3632.
DOI URL |
[95] |
Ostonen I, Püttsepp Ü, Biel C, Alberton O, Bakker MR, Lõhmus K, Majdi H, Metcalfe D, Olsthoorn AFM, Pronk A, Vanguelova E, Weih M, Brunner I (2007). Specific root length as an indicator of environmental change. Plant Biosystems, 141, 426-442.
DOI URL |
[96] |
Padilla FM, Aarts BHJ, Roijendijk YOA, de Caluwe H, Mommer L, Visser EJW, de Kroon H (2013). Root plasticity maintains growth of temperate grassland species under pulsed water supply. Plant and Soil, 369, 377-386.
DOI URL |
[97] |
Pregitzer KS (2002). Fine roots of trees—A new perspective. New Phytologist, 154, 267-270.
DOI PMID |
[98] |
Pregitzer KS, DeForest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL (2002). Fine root architecture of nine North American trees. Ecological Monographs, 72, 293-309.
DOI URL |
[99] |
Reich PB (2014). The world-wide “fast-slow” plant economics spectrum: a traits manifesto. Journal of Ecology, 102, 275-301.
DOI URL |
[100] |
Reich PB, Wright IJ, Cavender-Bares J, Craine JM, Oleksyn J, Westoby M, Walters MB (2003). The evolution of plant functional variation: traits, spectra, and strategies. International Journal of Plant Sciences, 164, S143-S164.
DOI URL |
[101] |
Roumet C, Birouste M, Picon-Cochard C, Ghestem M, Osman N, Vrignon-Brenas S, Cao KF, Stokes A (2016). Root structure-function relationships in 74 species: evidence of a root economics spectrum related to carbon economy. New Phytologist, 210, 815-826.
DOI PMID |
[102] |
Ruffel S, Krouk G, Ristova D, Shasha D, Birnbaum KD, Coruzzi GM (2011). Nitrogen economics of root foraging: transitive closure of the nitrate-cytokinin relay and distinct systemic signaling for N supply vs. demand. Proceedings of the National Academy of Sciences of the United States of America, 108, 18524-18529.
DOI PMID |
[103] |
Shipley B, de Bello F, Cornelissen JHC, Laliberté E, Laughlin DC, Reich PB (2016). Reinforcing loose foundation stones in trait-based plant ecology. Oecologia, 180, 923-931.
DOI PMID |
[104] |
Smith SE, Smith FA, Jakobsen I (2004). Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytologist, 162, 511-524.
DOI URL |
[105] |
Staddon PL, Ramsey CB, Ostle N, Ineson P, Fitter AH (2003). Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of 14C. Science, 300, 1138-1140.
DOI PMID |
[106] | Stearns SC (1992). The Evolution of Life Histories. Oxford University Press, New York. |
[107] |
Strand AE, Pritchard SG, McCormack ML, Davis MA, Oren R (2008). Irreconcilable differences: fine-root life spans and soil carbon persistence. Science, 319, 456-458.
DOI PMID |
[108] |
Sun LJ, Ataka M, Han MG, Han YF, Gan DY, Xu TL, Guo YP, Zhu B (2021). Root exudation as a major competitive fine-root functional trait of 18 coexisting species in a subtropical forest. New Phytologist, 229, 259-271.
DOI URL |
[109] |
Treseder KK, Allen MF (2002). Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: a model and field test. New Phytologist, 155, 507-515.
DOI PMID |
[110] |
Turner BL (2008). Resource partitioning for soil phosphorus: a hypothesis. Journal of Ecology, 96, 698-702.
DOI URL |
[111] |
Valenzuela-Estrada LR, Vera-Caraballo V, Ruth LE, Eissenstat DM (2008). Root anatomy, morphology, and longevity among root orders in Vaccinium corymbosum (Ericaceae). American Journal of Botany, 95, 1506-1514.
DOI PMID |
[112] |
Valverde-Barrantes OJ, Freschet GT, Roumet C, Blackwood CB (2017). A worldview of root traits: the influence of ancestry, growth form, climate and mycorrhizal association on the functional trait variation of fine-root tissues in seed plants. New Phytologist, 215, 1562-1573.
DOI PMID |
[113] |
Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007). Let the concept of trait be functional! Oikos, 116, 882-892.
DOI URL |
[114] | Wang J, Liu MS, Sheng S, Xu C, Liu XK, Wang HJ (2008). Spatial distributions of soil water, salts and roots in an arid arbor-herb community. Acta Ecologica Sinica, 28, 4120-4127. |
[王珺, 刘茂松, 盛晟, 徐驰, 刘小恺, 王汉杰 (2008). 干旱区植物群落土壤水盐及根系生物量的空间分布格局. 生态学报, 28, 4120-4127.] | |
[115] |
Wang RZ, Cavagnaro TR, Jiang Y, Keitel C, Dijkstra FA (2021). Carbon allocation to the rhizosphere is affected by drought and nitrogen addition. Journal of Ecology, 109, 3699-3709.
DOI URL |
[116] |
Wang ZQ, Guo DL, Wang XR, Gu JC, Mei L (2006). Fine root architecture, morphology, and biomass of different branch orders of two Chinese temperate tree species. Plant and Soil, 288, 155-171.
DOI URL |
[117] |
Weemstra M, Mommer L, Visser EJW, van Ruijven J, Kuyper TW, Mohren GMJ, Sterck FJ (2016). Towards a multidimensional root trait framework: a tree root review. New Phytologist, 211, 1159-1169.
DOI PMID |
[118] |
Weigelt A, Mommer L, Andraczek K, Iversen CM, Bergmann J, Bruelheide H, Fan Y, Freschet GT, Guerrero-Ramírez NR, Kattge J, Kuyper TW, Laughlin DC, Meier IC, van der Plas F, Poorter H, et al. (2021). An integrated framework of plant form and function: the belowground perspective. New Phytologist, 232, 42-59.
DOI PMID |
[119] |
Wells CE, Eissenstat DM (2001). Marked differences in survivorship among apple roots of different diameters. Ecology, 82, 882-892.
DOI URL |
[120] |
Williams A, Langridge H, Straathof AL, Muhamadali H, Hollywood KA, Goodacre R, de Vries FT (2022). Root functional traits explain root exudation rate and composition across a range of grassland species. Journal of Ecology, 110, 21-33.
DOI URL |
[121] |
Wright IJ, Ackerly DD, Bongers F, Harms KE, Ibarra- Manriquez G, Martinez-Ramos M, Mazer SJ, Muller- Landau HC, Paz H, Pitman NCA, Poorter L, Silman MR, Vriesendorp CF, Webb CO, Westoby M, et al. (2007). Relationships among ecologically important dimensions of plant trait variation in seven Neotropical forests. Annals of Botany, 99, 1003-1015.
DOI PMID |
[122] |
Wright IJ, Dong N, Maire V, Prentice IC, Westoby M, Díaz S, Gallagher RV, Jacobs BF, Kooyman R, Law EA, Leishman MR, Niinemets Ü, Reich PB, Sack L, Villar R, et al. (2017). Global climatic drivers of leaf size. Science, 357, 917-921.
DOI PMID |
[123] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
DOI |
[124] |
Wu JR, Ma HC, Xu XL, Qiao N, Guo ST, Liu F, Zhang DH, Zhou LP (2013a). Mycorrhizas alter nitrogen acquisition by the terrestrial orchid Cymbidium goeringii. Annals of Botany, 111, 1181-1187.
DOI URL |
[125] |
Wu QS, Srivastava AK, Zou YN (2013b). AMF-induced tolerance to drought stress in citrus: a review. Scientia Horticulturae, 164, 77-87.
DOI URL |
[126] |
Xia MX, Valverde-Barrantes OJ, Suseela V, Blackwood CB, Tharayil N (2021). Coordination between compound- specific chemistry and morphology in plant roots aligns with ancestral mycorrhizal association in woody angiosperms. New Phytologist, 232, 1259-1271.
DOI URL |
[127] |
Xiao HL, Sheng MY, Wang LJ, Guo C, Zhang SL (2022). Effects of short-term N addition on fine root morphological features and nutrient stoichiometric characteristics of Zanthoxylum bungeanum and Medicago sativa seedlings in southwest China karst area. Journal of Soil Science and Plant Nutrition, 22, 1805-1817.
DOI |
[128] |
Xiong YM, Liu X, Guan W, Liao BW, Chen YJ, Li M, Zhong CR (2017). Fine root functional group based estimates of fine root production and turnover rate in natural mangrove forests. Plant and Soil, 413, 83-95.
DOI URL |
[129] | Yu SQ, Wang JB, Hao QW, Wang WF, Wang Q, Zhan LF (2020). Fine root lifespan and influencing factors of four tree species with different life forms. Acta Ecologica Sinica, 40, 3040-3047. |
[于水强, 王静波, 郝倩葳, 王维枫, 王琪, 詹龙飞 (2020). 四种不同生活型树种细根寿命及影响因素. 生态学报, 40, 3040-3047.] | |
[130] | Zhang DY, Peng YF, Li F, Yang GB, Wang J, Yu JC, Zhou GY, Yang YH (2019). Trait identity and functional diversity co-drive response of ecosystem productivity to nitrogen enrichment. Journal of Ecology, 107, 2402-2414. |
[131] | Zhang JR, Yan XJ, Jia LQ, Fan AL, Wang X, Chen TT, Chen GS (2022). Morphology and C and N stoichiometry traits of fine roots of nine understory shrubs in subtropical natural evergreen broad-leaved forest. Acta Ecologica Sinica, 42, 3716-3726. |
[张进如, 闫晓俊, 贾林巧, 范爱连, 王雪, 陈廷廷, 陈光水 (2002). 亚热带天然常绿阔叶林林下9种灌木细根形态和C、N化学计量特征. 生态学报, 42, 3716-3726.] | |
[132] |
Zheng WS, Morris EK, Rillig MC (2014). Ectomycorrhizal fungi in association with Pinus sylvestris seedlings promote soil aggregation and soil water repellency. Soil Biology & Biochemistry, 78, 326-331.
DOI URL |
[133] | Zhou CW, Cui WJ, Yuan T, Cheng HY, Su Q, Wei HX, Guo P (2022). Root foraging behavior of two agronomical herbs subjected to heterogeneous P pattern and high Ca stress. Agronomy, 12, 624. DOI: 10.3390/agronomy12030624. |
[134] |
Zhou M, Guo YM, Sheng J, Yuan YJ, Zhang WH, Bai WM (2022). Using anatomical traits to understand root functions across root orders of herbaceous species in a temperate steppe. New Phytologist, 234, 422-434.
DOI PMID |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 陈科宇 邢森 唐玉 孙佳慧 任世杰 张静 纪宝明. 不同草地型土壤丛枝菌根真菌群落特征及其驱动因素[J]. 植物生态学报, 2024, 48(5): 660-674. |
[3] | 徐子怡 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡[J]. 植物生态学报, 2024, 48(5): 612-622. |
[4] | 常晨晖 朱彪 朱江玲 吉成均 杨万勤. 森林粗木质残体分解研究进展[J]. 植物生态学报, 2024, 48(5): 541-560. |
[5] | 胡蝶 蒋欣琪 戴志聪 陈戴一 张雨 祁珊珊 杜道林. 丛枝菌根真菌提高入侵杂草南美蟛蜞菊对除草剂的耐受性[J]. 植物生态学报, 2024, 48(5): 651-659. |
[6] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[7] | 曲泽坤, 朱丽琴, 姜琦, 王小红, 姚晓东, 蔡世锋, 罗素珍, 陈光水. 亚热带常绿阔叶林丛枝菌根树种养分觅食策略及其与细根形态间的关系[J]. 植物生态学报, 2024, 48(4): 416-427. |
[8] | 范宏坤, 曾涛, 金光泽, 刘志理. 小兴安岭不同生长型阔叶植物叶性状变异及权衡[J]. 植物生态学报, 2024, 48(3): 364-376. |
[9] | 杜旭龙, 黄锦学, 杨智杰, 熊德成. 增温对植物叶片和细根氧化损伤与防御特征及其相互关联影响的研究进展[J]. 植物生态学报, 2024, 48(2): 135-146. |
[10] | 刘聪聪, 何念鹏, 李颖, 张佳慧, 闫镤, 王若梦, 王瑞丽. 宏观生态学中的植物功能性状研究: 历史与发展趋势[J]. 植物生态学报, 2024, 48(1): 21-40. |
[11] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[12] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[13] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[14] | 袁雅妮, 周哲, 陈彬洲, 郭垚鑫, 岳明. 基于功能性状的锐齿槲栎林共存树种生态策略差异[J]. 植物生态学报, 2023, 47(9): 1270-1277. |
[15] | 任悦, 高广磊, 丁国栋, 张英, 赵珮杉, 柳叶. 不同生长期樟子松外生菌根真菌群落物种组成及其驱动因素[J]. 植物生态学报, 2023, 47(9): 1298-1309. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19