植物生态学报 ›› 2019, Vol. 43 ›› Issue (12): 1021-1035.DOI: 10.17521/cjpe.2019.0122
所属专题: 植物功能性状
• 综述 • 下一篇
收稿日期:
2019-05-24
接受日期:
2019-12-16
出版日期:
2019-12-20
发布日期:
2020-01-19
通讯作者:
王喆
基金资助:
HE Yun-Yu,GUO Shui-Liang,WANG Zhe()
Received:
2019-05-24
Accepted:
2019-12-16
Online:
2019-12-20
Published:
2020-01-19
Contact:
WANG Zhe
Supported by:
摘要:
植物功能性状权衡关系反映了植物在资源获取与分配中采取的不同策略, 是近年来生态学研究的一个热点问题。该综述从研究范围、叶性状、器官和植物类群4个方面入手, 简要介绍植物功能性状关系研究在近10余年是如何在叶经济谱(LES)的基础上逐渐扩展和深入的。1)相关研究拓展到全球更多极端环境与特殊气候地区, 发现在不同的气候环境条件下, 植物叶片功能性状关系相对稳定, 植物种内的功能性状关系已被证实与LES相似; 2)功能性状网络从最初的6个经济性状扩展到叶片的分解、燃烧和水力等性状, 发现叶片的分解速率和可燃性均与叶片形态性状、养分含量等显著相关, 但叶片水力性状与经济性状的关系则取决于所研究的物种及生存环境的水分条件; 3)研究对象从植物叶片拓展到了根、茎、花、种子及植株整体, 叶片的比叶质量与茎的木质密度、种子大小相耦合, 但叶片形态性状与根和花的相关性状却无显著相关关系, 证明这些器官可能是独立进化的; 4) LES可以很好地解释特殊维管植物的生存适应策略: 入侵植物具有较高的资源利用效率和更快的相对生长速率, 在LES中处于“低投入-快速回报”的一端; 食虫植物的叶片特化为捕食器官, 光合作用及生长速率相对较低, 居于LES “高投入-缓慢回报”的另一端, 此外, 无论是最古老的种子植物苏铁属(Cycas)植物, 或是蕨类和变水植物(苔藓和地衣), 其功能性状关系都与LES大致相同。该文梳理了功能性状关系研究的进展脉络, 提出了一些建议, 期望为未来植物功能性状关系研究的选题和发展提供一些参考。
何芸雨, 郭水良, 王喆. 植物功能性状权衡关系的研究进展. 植物生态学报, 2019, 43(12): 1021-1035. DOI: 10.17521/cjpe.2019.0122
HE Yun-Yu, GUO Shui-Liang, WANG Zhe. Research progress of trade-off relationships of plant functional traits. Chinese Journal of Plant Ecology, 2019, 43(12): 1021-1035. DOI: 10.17521/cjpe.2019.0122
中文 Chinese | 英文 English | 缩写 Abbreviation | 参考文献 Reference |
---|---|---|---|
叶寿命 | Leaf life span | LL | |
比叶质量 | Leaf mass per area | LMA | |
最大光合能力 | Maximum assimilation rate | A | |
暗呼吸速率 | Dark respiration rate | Rd | |
比叶面积 | Specific leaf area | SLA | |
叶干物质含量 | Leaf dry matter content | LDMC | |
种子质量 | Seed mass | SM | |
种子数量 | Seed number | SN | |
水力导度 | Hydraulic conductance | K | |
气孔导度 | Stomatal conductance | gs | |
叶脉密度 | Vein length per unit leaf area | VLA | |
气孔密度 | Stomatal density | SD | |
木质密度 | Wood density | WD | |
比根长 | Specific root length | SRL | |
花寿命 | Flower longevity | FL | |
花面积 | Flower area | FA |
表1 植物功能性状术语表
Table 1 Glossary of plant functional traits
中文 Chinese | 英文 English | 缩写 Abbreviation | 参考文献 Reference |
---|---|---|---|
叶寿命 | Leaf life span | LL | |
比叶质量 | Leaf mass per area | LMA | |
最大光合能力 | Maximum assimilation rate | A | |
暗呼吸速率 | Dark respiration rate | Rd | |
比叶面积 | Specific leaf area | SLA | |
叶干物质含量 | Leaf dry matter content | LDMC | |
种子质量 | Seed mass | SM | |
种子数量 | Seed number | SN | |
水力导度 | Hydraulic conductance | K | |
气孔导度 | Stomatal conductance | gs | |
叶脉密度 | Vein length per unit leaf area | VLA | |
气孔密度 | Stomatal density | SD | |
木质密度 | Wood density | WD | |
比根长 | Specific root length | SRL | |
花寿命 | Flower longevity | FL | |
花面积 | Flower area | FA |
[1] | Apgaua DMG, Tng DYP, Cernusak LA, Cheesman AW, Santos RM, Edwards WJ, Laurance SGW ( 2017). Plant functional groups within a tropical forest exhibit different wood functional anatomy. Functional Ecology, 31, 582-591. |
[2] | Atkinson LJ, Campbell CD, Zaragoza-Castells J, Hurry V, Atkin OK ( 2010). Impact of growth temperature on scaling relationships linking photosynthetic metabolism to leaf functional traits. Functional Ecology, 24, 1181-1191. |
[3] | Bakker MA, Carreño-Rocabado G, Poorter L ( 2011). Leaf economics traits predict litter decomposition of tropical plants and differ among land use types. Functional Ecology, 25, 473-483. |
[4] |
Bengtsson F, Granath G, Rydin H ( 2016). Photosynthesis, growth, and decay traits in Sphagnum—A multispecies comparison. Ecology and Evolution, 6, 3325-3341.
DOI URL PMID |
[5] | Blackman CJ, Aspinwall MJ, de Dios VR, Smith RA, Tissue DT ( 2016). Leaf photosynthetic, economics and hydraulic traits are decoupled among genotypes of a widespread species of eucalypt grown under ambient and elevated CO2. Functional Ecology, 30, 1491-1500. |
[6] |
Bucci SJ, Goldstein G, Meinzer FC, Scholz FG, Franco AC, Bustamante M ( 2004). Functional convergence in hydraulic architecture and water relations of tropical savanna trees: From leaf to whole plant. Tree Physiology, 24, 891-899.
DOI URL PMID |
[7] |
Cerabolini BEL, Brusa G, Ceriani RM, de Andreis R, Luzzaro A, Pierce S ( 2010). Can CSR classification be generally applied outside Britain? Plant Ecology, 210, 253-261.
DOI URL |
[8] |
Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE ( 2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12, 351-366.
DOI URL PMID |
[9] | Chen YT, Xu ZZ ( 2014). Review on research of leaf economics spectrum. Chinese Journal of Plant Ecology, 38, 1135-1153. |
[ 陈莹婷, 许振柱 ( 2014). 植物叶经济谱的研究进展. 植物生态学报, 38, 1135-1153.] | |
[10] | Cheng JH, Chu PF, Chen DM, Bai YF ( 2016). Functional correlations between specific leaf area and specific root length along a regional environmental gradient in inner Mongolia grasslands. Functional Ecology, 30, 985-997. |
[11] |
Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pérez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Díaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M ( 2008). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters, 11, 1065-1071.
DOI URL PMID |
[12] | de la Riva EG, Tosto A, Pérez-Ramos IM, Navarro-Fernández CM, Olmo M, Anten NPR, Marañón T, Villar R ( 2016). A plant economics spectrum in Mediterranean forests along environmental gradients: Is there coordination among leaf, stem and root traits? Journal of Vegetation Science, 27, 187-199. |
[13] |
Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Colin Prentice I, Garnier E, Bönisch G, Westoby M, Poorter H, Reich PB, Moles AT, Dickie J, Gillison AN, Zanne AE, Chave J, Joseph Wright S, Sheremetʼev SN, Jactel H, Baraloto C, Cerabolini B, Pierce S, Shipley B, Kirkup D, Casanoves F, Joswig JS, Günther A, Falczuk V, Rüger N, Mahecha MD, Gorné LD ( 2016). The global spectrum of plant form and function. Nature, 529, 167-171.
DOI URL PMID |
[14] |
Drenovsky RE, Grewell BJ, DʼAntonio CM, Funk JL, James JJ, Molinari N, Parker IM, Richards CL ( 2012). A functional trait perspective on plant invasion. Annals of Botany, 110, 141-153.
DOI URL PMID |
[15] | Edwards EJ, Chatelet DS, Sack L, Donoghue MJ ( 2014). Leaf life span and the leaf economic spectrum in the context of whole plant architecture. Journal of Ecology, 102, 328-336. |
[16] |
Ellison AM ( 2006). Nutrient limitation and stoichiometry of carnivorous plants. Plant Biology, 8, 740-747.
DOI URL PMID |
[17] |
Fajardo A, Piper FI, Hoch G ( 2013). Similar variation in carbon storage between deciduous and evergreen treeline species across elevational gradients. Annals of Botany, 112, 623-631.
DOI URL PMID |
[18] | Farnsworth EJ, Ellison AM ( 2008). Prey availability directly affects physiology, growth, nutrient allocation and scaling relationships among leaf traits in 10 carnivorous plant species. Journal of Ecology, 96, 213-221. |
[19] | Feng QH, Shi ZM, Dong LL ( 2008). Response of plant functional traits to environment and its application. Scientia Silvae Sinicae, 44(4), 125-131. |
[ 冯秋红, 史作民, 董莉莉 ( 2008). 植物功能性状对环境的响应及其应用. 林业科学, 44(4), 125-131.] | |
[20] |
Feng XH, Dietze M ( 2013). Scale dependence in the effects of leaf ecophysiological traits on photosynthesis: Bayesian parameterization of photosynthesis models. New Phytologist, 200, 1132-1144.
DOI URL PMID |
[21] |
Fortunel C, Garnier E, Joffre R, Kazakou E, Quested H, Grigulis K, Lavorel S, Ansquer P, Castro H, Cruz P, Doležal J, Eriksson O, Freitas H, Golodets C, Jouany C, Kigel J, Kleyer M, Lehsten V, Lepš J, Meier T, Pakeman R, Papadimitriou M, Papanastasis VP, Quétier F, Robson M, Sternberg M, Theau JP, Thébault A, Zarovali M ( 2009). Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe. Ecology, 90, 598-611.
DOI URL PMID |
[22] | Freschet GT, Cornelissen JHC, van Logtestijn RSP, Aerts R ( 2010). Evidence of the ‘plant economics spectrum’ in a subarctic flora. Journal of Ecology, 98, 362-373. |
[23] |
Fu PL, Jiang YJ, Wang AY, Brodribb TJ, Zhang JL, Zhu SD, Cao KF ( 2012). Stem hydraulic traits and leaf water-stress tolerance are co-ordinated with the leaf phenology of angiosperm trees in an Asian tropical dry karst forest. Annals of Botany, 110, 189-199.
DOI URL PMID |
[24] | Funk JL, Nguyen MA, Standish RJ, Stock WD, Valladares F ( 2017). Global resource acquisition patterns of invasive and native plant species do not hold at the regional scale in Mediterranean type ecosystems. Biological Invasions, 19, 1143-1151. |
[25] | Grootemaat S, Wright IJ, van Bodegom PM, Cornelissen JHC, Cornwell WK ( 2015). Burn or rot: Leaf traits explain why flammability and decomposability are decoupled across species. Functional Ecology, 29, 1486-1497. |
[26] |
Hayes FJ, Buchanan SW, Coleman B, Gordon AM, Reich PB, Thevathasan NV, Wright IJ, Martin AR ( 2019). Intraspecific variation in soy across the leaf economics spectrum. Annals of Botany, 123, 107-120.
DOI URL PMID |
[27] |
He D, Yan ER ( 2018). Size-dependent variations in individual traits and trait scaling relationships within a shade-tolerant evergreen tree species. American Journal of Botany, 105, 1165-1174.
DOI URL PMID |
[28] |
He JS, Wang ZH, Wang XP, Schmid B, Zuo WY, Zhou M, Zheng CY, Wang MF, Fang JY ( 2006). A test of the generality of leaf trait relationships on the Tibetan Plateau. New Phytologist, 170, 835-848.
DOI URL PMID |
[29] | He NP, Liu CC, Zhang JH, Xu L, Yu GR ( 2018). Perspectives and challenges in plant traits: From organs to communities. Acta Ecologica Sinica, 38, 6787-6796. |
[ 何念鹏, 刘聪聪, 张佳慧, 徐丽, 于贵瑞 ( 2018). 植物性状研究的机遇与挑战: 从器官到群落. 生态学报, 38, 6787-6796.] | |
[30] | Heberling JM, Fridley JD ( 2012). Biogeographic constraints on the world-wide leaf economics spectrum. Global Ecology and Biogeography, 21, 1137-1146. |
[31] | Heberling JM, Kichey T, Decocq G, Fridley JD ( 2016). Plant functional shifts in the invaded range: A test with reciprocal forest invaders of Europe and North America. Functional Ecology, 30, 875-884. |
[32] |
Hikosaka K ( 2004). Interspecific difference in the photosynthesis- nitrogen relationship: Patterns, physiological causes, and ecological importance. Journal of Plant Research, 117, 481-494.
DOI URL PMID |
[33] |
Isaac ME, Martin AR, de Melo Virginio Filho E, Rapidel B, Roupsard O, van den Meersche K ( 2017). Intraspecific trait variation and coordination: Root and leaf economics spectra in coffee across environmental gradients. Frontiers in Plant Science, 8, 1196. DOI: 10.3389/fpls.2017.01196.
DOI URL PMID |
[34] |
Ishida A, Nakano T, Yazaki K, Matsuki S, Koike N, Lauenstein DL, Shimizu M, Yamashita N ( 2008). Coordination between leaf and stem traits related to leaf carbon gain and hydraulics across 32 drought-tolerant angiosperms. Oecologia, 156, 193-202.
DOI URL PMID |
[35] | Jie SL, Fan DY, Xie ZQ, Zhang XY, Xiong GM ( 2012). Features of leaf photosynthesis and leaf nutrient traits in reservoir riparian region of Three Gorges Reservoir, China. Acta Ecologica Sinica, 32, 1723-1733. |
[ 揭胜麟, 樊大勇, 谢宗强, 张想英, 熊高明 ( 2012). 三峡水库消落带植物叶片光合与营养性状特征. 生态学报, 32, 1723-1733.] | |
[36] | Jin Y, Wang CK ( 2015). Trade-offs between plant leaf hydraulic and economic traits. Chinese Journal of Plant Ecology, 39, 1021-1032. |
[ 金鹰, 王传宽 ( 2015). 植物叶片水力与经济性状权衡关系的研究进展. 植物生态学报, 39, 1021-1032.] | |
[37] |
Karagatzides JD, Ellison AM ( 2009). Construction costs, payback times, and the leaf economics of carnivorous plants. American Journal of Botany, 96, 1612-1619.
DOI URL PMID |
[38] |
Karst AL, Lechowicz MJ ( 2007). Are correlations among foliar traits in ferns consistent with those in the seed plants? New Phytologist, 173, 306-312.
DOI URL PMID |
[39] |
Kattge J, Díaz S, Lavorel S, Prentice IC, Leadley P, Bönisch G, Garnier E, Westoby M, Reich PB, Wright IJ, Cornelissen JHC, Violle C, Harrison SP, van Bodegom PM, Reichstein M, Enquist BJ, Soudzilovskaia NA, Ackerly DD, Anand M, Atkin O, Bahn M, Baker TR, Baldocchi D, Bekker R, Blanco CC, Blonder B, Bond WJ, Bradstock R, Bunker DE, Casanoves F, Cavender-Bares J, Chambers JQ, Chapin FS, Chave J, Coomes D, Cornwell WK, Craine JM, Dobrin BH, Duarte L, Durka W, Elser J, Esser G, Estiarte M, Fagan WF, Fang J, Fernández-Méndez F, Fidelis A, Finegan B, Flores O, Ford H, Frank D, Freschet GT, Fyllas NM, Gallagher RV, Green WA, Gutierrez AG, Hickler T, Higgins SI, Hodgson JG, Jalili A, Jansen S, Joly CA, Kerkhoff AJ, Kirkup D, Kitajima K, Kleyer M, Klotz S, Knops JMH, Kramer K, Kühn I, Kurokawa H, Laughlin D, Lee TD, Leishman M, Lens F, Lenz T, Lewis SL, Lloyd J, Llusià J, Louault F, Ma S, Mahecha MD, Manning P, Massad T, Medlyn BE, Messier J, Moles AT, Müller SC, Nadrowski K, Naeem S, Niinemets Ü, Nöllert S, Nüske A, Ogaya R, Oleksyn J, Onipchenko VG, Onoda Y, Ordoñez J, Overbeck G, Ozinga WA, Patiño S, Paula S, Pausas JG, Peñuelas J, Phillips OL, Pillar V, Poorter H, Poorter L, Poschlod P, Prinzing A, Proulx R, Rammig A, Reinsch S, Reu B, Sack L, Salgado-Negret B, Sardans J, Shiodera S, Shipley B, Siefert A, Sosinski E, Soussana JF, Swaine E, Swenson N, Thompson K, Thornton P, Waldram M, Weiher E, White M, White S, Wright SJ, Yguel B, Zaehle S, Zanne AE, Wirth C ( 2011). TRY—A global database of plant traits. Global Change Biology, 17, 2905-2935.
DOI URL |
[40] | Kleyer M, Minden V ( 2015). Why functional ecology should consider all plant organs: An allocation-based perspective. Basic and Applied Ecology, 16, 1-9. |
[41] | Klimešová J, Nobis MP, Herben T ( 2016). Links between shoot and plant longevity and plant economics spectrum: Environmental and demographic implications. Perspectives in Plant Ecology, Evolution and Systematics, 22, 55-62. |
[42] | Kong DL, Wang JJ, Kardol P, Wu HF, Zeng H, Deng XB, Deng Y ( 2016). Economic strategies of plant absorptive roots vary with root diameter. Biogeosciences, 13, 415-424. |
[43] | Kraft TS, Wright SJ, Turner I, Lucas PW, Oufiero CE, Nur Supardi Noor M, Sun IF, Dominy NJ ( 2015). Seed size and the evolution of leaf defences. Journal of Ecology, 103, 1057-1068. |
[44] | Laing CG, Granath G, Belyea LR, Allton KE, Rydin H ( 2014). Tradeoffs and scaling of functional traits in Sphagnum as drivers of carbon cycling in peatlands. Oikos, 123, 817-828. |
[45] |
Leishman MR, Haslehurst T, Ares A, Baruch Z ( 2007). Leaf trait relationships of native and invasive plants: Community- and global-scale comparisons. New Phytologist, 176, 635-643.
DOI URL PMID |
[46] | Li FL, Hu H, Luke McCormack M, Feng DF, Liu X, Bao WK ( 2019). Community-level economics spectrum of fine-roots driven by nutrient limitations in subalpine forests. Journal of Ecology, 107, 1238-1249. |
[47] |
Li L, McCormack ML, Ma CG, Kong DL, Zhang Q, Chen XY, Zeng H, Niinemets Ü, Guo DL ( 2015). Leaf economics and hydraulic traits are decoupled in five species-rich tropical-subtropical forests. Ecology Letters, 18, 899-906.
DOI URL PMID |
[48] |
Liese R, Alings K, Meier IC ( 2017). Root branching is a leading root trait of the plant economics spectrum in temperate trees. Frontiers in Plant Science, 8, 315. DOI: 10.3389/ fpls.2017.00315.
DOI URL PMID |
[49] |
Lloyd J, Bloomfield K, Domingues TF, Farquhar GD ( 2013). Photosynthetically relevant foliar traits correlating better on a mass vs an area basis: Of ecophysiological relevance or just a case of mathematical imperatives and statistical quicksand? New Phytologist, 199, 311-321.
DOI URL PMID |
[50] |
Luke McCormack M, Adams TS, Smithwick EAH, Eissenstat DM ( 2012). Predicting fine root lifespan from plant functional traits in temperate trees. New Phytologist, 195, 823-831.
DOI URL PMID |
[51] |
Luo YK, Hu HF, Zhao MY, Li H, Liu SS, Fang JY ( 2019). Latitudinal pattern and the driving factors of leaf functional traits in 185 shrub species across eastern China. Journal of Plant Ecology, 12, 67-77.
DOI URL |
[52] | Ma ZQ, Guo DL, Xu XL, Lu MZ, Bardgett RD, Eissenstat DM, McCormack ML, Hedin LO ( 2018). Evolutionary history resolves global organization of root functional traits. Nature, 556, 135. |
[53] |
Martin AR, Hale CE, Cerabolini BEL, Cornelissen JHC, Craine J, Gough WA, Kattge J, Tirona CKF ( 2018). Inter- and intraspecific variation in leaf economic traits in wheat and maize. AoB Plants, 10, ply006. DOI: 10.1093/aobpla/ply006.
DOI URL PMID |
[54] | Martin AR, Rapidel B, Roupsard O, van den Meersche K, de Melo Virginio Filho E, Barrios M, Isaac ME ( 2017). Intraspecific trait variation across multiple scales: The leaf economics spectrum in coffee. Functional Ecology, 31, 604-612. |
[55] |
Mason NWH, Frazao C, Buxton RP, Richardson SJ ( 2016). Fire form and function: Evidence for exaptive flammability in the New Zealand flora. Plant Ecology, 217, 645-659.
DOI URL |
[56] | Mazziotta A, Granath G, Rydin H, Bengtsson F, Norberg J ( 2019). Scaling functional traits to ecosystem processes: Towards a mechanistic understanding in peat mosses. Journal of Ecology, 107, 843-859. |
[57] | Meng TT, Ni J, Wang GH ( 2007). Plant functional traits, environments and ecosystem functioning. Journal of Plant Ecology (Chinese Version), 31, 150-165. |
[ 孟婷婷, 倪健, 王国宏 ( 2007). 植物功能性状与环境和生态系统功能. 植物生态学报, 31, 150-165.] | |
[58] |
Messier J, McGill BJ, Enquist BJ, Lechowicz MJ ( 2017). Trait variation and integration across scales: Is the leaf economic spectrum present at local scales? Ecography, 40, 685-697.
DOI URL |
[59] | Nash TH (2008). Lichen Biology. Cambridge University Press, Cambridge, UK. 1-8. |
[60] |
Niinemets Ü ( 2015). Is there a species spectrum within the world-wide leaf economics spectrum? Major variations in leaf functional traits in the Mediterranean sclerophyll Quercus ilex. New Phytologist, 205, 79-96.
DOI URL PMID |
[61] | Niinemets Ü, Tobias M (2014). Photosynthesis in bryophytes and early land plants. In: Hanson D, Rice S eds. Photosynthesis in Bryophytes and Early Land Plants. Springer, Dordrecht. 151-171. |
[62] |
Osnas JLD, Lichstein JW, Reich PB, Pacala SW ( 2013). Global leaf trait relationships: Mass, area, and the leaf economics spectrum. Science, 340, 741-744.
DOI URL |
[63] |
Osunkoya OO, Bayliss D, Panetta FD, Vivian-Smith G ( 2010). Leaf trait co-ordination in relation to construction cost, carbon gain and resource-use efficiency in exotic invasive and native woody vine species. Annals of Botany, 106, 371-380.
DOI URL PMID |
[64] |
Osunkoya OO, Daud SD, Wimmer FL ( 2008). Longevity, lignin content and construction cost of the assimilatory organs of Nepenthes species. Annals of Botany, 102, 845-853.
DOI URL PMID |
[65] |
Osunkoya OO, Muntassir NA ( 2017). Comparative anatomy of the assimilatory organs of Nepenthes species. Australian Journal of Botany, 65, 67-79.
DOI URL PMID |
[66] |
Palmqvist K ( 2000). Carbon economy in lichens. New Phytologist, 148, 11-36.
DOI URL |
[67] |
Palmqvist K, Dahlman L, Valladares F, Tehler A, Sancho LG, Mattsson JE ( 2002). CO2 exchange and thallus nitrogen across 75 contrasting lichen associations from different climate zones. Oecologia, 133, 295-306.
DOI URL PMID |
[68] |
Pierce S, Bottinelli A, Bassani I, Ceriani RM, Cerabolini BEL ( 2014). How well do seed production traits correlate with leaf traits, whole-plant traits and plant ecological strategies? Plant Ecology, 215, 1351-1359.
DOI URL |
[69] |
Poorter H, Lambers H, Evans JR ( 2014). Trait correlation networks: A whole-plant perspective on the recently criticized leaf economic spectrum. New Phytologist, 201, 378-382.
DOI URL PMID |
[70] |
Prentice IC, Dong N, Gleason SM, Maire V, Wright IJ ( 2014). Balancing the costs of carbon gain and water transport: Testing a new theoretical framework for plant functional ecology. Ecology Letters, 17, 82-91.
DOI URL |
[71] |
Reich PB ( 2014). The world-wide ‘fast-slow’ plant economics spectrum: A traits manifesto. Journal of Ecology, 102, 275-301.
DOI URL |
[72] |
Reich PB, Tjoelker MG, Pregitzer KS, Wright IJ, Oleksyn J, MacHado JL ( 2008). Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. Ecology Letters, 11, 793-801.
DOI URL PMID |
[73] |
Rice SK, Aclander L, Hanson DT ( 2008). Do bryophyte shoot systems function like vascular plant leaves or canopies? Functional trait relationships in Sphagnum mosses (Sphagnaceae). American Journal of Botany, 95, 1366-1374.
DOI URL PMID |
[74] | Rice SK, Hanson DT, Portman Z (2013). Structural and functional analyses of bryophyte canopies. In: Hanson DT, Rice SK eds. Photosynthesis in Bryophytes and Early Land Plants. 37, 173-185. |
[75] |
Rodríguez-Gallego C, Navarro T, Meerts P ( 2015). A comparative study of leaf trait relationships in coastal dunes in southern Spain. Plant Ecology and Evolution, 148, 57-67.
DOI URL |
[76] |
Sack L, Scoffoni C, John GP, Poorter H, Mason CM, Mendez-Alonzo R, Donovan LA ( 2013). How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis. Journal of Experimental Botany, 64, 4053-4080.
DOI URL |
[77] |
Santiago LS ( 2007). Extending the leaf economics spectrum to decomposition: Evidence from a tropical forest. Ecology, 88, 1126-1131.
DOI URL PMID |
[78] |
Santiago LS, Wright SJ ( 2007). Leaf functional traits of tropical forest plants in relation to growth form. Functional Ecology, 21, 19-27.
DOI URL PMID |
[79] |
Schneider DC ( 2001). The rise of the concept of scale in ecology: The concept of scale is evolving from verbal expression to quantitative expression. Bioscience, 51, 545-553.
DOI URL |
[80] |
Schwilk DW, Caprio AC ( 2011). Scaling from leaf traits to fire behaviour: Community composition predicts fire severity in a temperate forest. Journal of Ecology, 99, 970-980.
DOI URL |
[81] |
Shipley B, Lechowicz MJ, Wright I, Reich PB ( 2006). Fundamental trade-offs generating the worldwide leaf economics spectrum. Ecology, 87, 535-541.
DOI URL PMID |
[82] |
Simonin KA, Limm EB, Dawson TE ( 2012). Hydraulic conductance of leaves correlates with leaf lifespan: Implications for lifetime carbon gain. New Phytologist, 193, 939-947.
DOI URL |
[83] | Smith AJE ( 2012). Bryophyte Ecology. Springer Science & Business Media, Dordrecht. 45-58. |
[84] |
Song L, Zhang YJ, Chen X, Li S, Lu HZ, Wu CS, Tan ZH, Liu WY, Shi XM ( 2015). Water relations and gas exchange of fan bryophytes and their adaptations to microhabitats in an Asian subtropical montane cloud forest. Journal of Plant Research, 128, 573-584.
DOI URL PMID |
[85] |
Tan XF, Guo X, Guo WH, Liu SN, Du N ( 2018). Invasive Rhus typhina invests more in height growth and traits associated with light acquisition than do native and non-invasive alien shrub species. Trees, 32, 1103-1112.
DOI URL |
[86] |
Thomson FJ, Moles AT, Auld TD, Kingsford RT ( 2011). Seed dispersal distance is more strongly correlated with plant height than with seed mass. Journal of Ecology, 99, 1299-1307.
DOI URL |
[87] |
Tosens T, Nishida K, Gago J, Coopman RE, Cabrera HM, Carriqui M, Laanisto L, Morales L, Nadal M, Rojas R, Talts E, Tomas M, Hanba Y, Niinemets Ü, Flexas J ( 2016). The photosynthetic capacity in 35 ferns and fern allies: Mesophyll CO2 diffusion as a key trait. New Phytologist, 209, 1576-1590.
DOI URL PMID |
[88] |
van de Weg MJ, Meir P, Grace J, Atkin OK ( 2009). Altitudinal variation in leaf mass per unit area, leaf tissue density and foliar nitrogen and phosphorus content along an Amazon-Andes gradient in Peru. Plant Ecology & Diversity, 2, 243-254.
DOI URL |
[89] |
Venable DL, Rees M ( 2009). The scaling of seed size. Journal of Ecology, 97, 27-31.
DOI URL |
[90] |
Villagra M, Campanello PI, Bucci SJ, Goldstein G ( 2013). Functional relationships between leaf hydraulics and leaf economic traits in response to nutrient addition in subtropical tree species. Tree Physiology, 33, 1308-1318.
DOI URL PMID |
[91] |
Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E ( 2007). Let the concept of trait be functional! Oikos, 116, 882-892.
DOI URL |
[92] |
Wagner S, Zotz G, Allen NS, Bader MY ( 2013). Altitudinal changes in temperature responses of net photosynthesis and dark respiration in tropical bryophytes. Annals of Botany, 111, 455-465.
DOI URL |
[93] |
Waite M, Sack L ( 2010). How does moss photosynthesis relate to leaf and canopy structure? Trait relationships for 10 Hawaiian species of contrasting light habitats. New Phytologist, 185, 156-172.
DOI URL PMID |
[94] |
Wang Z, Bader MY ( 2018). Associations between shoot-level water relations and photosynthetic responses to water and light in 12 moss species. AoB Plants, 10, ply034. DOI: 10.1093/apbpla/ply034.
DOI URL PMID |
[95] |
Wang Z, Bao WK, Feng DF, Lin HH ( 2014). Functional trait scaling relationships across 13 temperate mosses growing in wintertime. Ecological Research, 29, 629-639.
DOI URL |
[96] |
Wang Z, Liu X, Bader MY, Feng DF, Bao WK ( 2017). The “plant economic spectrum” in bryophytes, a comparative study in subalpine forest. American Journal of Botany, 104, 261-270.
DOI URL PMID |
[97] |
Wang Z, Liu X, Bao WK ( 2016). Higher photosynthetic capacity and different functional trait scaling relationships in erect bryophytes compared with prostrate species. Oecologia, 180, 359-369.
DOI URL PMID |
[98] |
Westoby M, Reich PB, Wright IJ ( 2013). Understanding ecological variation across species: Area-based vs mass-based expression of leaf traits. New Phytologist, 199, 322-323.
DOI URL PMID |
[99] |
Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Groom PK, Hikosaka K, Lee W, Lusk CH, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Warton DI, Westoby M ( 2005). Modulation of leaf economic traits and trait relationships by climate. Global Ecology and Biogeography, 14, 411-421.
DOI URL PMID |
[100] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R ( 2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
DOI URL PMID |
[101] |
Xiang S, Reich PB, Sun SC, Atkin OK ( 2013). Contrasting leaf trait scaling relationships in tropical and temperate wet forest species. Functional Ecology, 27, 522-534.
DOI URL |
[102] |
Yin QL, Wang L, Lei ML, Dang H, Quan JX, Tian TT, Chai YF, Yue M ( 2018). The relationships between leaf economics and hydraulic traits of woody plants depend on water availability. Science of the Total Environment, 621, 245-252.
DOI URL PMID |
[103] |
Zhang FP, Yang YJ, Yang QY, Zhang W, Brodribb TJ, Hao GY, Hu H, Zhang SB ( 2017 a). Floral mass per area and water maintenance traits are correlated with floral longevity in Paphiopedilum(Orchidaceae). Frontiers in Plant Science, 8, 501. DOI: 10.3389/fpls.2017.00501.
DOI URL PMID |
[104] |
Zhang YJ, Cao KF, Sack L, Li N, Wei XM, Goldstein G ( 2015). Extending the generality of leaf economic design principles in the cycads, an ancient lineage. New Phytologist, 206, 817-829.
DOI URL PMID |
[105] |
Zhang YJ, Sack L, Cao KF, Wei XM, Li N ( 2017 b). Speed versus endurance tradeoff in plants: Leaves with higher photosynthetic rates show stronger seasonal declines. Scientific Reports, 7, 42085. DOI: 10.1038/srep42085.
DOI URL PMID |
[106] |
Zhu SD, Li RH, Song J, He PC, Liu H, Berninger F, Ye Q ( 2016). Different leaf cost-benefit strategies of ferns distributed in contrasting light habitats of sub-tropical forests. Annals of Botany, 117, 497-506.
DOI URL PMID |
[1] | 文佳 张新娜 王娟 赵秀海 张春雨. 性状调节幼苗存活率对邻体竞争和环境的响应 [J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 邓蓓 王晓锋 廖君. 环境胁迫影响三峡库区消落带草本和木本植物生理生态特征的整合分析[J]. 植物生态学报, 2024, 48(5): 623-637. |
[4] | 徐子怡 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡[J]. 植物生态学报, 2024, 48(5): 612-622. |
[5] | 常晨晖 朱彪 朱江玲 吉成均 杨万勤. 森林粗木质残体分解研究进展[J]. 植物生态学报, 2024, 48(5): 541-560. |
[6] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[7] | 盘远方, 潘良浩, 邱思婷, 邱广龙, 苏治南, 史小芳, 范航清. 中国沿海红树林树高变异与环境适应机制[J]. 植物生态学报, 2024, 48(4): 483-495. |
[8] | 范宏坤, 曾涛, 金光泽, 刘志理. 小兴安岭不同生长型阔叶植物叶性状变异及权衡[J]. 植物生态学报, 2024, 48(3): 364-376. |
[9] | 韩大勇, 李海燕, 张维, 杨允菲. 松嫩草地全叶马兰种群分株养分的季节运转及衰老过程[J]. 植物生态学报, 2024, 48(2): 192-200. |
[10] | 刘聪聪, 何念鹏, 李颖, 张佳慧, 闫镤, 王若梦, 王瑞丽. 宏观生态学中的植物功能性状研究: 历史与发展趋势[J]. 植物生态学报, 2024, 48(1): 21-40. |
[11] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[12] | 袁雅妮, 周哲, 陈彬洲, 郭垚鑫, 岳明. 基于功能性状的锐齿槲栎林共存树种生态策略差异[J]. 植物生态学报, 2023, 47(9): 1270-1277. |
[13] | 李安艳, 黄先飞, 田源斌, 董继兴, 郑菲菲, 夏品华. 贵州草海草-藻型稳态转换过程中叶绿素a的变化及其影响因子[J]. 植物生态学报, 2023, 47(8): 1171-1181. |
[14] | 孙佳慧, 史海兰, 陈科宇, 纪宝明, 张静. 植物细根功能性状的权衡关系研究进展[J]. 植物生态学报, 2023, 47(8): 1055-1070. |
[15] | 赵孟娟, 金光泽, 刘志理. 阔叶红松林3种典型蕨类叶功能性状的垂直变异[J]. 植物生态学报, 2023, 47(8): 1131-1143. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19