植物生态学报 ›› 2023, Vol. 47 ›› Issue (5): 733-744.DOI: 10.17521/cjpe.2022.0289
• 研究论文 • 上一篇
收稿日期:
2022-07-12
接受日期:
2022-10-10
出版日期:
2023-05-20
发布日期:
2022-10-10
通讯作者:
* (lh@xtbg.ac.cn)
基金资助:
ZHOU Ying-Ying1,2, LIN Hua1,*()
Received:
2022-07-12
Accepted:
2022-10-10
Online:
2023-05-20
Published:
2022-10-10
Supported by:
摘要:
叶片温度是植物能量交换和生理过程发生的重要微环境参数。叶片热力性状能够在一定程度上调控叶片温度, 避免极端温度对叶片的伤害。但目前针对叶片热力性状的研究还很少。该研究选择云南省从热带到温带具有明显水热梯度的4种典型植被类型: 干热河谷植被、热带雨林、亚热带常绿阔叶林、温带针阔混交林, 对其冠层优势树种的叶片热力性状进行了系统地研究。这些性状包括了可能影响叶片温度的形态、光学、材料特性、解剖和生理的23个性状。研究结果表明: 干热河谷植被的植物主要依靠蒸腾降温, 叶片薄, 叶寿命短, 主要为“快速投资-收益”型植物; 热带雨林植物叶片大, 蒸腾速率不高, 不利于降温, 较厚的叶片、较高的含水量能在一定程度上缓解高温, 采取“慢速投资-收益”策略; 亚热带常绿阔叶林很少发生极端温度, 叶片没有明显的热适应性状, 叶片厚, 叶寿命长, 采取“慢速投资-收益”策略; 温带针阔混交林植被的叶片小而厚, 多成簇状生长, 有一定保温作用。温带针阔混交林的冠层常绿植物光合速率较低, 偏“慢速投资-收益”型; 而落叶植物的光合速率较高, 偏“快速投资-收益”型。该研究系统地研究了热力性状与植物适应策略沿水热梯度的变化, 为深入认识植物对环境适应策略提供了理论基础。
周莹莹, 林华. 不同水热梯度下冠层优势树种叶片热力性状及适应策略的变化趋势. 植物生态学报, 2023, 47(5): 733-744. DOI: 10.17521/cjpe.2022.0289
ZHOU Ying-Ying, LIN Hua. Variation of leaf thermal traits and plant adaptation strategies of canopy dominant tree species along temperature and precipitation gradients. Chinese Journal of Plant Ecology, 2023, 47(5): 733-744. DOI: 10.17521/cjpe.2022.0289
干热河谷植被 Savanna vegetation | 热带雨林 Tropical rain forest | 亚热带常绿阔叶林 Subtropical evergreen broadleaf forest | 温带针阔混交林 Temperate mixed forest | |
---|---|---|---|---|
缩写 Abbreviation | SAV | TRF | STF | TEF |
地理位置 Location | 23.47° N 102.17° E | 21.92° N 101.92° E | 24.53° N 101.02° E | 27.13° N 100.22° E |
海拔 Altitude (m) | 550 | 550 | 2 500 | 3 240 |
年平均气温 Annual mean air temperature (℃) | 24.3 | 21.8 | 11.7 | 7.9 |
年降水量 Annual precipitation (mm) | 734 | 1 500 | 1 728 | 1 095 |
平均树高 Average tree height (m) | 4-6 | >30 | 25-30 | 38-42 |
叶面积指数 Leaf area index | 1.5 | 5 | 4.3 | 3 |
表1 云南省具有明显水热梯度的样地基本信息
Table 1 Basic information of sample sites with obvious temperature and precipitation gradients in Yunnan Province
干热河谷植被 Savanna vegetation | 热带雨林 Tropical rain forest | 亚热带常绿阔叶林 Subtropical evergreen broadleaf forest | 温带针阔混交林 Temperate mixed forest | |
---|---|---|---|---|
缩写 Abbreviation | SAV | TRF | STF | TEF |
地理位置 Location | 23.47° N 102.17° E | 21.92° N 101.92° E | 24.53° N 101.02° E | 27.13° N 100.22° E |
海拔 Altitude (m) | 550 | 550 | 2 500 | 3 240 |
年平均气温 Annual mean air temperature (℃) | 24.3 | 21.8 | 11.7 | 7.9 |
年降水量 Annual precipitation (mm) | 734 | 1 500 | 1 728 | 1 095 |
平均树高 Average tree height (m) | 4-6 | >30 | 25-30 | 38-42 |
叶面积指数 Leaf area index | 1.5 | 5 | 4.3 | 3 |
植被类型 Forest | 物种编号 Species number | 物种 Species | 科 | 属 Family | genus | 生活型 Life form |
---|---|---|---|---|
SAV | 1 | 厚皮树 Lannea coromandelica | 漆树科 | 厚皮树属 Anacardiaceae | Lannea | 落叶乔木 Deciduous tree |
SAV | 2 | 鞍叶羊蹄甲 Bauhinia brachycarpa | 豆科 | 羊蹄甲属 Fabaceae | Bauhinia | 落叶灌木 Deciduous shrub |
SAV | 3 | 杭子梢 Campylotropis macrocarpa | 豆科 | 杭子梢属 Fabaceae | Campylotropis | 落叶灌木 Deciduous shrub |
SAV | 4 | 疏序黄荆 Vitex negundo | 唇形科 | 牡荆属 Lamiaceae | Vitex | 落叶灌木或小乔木 Deciduous shrub or tree |
SAV | 5 | 土蜜藤 Bridelia stipularis | 叶下珠科 | 土蜜树属 Phyllanthaceae | Bridelia | 落叶木质藤本 Deciduous woody liane |
SAV | 6 | 细基丸 Polyalthia cerasoides | 番荔枝科 | 暗罗属 Annonaceae | Polyalthia | 落叶乔木 Deciduous tree |
SAV | 7 | 白皮乌口树 Tarenna depauperata | 茜草科 | 乌口树属 Rubiaceae | Tarenna | 常绿灌木 Evergreen shrub |
SAV | 8 | 瘤果三宝木 Trigonostemon tuberculatus | 大戟科 | 三宝木属 Euphorbiaceae | Trigonostemon | 落叶灌木 Deciduous shrub |
SAV | 9 | 灰毛浆果楝 Cipadessa cinerascens | 楝科 | 浆果楝属 Meliaceae | Cipadessa | 落叶灌木 Deciduous shrub |
SAV | 10 | 异序乌桕 Sapium insigne | 大戟科 | 异序乌桕属 Euphorbiaceae | Falconeria | 落叶乔木 Deciduous tree |
SAV | 11 | 心叶木 Haldina cordifolia | 茜草科 | 心叶木属 Rubiaceae | Haldina | 落叶乔木 Deciduous tree |
SAV | 12 | 宿萼木 Strophioblachia fimbricalyx | 大戟科 | 宿萼木属 Euphorbiaceae | Strophioblachia | 落叶灌木 Deciduous shrub |
TRF | 13 | 大叶风吹楠 Horsfieldia kingii | 肉豆蔻科 | 风吹楠属 Myristicaceae | Horsfieldia | 常绿乔木 Evergreen tree |
TRF | 14 | 琴叶风吹楠 Horsfieldia pandurifolia | 肉豆蔻科 | 风吹楠属 Myristicaceae | Horsfieldia | 常绿乔木 Evergreen tree |
TRF | 15 | 大叶红光树 Knema linifolia | 肉豆蔻科 | 红光树属 Myristicaceae | Knema | 常绿乔木 Evergreen tree |
TRF | 16 | 潺槁木姜子 Litsea glutinosa | 樟科 | 木姜子属 Lauraceae | Litsea | 常绿乔木 Evergreen tree |
TRF | 17 | 勐仑翅子树 Pterospermum menglunense | 锦葵科 | 翅子树属 Malvaceae | Pterospermum | 常绿乔木 Evergreen tree |
TRF | 18 | 八宝树 Duabanga grandiflora | 千屈菜科 | 八宝树属 Lythraceae | Duabanga | 常绿乔木 Evergreen tree |
TRF | 19 | 木奶果 Baccaurea ramiflora | 叶下珠科 | 木奶果属 Phyllanthaceae | Baccaurea | 常绿乔木 Evergreen tree |
TRF | 20 | 望天树 Parashorea chinensis | 龙脑香科 | 柳安属 Dipterocarpaceae | Parashorea | 常绿乔木 Evergreen tree |
TRF | 21 | 番龙眼 Pometia pinnata | 无患子科 | 番龙眼属 Sapindaceae | Pometia | 常绿乔木 Evergreen tree |
TRF | 22 | 披针叶楠 Phoebe lanceolata | 樟科 | 楠属 Lauraceae | Phoebe | 常绿乔木 Evergreen tree |
STF | 23 | 舟柄茶 Hartia sinensis | 山茶科 | 舟柄茶属 Theaceae | Hartia | 常绿乔木 Evergreen tree |
STF | 24 | 大花八角 Illicium macranthum | 五味子科 | 八角属 Schisandraceae | Illicium | 常绿灌木或小乔木 Evergreen shrub or tree |
STF | 25 | 珍珠花 Lyonia ovalifolia | 杜鹃花科 | 珍珠花属 Ericaceae | Lyonia | 落叶灌木或小乔木 Deciduous shrub or tree |
STF | 26 | 滇南山杨 Populus rotundifolia | 杨柳科 | 杨属 Salicaceae | Populus | 落叶乔木 Deciduous tree |
STF | 27 | 硬斗石栎 Lithocarpus hancei | 壳斗科 | 石栎属 Fagaceae | Lithocarpus | 常绿乔木 Evergreen tree |
STF | 28 | 南洋木荷 Schima noronhae | 山茶科 | 木荷属 Theaceae | Schima | 常绿乔木 Evergreen tree |
STF | 29 | 红花木莲 Manglietia insignis | 木兰科 | 木莲属 Magnoliaceae | Manglietia | 常绿乔木 Evergreen tree |
STF | 30 | 变色锥 Castanopsis rufescens | 壳斗科 | 锥属 Fagaceae | Castanopsis | 常绿乔木 Evergreen tree |
STF | 31 | 多花含笑 Michelia floribunda | 木兰科 | 含笑属 Magnoliaceae | Michelia | 常绿乔木 Evergreen tree |
STF | 32 | 黄心树 Machilus bombycina | 樟科 | 润楠属 Lauraceae | Machilus | 常绿乔木 Evergreen tree |
STF | 33 | 多花山矾 Symplocos ramosissima | 山矾科 | 山矾属 Symplocaceae | Symplocos | 常绿灌木或小乔木 Evergreen shrub or tree |
STF | 34 | 滇润楠 Machilus yunnanensis | 樟科 | 润楠属 Lauraceae | Machilus | 常绿乔木 Evergreen tree |
STF | 35 | 木果柯 Lithocarpus xylocarpus | 壳斗科 | 柯属 Fagaceae | Lithocarpus | 常绿乔木 Evergreen tree |
TEF | 36 | 西南栒子 Cotoneaster franchetii | 蔷薇科 | 栒子属 Rosaceae | Cotoneaster | 落叶灌木 Deciduous shrub |
TEF | 37 | 红棕杜鹃 Rhododendron rubiginosum | 杜鹃花科 | 杜鹃花属 Ericaceae | Rhododendron | 落叶灌木 Deciduous shrub |
TEF | 38 | 川滇高山栎 Quercus aquifolioides | 壳斗科 | 栎属 Fagaceae | Quercus | 常绿乔木 Evergreen tree |
TEF | 39 | 腹毛柳 Salix delavayana | 杨柳科 | 柳属 Salicaceae | Salix | 落叶灌木或小乔木 Deciduous shrub or tree |
TEF | 40 | 毛叶珍珠花 Lyonia villosa | 杜鹃花科 | 珍珠花属 Ericaceae | Lyonia | 落叶灌木或小乔木 Deciduous shrub or tree |
TEF | 41 | 大白杜鹃 Rhododendron decorum | 杜鹃花科 | 杜鹃花属 Ericaceae | Rhododendron | 常绿灌木 Evergreen shrub |
TEF | 42 | 黄背栎 Quercus pannosa | 壳斗科 | 栎属 Fagaceae | Quercus | 常绿小乔木 Evergreen tree |
TEF | 43 | 滇南山杨 Populus rotundifolia | 杨柳科 | 杨属 Salicaceae | Populus | 落叶乔木 Deciduous tree |
表2 云南省具有明显水热梯度的4个样地的物种科属以及生活型信息
Table 2 Family, genus and life form information of species across four sites with obvious temperature and precipitation gradients in Yunnan Province
植被类型 Forest | 物种编号 Species number | 物种 Species | 科 | 属 Family | genus | 生活型 Life form |
---|---|---|---|---|
SAV | 1 | 厚皮树 Lannea coromandelica | 漆树科 | 厚皮树属 Anacardiaceae | Lannea | 落叶乔木 Deciduous tree |
SAV | 2 | 鞍叶羊蹄甲 Bauhinia brachycarpa | 豆科 | 羊蹄甲属 Fabaceae | Bauhinia | 落叶灌木 Deciduous shrub |
SAV | 3 | 杭子梢 Campylotropis macrocarpa | 豆科 | 杭子梢属 Fabaceae | Campylotropis | 落叶灌木 Deciduous shrub |
SAV | 4 | 疏序黄荆 Vitex negundo | 唇形科 | 牡荆属 Lamiaceae | Vitex | 落叶灌木或小乔木 Deciduous shrub or tree |
SAV | 5 | 土蜜藤 Bridelia stipularis | 叶下珠科 | 土蜜树属 Phyllanthaceae | Bridelia | 落叶木质藤本 Deciduous woody liane |
SAV | 6 | 细基丸 Polyalthia cerasoides | 番荔枝科 | 暗罗属 Annonaceae | Polyalthia | 落叶乔木 Deciduous tree |
SAV | 7 | 白皮乌口树 Tarenna depauperata | 茜草科 | 乌口树属 Rubiaceae | Tarenna | 常绿灌木 Evergreen shrub |
SAV | 8 | 瘤果三宝木 Trigonostemon tuberculatus | 大戟科 | 三宝木属 Euphorbiaceae | Trigonostemon | 落叶灌木 Deciduous shrub |
SAV | 9 | 灰毛浆果楝 Cipadessa cinerascens | 楝科 | 浆果楝属 Meliaceae | Cipadessa | 落叶灌木 Deciduous shrub |
SAV | 10 | 异序乌桕 Sapium insigne | 大戟科 | 异序乌桕属 Euphorbiaceae | Falconeria | 落叶乔木 Deciduous tree |
SAV | 11 | 心叶木 Haldina cordifolia | 茜草科 | 心叶木属 Rubiaceae | Haldina | 落叶乔木 Deciduous tree |
SAV | 12 | 宿萼木 Strophioblachia fimbricalyx | 大戟科 | 宿萼木属 Euphorbiaceae | Strophioblachia | 落叶灌木 Deciduous shrub |
TRF | 13 | 大叶风吹楠 Horsfieldia kingii | 肉豆蔻科 | 风吹楠属 Myristicaceae | Horsfieldia | 常绿乔木 Evergreen tree |
TRF | 14 | 琴叶风吹楠 Horsfieldia pandurifolia | 肉豆蔻科 | 风吹楠属 Myristicaceae | Horsfieldia | 常绿乔木 Evergreen tree |
TRF | 15 | 大叶红光树 Knema linifolia | 肉豆蔻科 | 红光树属 Myristicaceae | Knema | 常绿乔木 Evergreen tree |
TRF | 16 | 潺槁木姜子 Litsea glutinosa | 樟科 | 木姜子属 Lauraceae | Litsea | 常绿乔木 Evergreen tree |
TRF | 17 | 勐仑翅子树 Pterospermum menglunense | 锦葵科 | 翅子树属 Malvaceae | Pterospermum | 常绿乔木 Evergreen tree |
TRF | 18 | 八宝树 Duabanga grandiflora | 千屈菜科 | 八宝树属 Lythraceae | Duabanga | 常绿乔木 Evergreen tree |
TRF | 19 | 木奶果 Baccaurea ramiflora | 叶下珠科 | 木奶果属 Phyllanthaceae | Baccaurea | 常绿乔木 Evergreen tree |
TRF | 20 | 望天树 Parashorea chinensis | 龙脑香科 | 柳安属 Dipterocarpaceae | Parashorea | 常绿乔木 Evergreen tree |
TRF | 21 | 番龙眼 Pometia pinnata | 无患子科 | 番龙眼属 Sapindaceae | Pometia | 常绿乔木 Evergreen tree |
TRF | 22 | 披针叶楠 Phoebe lanceolata | 樟科 | 楠属 Lauraceae | Phoebe | 常绿乔木 Evergreen tree |
STF | 23 | 舟柄茶 Hartia sinensis | 山茶科 | 舟柄茶属 Theaceae | Hartia | 常绿乔木 Evergreen tree |
STF | 24 | 大花八角 Illicium macranthum | 五味子科 | 八角属 Schisandraceae | Illicium | 常绿灌木或小乔木 Evergreen shrub or tree |
STF | 25 | 珍珠花 Lyonia ovalifolia | 杜鹃花科 | 珍珠花属 Ericaceae | Lyonia | 落叶灌木或小乔木 Deciduous shrub or tree |
STF | 26 | 滇南山杨 Populus rotundifolia | 杨柳科 | 杨属 Salicaceae | Populus | 落叶乔木 Deciduous tree |
STF | 27 | 硬斗石栎 Lithocarpus hancei | 壳斗科 | 石栎属 Fagaceae | Lithocarpus | 常绿乔木 Evergreen tree |
STF | 28 | 南洋木荷 Schima noronhae | 山茶科 | 木荷属 Theaceae | Schima | 常绿乔木 Evergreen tree |
STF | 29 | 红花木莲 Manglietia insignis | 木兰科 | 木莲属 Magnoliaceae | Manglietia | 常绿乔木 Evergreen tree |
STF | 30 | 变色锥 Castanopsis rufescens | 壳斗科 | 锥属 Fagaceae | Castanopsis | 常绿乔木 Evergreen tree |
STF | 31 | 多花含笑 Michelia floribunda | 木兰科 | 含笑属 Magnoliaceae | Michelia | 常绿乔木 Evergreen tree |
STF | 32 | 黄心树 Machilus bombycina | 樟科 | 润楠属 Lauraceae | Machilus | 常绿乔木 Evergreen tree |
STF | 33 | 多花山矾 Symplocos ramosissima | 山矾科 | 山矾属 Symplocaceae | Symplocos | 常绿灌木或小乔木 Evergreen shrub or tree |
STF | 34 | 滇润楠 Machilus yunnanensis | 樟科 | 润楠属 Lauraceae | Machilus | 常绿乔木 Evergreen tree |
STF | 35 | 木果柯 Lithocarpus xylocarpus | 壳斗科 | 柯属 Fagaceae | Lithocarpus | 常绿乔木 Evergreen tree |
TEF | 36 | 西南栒子 Cotoneaster franchetii | 蔷薇科 | 栒子属 Rosaceae | Cotoneaster | 落叶灌木 Deciduous shrub |
TEF | 37 | 红棕杜鹃 Rhododendron rubiginosum | 杜鹃花科 | 杜鹃花属 Ericaceae | Rhododendron | 落叶灌木 Deciduous shrub |
TEF | 38 | 川滇高山栎 Quercus aquifolioides | 壳斗科 | 栎属 Fagaceae | Quercus | 常绿乔木 Evergreen tree |
TEF | 39 | 腹毛柳 Salix delavayana | 杨柳科 | 柳属 Salicaceae | Salix | 落叶灌木或小乔木 Deciduous shrub or tree |
TEF | 40 | 毛叶珍珠花 Lyonia villosa | 杜鹃花科 | 珍珠花属 Ericaceae | Lyonia | 落叶灌木或小乔木 Deciduous shrub or tree |
TEF | 41 | 大白杜鹃 Rhododendron decorum | 杜鹃花科 | 杜鹃花属 Ericaceae | Rhododendron | 常绿灌木 Evergreen shrub |
TEF | 42 | 黄背栎 Quercus pannosa | 壳斗科 | 栎属 Fagaceae | Quercus | 常绿小乔木 Evergreen tree |
TEF | 43 | 滇南山杨 Populus rotundifolia | 杨柳科 | 杨属 Salicaceae | Populus | 落叶乔木 Deciduous tree |
功能群 Functional group | 叶片性状 Leaf trait | 缩写 Abbreviation | 单位 Unit | 生态学意义 Ecological significance |
---|---|---|---|---|
叶片形态性状 Leaf morphological traits | 单叶叶面积 Individual leaf area | Area | cm2 | 叶片大小影响边界层厚度和对光的截取 Leaf size affects thickness of boundary layer, and interception of light (Milla & Reich, |
单叶叶片周长 Individual leaf perimeter | Peri | cm | 影响换热面积 Impact on heat exchange area (Milla & Reich, | |
叶片光学性状 Leaf optical traits | 绿度 Greenness | Greenness | - | 影响叶片的光能捕获效率 Impact on light capture efficiency of leaves (Crawford et al., |
反射率 Reflectivity | Ref | % | 影响叶片的光能捕获效率 Impact on the light capture efficiency of leaves (Crawford et al., | |
透射率 Transmissivity | Trans | % | 影响叶片的光能捕获效率 Impact on the light capture efficiency of leaves (Crawford et al., | |
吸收率 Absorptivity | Abs | % | 影响叶片的光能捕获效率 Impact on the light capture efficiency of leaves (Crawford et al., | |
叶片材料特性 Leaf material property | 单位面积叶片含水量 Leaf equivalent water thickness | EWT | mg·cm-2 | 叶片含水量越高, 比热容越大 The higher water content of leaves, the higher specific heat capacity (Leigh et al., |
叶干物质含量 Leaf dry matter content | LDMC | g·g-1 | LDMC越高, 叶片干物质投资越多, 密度越大 The higher LDMC, the higher leaf dry matter investment and leaf density (Niinemets, | |
比叶质量 Leaf mass per area | LMA | mg·cm-2 | 反映叶片的建成成本 Reflecting leaf construction investment (Wright et al., | |
叶片解剖性状 Leaf anatomy traits | 叶片厚度 Leaf thickness | Thickness | μm | 叶片较厚, 比叶质量较高。影响叶片比热容 Thicker leaves with higher LMA. Thickness also influences the specific heat capacity of leaves (Wright et al., |
上表皮厚度 Thickness of upper epidermis | Epidermis_up | μm | 影响水、CO2和热量交换 Affecting water, CO2 and heat exchange (Cai & Song, | |
下表皮厚度 Thickness of lower epidermis | Epidermis_low | μm | 影响水、CO2和热量交换 Affecting water, CO2 and heat exchange (Cai & Song, | |
栅栏组织厚度 Thickness of palisade tissue | Thickness_palisade | μm | 栅栏组织厚度影响叶绿体的分布, 影响光合作用和水气交换 Palisade tissue is related to the distribution of chloroplasts, thus affecting photosynthesis, water and gas exchange (Terashima et al., | |
海绵组织厚度 Thickness of spongy tissue | Thickness_spongy | μm | 影响CO2和水交换 Affecting CO2, and water exchange (Terashima et al., | |
栅栏组织与叶片厚度比值 Ratio of palisade tissue thickness to leaf thickness | PT | % | 影响CO2和水交换 Affecting CO2, and water exchange (Terashima et al., | |
海绵组织与叶片厚度比值 Ratio of sponge tissue thickness to leaf thickness | ST | % | 影响CO2和水交换 Affecting CO2, and water exchange (Terashima et al., | |
气孔长度 Stomatal length | St_length | μm | 小气孔可以更快地响应外界环境因子, 而大气孔在潮湿阴蔽的环境中更占优势 Small stomata can respond more quickly to external environmental factors (Drake et al., | |
气孔密度 Stomatal density | St_density | No. ·mm-2 | 单位面积的气孔数量越多, CO2和水交换效率越高 More stomata per area enables more CO2 assimilation, and leads to higher water and gas exchange rate (Tanaka & Shiraiwa, | |
叶脉密度 Vein density | Vein_density | mm·mm-2 | 较高的叶脉密度会增加叶片的水力导度和光合速率 The higher the vein density, the higher water transport efficiency and photosynthesis (Sack & Scoffoni, | |
气孔开口面积指数 Stomatal pore area index | SPI | % | 反映叶片气孔导度的综合参数, 较高的SPI会提高叶片的碳同化和蒸腾能力 An integrative parameter reflecting leaf stomatal conductance; higher SPI leads to higher carbon assimilation and transpiration capacity (Tian et al., | |
光学特性 Photosynthetic characteristics | 蒸腾速率 Transpiration rate | Tr | mmol·m-2·s-1 | 蒸腾能起到很好的降温效果, 高的蒸腾速率意味着更高的CO2同化率 Transpiration is beneficial for cooling, and higher transpiration rate leads to higher CO2 assimilation rate (Lin et al., |
单位面积最大净光合速率 Maximum photosynthetic rate per area | Aarea | μmol·m-2·s-1 | 反映植物对资源的获取和利用 Reflecting acquisition and utilization of resources (Franks & Beerling, | |
单位质量最大净光合速率 Maximum photosynthetic rate per mass | Amass | μmol·g-1·s-1 | 反映植物对资源的获取和利用 Reflecting acquisition and utilization of resources (Franks & Beerling, |
表3 叶片性状指标及其生态学意义
Table 3 Leaf traits and ecological significance
功能群 Functional group | 叶片性状 Leaf trait | 缩写 Abbreviation | 单位 Unit | 生态学意义 Ecological significance |
---|---|---|---|---|
叶片形态性状 Leaf morphological traits | 单叶叶面积 Individual leaf area | Area | cm2 | 叶片大小影响边界层厚度和对光的截取 Leaf size affects thickness of boundary layer, and interception of light (Milla & Reich, |
单叶叶片周长 Individual leaf perimeter | Peri | cm | 影响换热面积 Impact on heat exchange area (Milla & Reich, | |
叶片光学性状 Leaf optical traits | 绿度 Greenness | Greenness | - | 影响叶片的光能捕获效率 Impact on light capture efficiency of leaves (Crawford et al., |
反射率 Reflectivity | Ref | % | 影响叶片的光能捕获效率 Impact on the light capture efficiency of leaves (Crawford et al., | |
透射率 Transmissivity | Trans | % | 影响叶片的光能捕获效率 Impact on the light capture efficiency of leaves (Crawford et al., | |
吸收率 Absorptivity | Abs | % | 影响叶片的光能捕获效率 Impact on the light capture efficiency of leaves (Crawford et al., | |
叶片材料特性 Leaf material property | 单位面积叶片含水量 Leaf equivalent water thickness | EWT | mg·cm-2 | 叶片含水量越高, 比热容越大 The higher water content of leaves, the higher specific heat capacity (Leigh et al., |
叶干物质含量 Leaf dry matter content | LDMC | g·g-1 | LDMC越高, 叶片干物质投资越多, 密度越大 The higher LDMC, the higher leaf dry matter investment and leaf density (Niinemets, | |
比叶质量 Leaf mass per area | LMA | mg·cm-2 | 反映叶片的建成成本 Reflecting leaf construction investment (Wright et al., | |
叶片解剖性状 Leaf anatomy traits | 叶片厚度 Leaf thickness | Thickness | μm | 叶片较厚, 比叶质量较高。影响叶片比热容 Thicker leaves with higher LMA. Thickness also influences the specific heat capacity of leaves (Wright et al., |
上表皮厚度 Thickness of upper epidermis | Epidermis_up | μm | 影响水、CO2和热量交换 Affecting water, CO2 and heat exchange (Cai & Song, | |
下表皮厚度 Thickness of lower epidermis | Epidermis_low | μm | 影响水、CO2和热量交换 Affecting water, CO2 and heat exchange (Cai & Song, | |
栅栏组织厚度 Thickness of palisade tissue | Thickness_palisade | μm | 栅栏组织厚度影响叶绿体的分布, 影响光合作用和水气交换 Palisade tissue is related to the distribution of chloroplasts, thus affecting photosynthesis, water and gas exchange (Terashima et al., | |
海绵组织厚度 Thickness of spongy tissue | Thickness_spongy | μm | 影响CO2和水交换 Affecting CO2, and water exchange (Terashima et al., | |
栅栏组织与叶片厚度比值 Ratio of palisade tissue thickness to leaf thickness | PT | % | 影响CO2和水交换 Affecting CO2, and water exchange (Terashima et al., | |
海绵组织与叶片厚度比值 Ratio of sponge tissue thickness to leaf thickness | ST | % | 影响CO2和水交换 Affecting CO2, and water exchange (Terashima et al., | |
气孔长度 Stomatal length | St_length | μm | 小气孔可以更快地响应外界环境因子, 而大气孔在潮湿阴蔽的环境中更占优势 Small stomata can respond more quickly to external environmental factors (Drake et al., | |
气孔密度 Stomatal density | St_density | No. ·mm-2 | 单位面积的气孔数量越多, CO2和水交换效率越高 More stomata per area enables more CO2 assimilation, and leads to higher water and gas exchange rate (Tanaka & Shiraiwa, | |
叶脉密度 Vein density | Vein_density | mm·mm-2 | 较高的叶脉密度会增加叶片的水力导度和光合速率 The higher the vein density, the higher water transport efficiency and photosynthesis (Sack & Scoffoni, | |
气孔开口面积指数 Stomatal pore area index | SPI | % | 反映叶片气孔导度的综合参数, 较高的SPI会提高叶片的碳同化和蒸腾能力 An integrative parameter reflecting leaf stomatal conductance; higher SPI leads to higher carbon assimilation and transpiration capacity (Tian et al., | |
光学特性 Photosynthetic characteristics | 蒸腾速率 Transpiration rate | Tr | mmol·m-2·s-1 | 蒸腾能起到很好的降温效果, 高的蒸腾速率意味着更高的CO2同化率 Transpiration is beneficial for cooling, and higher transpiration rate leads to higher CO2 assimilation rate (Lin et al., |
单位面积最大净光合速率 Maximum photosynthetic rate per area | Aarea | μmol·m-2·s-1 | 反映植物对资源的获取和利用 Reflecting acquisition and utilization of resources (Franks & Beerling, | |
单位质量最大净光合速率 Maximum photosynthetic rate per mass | Amass | μmol·g-1·s-1 | 反映植物对资源的获取和利用 Reflecting acquisition and utilization of resources (Franks & Beerling, |
图1 云南省具有明显水热梯度的不同森林间叶片热力性状的差异。不同颜色代表差异显著, a、b, 代表从高到低排序; n, 代表4个森林间没有显著差异。SAV, 元江干热河谷植被; STF, 哀牢山亚热带常绿阔叶林; TEF, 丽江温带针阔混交林; TRF, 西双版纳热带雨林。Aarea, 单位面积最大净光合速率; Amass, 单位质量最大净光合速率; Abs, 叶片吸收率; Area, 单叶叶面积; EWT, 单位面积叶片含水量; Greenness, 绿度; LDMC, 叶干物质含量; LMA, 比叶质量; Peri, 单叶叶片周长; Ref, 叶片反射率; SPI, 气孔开口面积指数; Tr, 蒸腾速率; Thickness, 叶片厚度; Trans, 叶片透射率; Vein_density, 叶脉密度。
Fig. 1 Leaf thermal traits across different forests with obvious temperature and precipitation gradients in Yunnan Province. Different colors represent significant differences: a, b represent significant differences ranking from the highest to the lowest; and n shows no significant differences among the four forests. SAV, savanna vegetation in Yuanjiang; STF, subtropical evergreen broadleaf forest in Ailao Mountain; TEF, temperate mixed forest in Lijiang; TRF, tropical rain forest in Xishuangbanna. Aarea, maximum photosynthetic rate per area; Amass, maximum photosynthetic rate per mass; Abs, absorptivity; Area, individual leaf area; EWT, leaf equivalent water thickness; Greenness, leaf greenness; LDMC, leaf dry matter content; LMA, leaf mass per area; Peri, individual leaf perimeter; Ref, reflectivity; SPI, stomatal pore area index; Tr, transpiration rate; Thickness, leaf thickness; Trans, transmissivity; Vein_density, vein density.
图2 云南省具有明显水热梯度的不同森林叶片性状间的相关关系。SAV, 元江干热河谷植被; STF, 哀牢山亚热带常绿阔叶林; TEF, 丽江温带针阔混交林; TRF, 西双版纳热带雨林。Amass, 单位质量最大净光合速率; EWT, 单位面积叶片含水量; Thickness, 叶片厚度; Tr, 蒸腾速率; Vein_density, 叶脉密度。
Fig. 2 Relationship between leaf traits across different forests with obvious temperature and precipitation gradients in Yunnan Province. SAV, savanna vegetation in Yuanjiang; STF, subtropical evergreen broadleaf forest in Ailao Mountain; TEF, temperate mixed forest in Lijiang; TRF, tropical rain forest in Xishuangbanna. Amass, maximum photosynthetic rate per mass; EWT, leaf equivalent water thickness; Thickness, leaf thickness; Tr, transpiration rate;Vein_density, vein density.
图3 云南省具有明显水热梯度的不同森林叶片性状的主成分(PC)分析。SAV, 元江干热河谷植被; STF, 哀牢山亚热带常绿阔叶林; TEF, 丽江温带针阔混交林; TRF, 西双版纳热带雨林。Aarea, 单位面积最大净光合速率; Amass, 单位质量最大净光合速率; Abs, 叶片吸收率; Area, 单叶叶面积; Epidermis_low, 下表皮厚度; Epidermis_up, 上表皮厚度; EWT, 单位面积叶片含水量; Greenness, 绿度; LDMC, 叶干物质含量; LMA, 比叶质量; Peri, 单叶叶片周长; PT, 栅栏组织与叶片厚度比值; Ref, 叶片反射率; SPI, 气孔开口面积指数; ST, 海绵组织与叶片厚度比值; St_density, 气孔密度; St_length, 气孔长度; Tr, 蒸腾速率; Thickness, 叶片厚度; Thickness_palisade, 栅栏组织厚度; Thickness_spongy, 海绵组织厚度; Trans, 叶片透射率; Vein_density, 叶脉密度。
Fig. 3 Principal components analysis of leaf traits across different forests with obvious temperature and precipitation gradients in Yunnan Province. SAV, savanna vegetation in Yuanjiang; STF, subtropical evergreen broadleaf forest in Ailao Mountain; TEF, temperate mixed forest in Lijiang; TRF, tropical rain forest in Xishuangbanna. Aarea, maximum photosynthetic rate per area; Amass, maximum photosynthetic rate per mass; Abs, absorptivity; Area, individual leaf area; Epidermis_low, thickness of lower epidermis; Epidermis_up, thickness of upper epidermis; EWT, leaf equivalent water thickness; Greenness, leaf greenness; LDMC, leaf dry matter content; LMA, leaf mass per area; Peri, individual leaf perimeter; PT, the ratio of palisade tissue thickness to leaf thickness; Ref, reflectivity; SPI, stomatal pore area index; ST, the ratio of sponge tissue thickness to leaf thickness; St_density, stomatal density; St_length, stomatal length; Tr, transpiration rate; Thickness, leaf thickness; Thickness_palisade, thickness of palisade tissue; Thickness_spongy, thickness of spongy tissue; Trans, transmissivity; Vein_density, vein density.
图4 云南省具有明显水热梯度的不同森林的单位质量最大净光合速率(Amass)。SAV, 元江干热河谷植被; TRF, 西双版纳热带雨林; STF, 哀牢山亚热带常绿阔叶林; TEF, 丽江温带针阔混交林。
Fig. 4 Maximum photosynthetic rate per mass (Amass) across different forests with obvious temperature and precipitation gradients in Yunnan Province. SAV, savanna vegetation, TRF, tropical rain forest, STF, subtropical evergreen broadleaf forest, and TEF, temperate mixed forest.
[1] |
Atkins RF (2005). The LMA is a critical rescue device in airway emergencies. Anesthesia and Analgesia, 101, 1888-1889.
DOI PMID |
[2] |
Blonder B, Michaletz ST (2018). A model for leaf temperature decoupling from air temperature. Agricultural and Forest Meteorology, 262, 354-360.
DOI URL |
[3] |
Blonder B, Violle C, Bentley LP, Enquist BJ (2011). Venation networks and the origin of the leaf economics spectrum: venation networks and leaf economics. Ecology Letters, 14, 91-100.
DOI PMID |
[4] |
Brodribb TJ, Jordan GJ (2011). Water supply and demand remain balanced during leaf acclimation of Nothofagus cunninghamii trees. New Phytologist, 192, 437-448.
DOI PMID |
[5] | Cai YL, Song YC (2001). Adaptive ecology of lianas in Tiantong evergreen broad-leaved forest, Zhejiang, China I. Leaf anatomical characters. Acta Phytoecologica Sinica, 25, 90-98. |
[蔡永立, 宋永昌 (2001). 浙江天童常绿阔叶林藤本植物的适应生态学I. 叶片解剖特征的比较. 植物生态学报, 25, 90-98.] | |
[6] | Campbell GS, Norman JM (2000). An Introduction to Environmental Biophysics. Springer, New York. |
[7] |
Cordell S, Goldstein G, Meinzer FC, Vitousek PM (2001). Regulation of leaf life-span and nutrient-use efficiency of Metrosideros polymorpha trees at two extremes of a long chronosequence in Hawaii. Oecologia, 127, 198-206.
DOI PMID |
[8] |
Crawford AJ, McLachlan DH, Hetherington AM, Franklin KA (2012). High temperature exposure increases plant cooling capacity. Current Biology, 22, 396-397.
DOI PMID |
[9] |
Drake PL, Froend RH, Franks PJ (2013). Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. Journal of Experimental Botany, 64, 495-505.
DOI PMID |
[10] | Fauset S, Freitas HC, Galbraith DR, Sullivan MJP, Aidar MPM, Joly CA, Phillips OL, Vieira SA, Gloor MU (2018). Differences in leaf thermoregulation and water use strategies between three co-occurring Atlantic forest tree species. Plant, Cell & Environment, 41, 1618-1631. |
[11] |
Fetcher N (1981). Leaf size and leaf temperature in tropical vines. The American Naturalist, 117, 1011-1014.
DOI URL |
[12] |
Franks PJ, Beerling DJ (2009). Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. Proceedings of the National Academy of Sciences of the United States of America, 106, 10343-10347.
DOI PMID |
[13] |
Geng Y, Wang ZH, Liang CZ, Fang JY, Baumann F, Kühn P, Scholten T, He JS (2012). Effect of geographical range size on plant functional traits and the relationships between plant, soil and climate in Chinese grasslands. Global Ecology and Biogeography, 21, 416-427.
DOI URL |
[14] |
Helliker BR, Richter SL (2008). Subtropical to boreal convergence of tree-leaf temperatures. Nature, 454, 511-514.
DOI |
[15] |
Kenzo T, Ichie T, Yoneda R, Kitahashi Y, Watanabe Y, Ninomiya I, Koike T (2004). Interspecific variation of photosynthesis and leaf characteristics in canopy trees of five species of Dipterocarpaceae in a tropical rain forest. Tree Physiology, 24, 1187-1192.
DOI URL |
[16] |
Körner C, Bannister P, Mark AF (1986). Altitudinal variation in stomatal conductance, nitrogen content and leaf anatomy in different plant life forms in New Zealand. Oecologia, 69, 577-588.
DOI PMID |
[17] | Lan GY, Hu YH, Cao M, Zhu H, Wang H, Zhou SS, Deng XB, Cui JY, Huang JG, Liu LY, Xu HL, Song JP, He YC (2008). Establishment of Xishuangbanna tropical forest dynamics plot: species compositions and spatial distribution patterns. Journal of Plant Ecology (Chinese Version), 32, 287-298. |
[兰国玉, 胡跃华, 曹敏, 朱华, 王洪, 周仕顺, 邓晓保, 崔景云, 黄建国, 刘林云, 许海龙, 宋军平, 何有才 (2008). 西双版纳热带森林动态监测样地——树种组成与空间分布格局. 植物生态学报, 32, 287-298.] | |
[18] |
Lavorel S (2013). Plant functional effects on ecosystem services. Journal of Ecology, 101, 4-8.
DOI URL |
[19] |
Leigh A, Sevanto S, Ball MC, Close JD, Ellsworth DS, Knight CA, Nicotra AB, Vogel S (2012). Do thick leaves avoid thermal damage in critically low wind speeds? New Phytologist, 194, 477-487.
DOI PMID |
[20] | Li JQ, Song XY, Cao M (2016). Response of tree seedlings to altitudinal gradient and its seasonal variation in Ailao Mountain and Yulong Mountain, Yunnan Province, China. Chinese Journal of Applied Ecology, 27, 3403-3412. |
[李洁琼, 宋晓阳, 曹敏 (2016). 云南哀牢山和玉龙雪山森林树种幼苗对海拔梯度的响应及其季节性差异. 应用生态学报, 27, 3403-3412.]
DOI |
|
[21] |
Li L, Zeng H, Guo DL (2013). Leaf venation functional traits and their ecological significance. Chinese Journal of Plant Ecology, 37, 691-698.
DOI |
[李乐, 曾辉, 郭大立 (2013). 叶脉网络功能性状及其生态学意义. 植物生态学报, 37, 691-698.]
DOI |
|
[22] | Li LH, Zhang YP, You GY, Yao YG, Tan ZH, Song QH, Luo YY (2011). Spatiotemporal distribution pattern of photosynthetically active radiation in subtropical evergreen broadleaved forest in Ailaoshan Mountains of Southwest China. Chinese Journal of Ecology, 30, 2394-2399. |
[李麟辉, 张一平, 游广永, 姚玉刚, 谭正洪, 宋清海, 罗有勇 (2011). 哀牢山亚热带常绿阔叶林光合有效辐射的时空分布. 生态学杂志, 30, 2394-2399.] | |
[23] |
Lin H, Chen YJ, Zhang HL, Fu PL, Fan ZX (2017). Stronger cooling effects of transpiration and leaf physical traits of plants from a hot dry habitat than from a hot wet habitat. Functional Ecology, 31, 2202-2211.
DOI URL |
[24] | Liu CC, Liu YG, Guo K (2011). Ecophysiological adaptations to drought stress of seedlings of four plant species with different growth forms in karst habitats. Chinese Journal of Plant Ecology, 35, 1070-1082. |
[刘长成, 刘玉国, 郭柯 (2011). 四种不同生活型植物幼苗对喀斯特生境干旱的生理生态适应性. 植物生态学报, 35, 1070-1082.]
DOI |
|
[25] |
McDonald PG, Fonseca CR, Overton JM, Westoby M (2003). Leaf-size divergence along rainfall and soil-nutrient gradients: Is the method of size reduction common among clades? Functional Ecology, 17, 50-57.
DOI URL |
[26] |
Meng Y, Jiang P, Fang Y (2020). Contrasting impacts of vapor pressure deficit on gross primary productivity in two typical grassland ecosystems in China. Chinese Journal of Ecology, 39, 3633-3642.
DOI |
[孟莹, 姜鹏, 方缘 (2020). 大气水分亏缺对中国两种典型草地生态系统总初级生产力的影响. 生态学杂志, 39, 3633-3642.] | |
[27] |
Michaletz ST, Weiser MD, Zhou JZ, Kaspari M, Helliker BR, Enquist BJ (2015). Plant thermoregulation: energetics, trait- environment interactions, and carbon economics. Trends in Ecology & Evolution, 30, 714-724.
DOI URL |
[28] |
Milla R, Reich PB (2007). The scaling of leaf area and mass: the cost of light interception increases with leaf size. Proceedings of the Royal Society B, Biological Sciences, 274, 2109-2114.
DOI URL |
[29] |
Niinemets Ü (2001). Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology, 82, 453-469.
DOI URL |
[30] |
Osnas JL, Lichstein JW, Reich PB, Pacala SW (2013). Global leaf trait relationships: mass, area, and the leaf economics spectrum. Science, 340, 741-744.
DOI PMID |
[31] |
Peppe DJ, Royer DL, Cariglino B, Oliver SY, Newman S, Leight E, Enikolopov G, Fernandez-Burgos M, Herrera F, Adams JM, Correa E, Currano ED, Erickson JM, Hinojosa LF, Hoganson JW, et al. (2011). Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications. New Phytologist, 190, 724-739.
DOI PMID |
[32] |
Pierce S, Brusa G, Sartori M, Cerabolini BEL (2012). Combined use of leaf size and economics traits allows direct comparison of hydrophyte and terrestrial herbaceous adaptive strategies. Annals of Botany, 109, 1047-1053.
DOI PMID |
[33] |
Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009). Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytologist, 182, 565-588.
DOI URL |
[34] | Sack L, Cowan PD, Jaikumar N, Holbrook NM (2003). The “hydrology” of leaves: co-ordination of structure and function in temperate woody species. Plant, Cell & Environment, 26, 1343-1356. |
[35] |
Sack L, Scoffoni C (2013). Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytologist, 198, 983-1000.
DOI PMID |
[36] |
Schymanski SJ, Or D, Zwieniecki M (2013). Stomatal control and leaf thermal and hydraulic capacitances under rapid environmental fluctuations. PLoS ONE, 8, e54231. DOI: 10.1371/journal.pone.0054231.
DOI |
[37] | Shen R, Zhang JL, He B, Li F, Zhang ZM, Zhou R, Ou XK (2010). The structural characteristic and analysis on similarity of grassland community in dry-hot valley of Yuanjiang River. Ecology and Environmental Sciences, 19, 2821-2825. |
[沈蕊, 张建利, 何彪, 李峰, 张志明, 周睿, 欧晓昆 (2010). 元江流域干热河谷草地植物群落结构特征与相似性分析. 生态环境学报, 19, 2821-2825.]
DOI |
|
[38] |
Shipley B, Lechowicz MJ, Wright I, Reich PB (2006). Fundamental trade-offs generating the worldwide leaf economics spectrum. Ecology, 87, 535-541.
PMID |
[39] |
Tanaka Y, Shiraiwa T (2009). Stem growth habit affects leaf morphology and gas exchange traits in soybean. Annals of Botany, 104, 1293-1299.
DOI PMID |
[40] |
Terashima I, Hanba YT, Tholen D, Niinemets Ü (2011). Leaf functional anatomy in relation to photosynthesis. Plant Physiology, 155, 108-116.
DOI PMID |
[41] |
Tian M, Yu GR, He NP, Hou JH (2016). Leaf morphological and anatomical traits from tropical to temperate coniferous forests: mechanisms and influencing factors. Scientific Reports, 6, 19703. DOI: 10.1038/srep19703.
DOI |
[42] |
Westoby M, Wright IJ (2006). Land-plant ecology on the basis of functional traits. Trends in Ecology & Evolution, 21, 261-268.
DOI URL |
[43] |
Woodward FI (1987). Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels. Nature, 327, 617-618.
DOI |
[44] |
Wright IJ, Dong N, Maire V, Prentice IC, Westoby M, Díaz S, Gallagher RV, Jacobs BF, Kooyman R, Law EA, Leishman MR, Niinemets Ü, Reich PB, Sack L, Villar R, et al. (2017). Global climatic drivers of leaf size. Science, 357, 917-921.
DOI PMID |
[45] |
Wright IJ, Reich PB, Cornelissen JH, Falster DS, Garnier E, Hikosaka K, Lamont BB, Lee W, Oleksyn J, Osada N, Poorter H, Villar R, Warton DI, Westoby M (2005). Assessing the generality of global leaf trait relationships. New Phytologist, 166, 485-496.
DOI PMID |
[46] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
DOI |
[47] | Yang KY, Gong HD, Li J, Liu YT, Sha LQ, Song QH, Jin YQ, Yang DX, Li PG, Wen GJ, Chen AG, Pang ZQ, Zhang YP (2020). Dynamic characteristics of soil respiration of savanna ecosystem in dry hot valley of Yuanjiang. Journal of Zhejiang A&F University, 37, 849-859. |
[杨开业, 巩合德, 李敬, 刘运通, 沙丽清, 宋清海, 金艳强, 杨大新, 李培广, 闻国静, 陈爱国, 庞志强, 张一平 (2020). 元江干热河谷稀树灌草丛生态系统土壤呼吸动态特征. 浙江农林大学学报, 37, 849-859.] | |
[48] |
Zhang SB, Guan ZJ, Sun M, Zhang JJ, Cao KF, Hu H (2012). Evolutionary association of stomatal traits with leaf vein density in Paphiopedilum, Orchidaceae. PLoS ONE, 7, e40080. DOI: 10.1371/journal.pone.0040080.
DOI |
[49] | Zhang WG, Xiao DR, Tian K, Chen GL, He RH, Zhang Y (2017). Response of radial growth of three conifer species to climate at their respective upper distributional limits on Yulong snow Mountain. Acta Ecologica Sinica, 37, 3796-3804. |
[张卫国, 肖德荣, 田昆, 陈广磊, 和荣华, 张贇 (2017). 玉龙雪山3个针叶树种在海拔上限的径向生长及气候响应. 生态学报, 37, 3796-3804.] | |
[50] | Zhang Y, Yang SJ, Sun M, Cao KF (2014). Stomatal traits are evolutionarily associated with vein density in basal angiosperms. Plant Science Journal, 32, 320-328. |
[张亚, 杨石建, 孙梅, 曹坤芳 (2014). 基部被子植物气孔性状与叶脉密度的关联进化. 植物科学学报, 32, 320-328.] |
[1] | 范宏坤, 曾涛, 金光泽, 刘志理. 小兴安岭不同生长型阔叶植物叶性状变异及权衡[J]. 植物生态学报, 2024, 48(3): 364-376. |
[2] | 王文伟, 韩伟鹏, 刘文文. 滨海湿地入侵植物互花米草叶片功能性状对潮位的短期响应[J]. 植物生态学报, 2023, 47(2): 216-226. |
[3] | 张振振, 赵平, 张锦秀, 斯瑶. 亚热带常绿阔叶林散孔材和环孔材树种导管及叶片功能性状的比较[J]. 植物生态学报, 2019, 43(2): 131-138. |
[4] | 何芸雨, 郭水良, 王喆. 植物功能性状权衡关系的研究进展[J]. 植物生态学报, 2019, 43(12): 1021-1035. |
[5] | 彭曦, 闫文德, 王凤琪, 王光军, 玉昉永, 赵梅芳. 基于叶干质量比的杉木比叶面积估算模型的构建[J]. 植物生态学报, 2018, 42(2): 209-219. |
[6] | 肖迪, 王晓洁, 张凯, 何念鹏, 侯继华. 氮添加对山西太岳山天然油松林主要植物叶片性状的影响[J]. 植物生态学报, 2016, 40(7): 686-701. |
[7] | 李单凤, 于顺利, 王国勋, 方伟伟. 黄土高原优势灌丛营养器官化学计量特征的环境分异和机制[J]. 植物生态学报, 2015, 39(5): 453-465. |
[8] | 陈莹婷, 许振柱. 植物叶经济谱的研究进展[J]. 植物生态学报, 2014, 38(10): 1135-1153. |
[9] | 于鸿莹, 陈莹婷, 许振柱, 周广胜. 内蒙古荒漠草原植物叶片功能性状关系及其经济谱分析[J]. 植物生态学报, 2014, 38(10): 1029-1040. |
[10] | 李乐,曾辉,郭大立. 叶脉网络功能性状及其生态学意义[J]. 植物生态学报, 2013, 37(7): 691-698. |
[11] | 侯天文, 金辉, 刘红霞, 罗毅波. 实验室条件下五唇兰菌根真菌专一性研究[J]. 植物生态学报, 2010, 34(12): 1433-1438. |
[12] | 白永飞, 张丽霞, 张焱, 陈佐忠. 内蒙古锡林河流域草原群落植物功能群组成沿水热梯度变化的样带研究[J]. 植物生态学报, 2002, 26(3): 308-316. |
[13] | 白永飞, 李凌浩, 王其兵, 张丽霞, 张焱, 陈佐忠. 锡林河流域草原群落植物多样性和初级生产力沿水热梯度变化的样带研究[J]. 植物生态学报, 2000, 24(6): 667-673. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19