植物生态学报 ›› 2025, Vol. 49 ›› Issue (2): 282-294.DOI: 10.17521/cjpe.2024.0050 cstr: 32100.14.cjpe.2024.0050
李姝雯1, 汤璐瑶1, 张博纳1, 叶琳峰1, 童金莲1, 谢江波1,2, 李彦1,2, 王忠媛1,2,*()
收稿日期:
2024-02-19
接受日期:
2024-05-27
出版日期:
2025-02-20
发布日期:
2025-02-20
通讯作者:
*王忠媛: (wangzhongyuan2014@163.com)基金资助:
LI Shu-Wen1, TANG Lu-Yao1, ZHANG Bo-Na1, YE Lin-Feng1, TONG Jin-Lian1, XIE Jiang-Bo1,2, LI Yan1,2, WANG Zhong-Yuan1,2,*()
Received:
2024-02-19
Accepted:
2024-05-27
Online:
2025-02-20
Published:
2025-02-20
Supported by:
摘要: 伴随着降水特征变化(如干旱、干季延长或干湿交替加剧), 与之相耦合的植物功能性状也将随之发生变异, 继而引发植物功能性状的协作关系(单个器官内或多个器官间)发生相应调整, 以此为基础的植物行为和适应策略随之改变。但对这一过程背后的数量关系和作用机制仍然不清楚。以功能性状为切入点, 沿降水梯度带跨区域原位测量共有种对气候环境的特异性反应, 量化这些特异性反应背后的性状-环境关系, 阐明其调控机制, 揭示共有种功能性状及其适应策略的区域分异规律, 将为气候治理提供数据支撑和坚实的科学基础。该研究在中国东南至西北的降水梯度带上选取10个样地, 以样带共有种榆树(Ulmus pumila)为实验对象, 测量其枝和叶共28个功能性状。分析了榆树枝和叶性状以及性状间权衡关系的区域分异规律, 进一步量化不同器官(枝和叶)间功能性状协作关系沿降水梯度带的区域分异, 揭示了榆树对不同水分环境的适应策略。结果表明: (1)在湿润区, 榆树枝条具有最大的输水效率(Ks)和最小的栓塞抗性(P50); 随降水量减少, 叶片厚度、叶组织紧密度增加, 榆树的抗旱能力增强。(2)在整个降水梯度带上, 榆树同一器官(枝)内及不同器官(枝和叶)间均存在效率-安全权衡; 但在区域尺度上, 这种权衡关系随降水量的减少而解耦。(3)枝和叶功能性状相关分析表明: 在整个降水梯度带上, 最大净光合速率(Pn)和比叶质量(LMA)均与Ks负相关, 与P50正相关。榆树通过枝水分运输能力和叶功能性状(叶片厚度和气孔打开比率)协同调控光合能力, 枝和叶功能性状的调整与协作是榆树适应不同水分环境的重要机制。
李姝雯, 汤璐瑶, 张博纳, 叶琳峰, 童金莲, 谢江波, 李彦, 王忠媛. 降水梯度带榆树枝叶协作关系的区域分异规律. 植物生态学报, 2025, 49(2): 282-294. DOI: 10.17521/cjpe.2024.0050
LI Shu-Wen, TANG Lu-Yao, ZHANG Bo-Na, YE Lin-Feng, TONG Jin-Lian, XIE Jiang-Bo, LI Yan, WANG Zhong-Yuan. Regional differentiation of cooperative relationships between Ulmus pumila branches and leaves along precipitation gradients. Chinese Journal of Plant Ecology, 2025, 49(2): 282-294. DOI: 10.17521/cjpe.2024.0050
样点 Site | 缩写 Abbreviation | 经度 Longitude (° E) | 纬度 Latitude (°N) | 海拔 Altitude (m) | 年平均气温 Mean annual air temperature (℃) | 平均年降水量 Mean annual precipitation (mm) |
---|---|---|---|---|---|---|
浙江天目山 Tianmushan, Zhejiang | TMS | 119.44 | 30.34 | 1 142.00 | 15.30 | 1 390.00 |
河南鸡公山 Jigongshan, Henan | JGS | 114.09 | 31.87 | 260.00 | 15.20 | 1 118.00 |
河南宝天曼 Baotianman, Henan | BTM | 111.93 | 33.52 | 1 426.50 | 14.00 | 823.30 |
河南济源 Jiyuan, Henan | JY | 112.50 | 35.05 | 384.75 | 9.60 | 614.50 |
陕西安塞 Ansai, Shaanxi | AS | 109.32 | 36.86 | 1 218.00 | 7.90 | 534.00 |
宁夏固原 Guyuan, Ningxia | GY | 106.40 | 35.97 | 1 831.00 | 6.80 | 495.70 |
宁夏沙坡头 Shapotou, Ningxia | SPT | 104.99 | 37.46 | 1 247.00 | 6.60 | 186.00 |
甘肃民勤 Minqin, Gansu | MQ | 103.14 | 38.66 | 1 376.00 | 7.90 | 113.20 |
甘肃瓜州 Guazhou, Gansu | GZ | 95.78 | 40.50 | 1 139.00 | 7.60 | 54.40 |
新疆阜康 Fukang, Xinjiang | FK | 87.93 | 44.29 | 465.00 | 6.00 | 158.80 |
表1 降水梯度带上榆树各样点基本特征
Table 1 Basic characteristics of each sample site of Ulmus pumila along the precipitation gradient zone
样点 Site | 缩写 Abbreviation | 经度 Longitude (° E) | 纬度 Latitude (°N) | 海拔 Altitude (m) | 年平均气温 Mean annual air temperature (℃) | 平均年降水量 Mean annual precipitation (mm) |
---|---|---|---|---|---|---|
浙江天目山 Tianmushan, Zhejiang | TMS | 119.44 | 30.34 | 1 142.00 | 15.30 | 1 390.00 |
河南鸡公山 Jigongshan, Henan | JGS | 114.09 | 31.87 | 260.00 | 15.20 | 1 118.00 |
河南宝天曼 Baotianman, Henan | BTM | 111.93 | 33.52 | 1 426.50 | 14.00 | 823.30 |
河南济源 Jiyuan, Henan | JY | 112.50 | 35.05 | 384.75 | 9.60 | 614.50 |
陕西安塞 Ansai, Shaanxi | AS | 109.32 | 36.86 | 1 218.00 | 7.90 | 534.00 |
宁夏固原 Guyuan, Ningxia | GY | 106.40 | 35.97 | 1 831.00 | 6.80 | 495.70 |
宁夏沙坡头 Shapotou, Ningxia | SPT | 104.99 | 37.46 | 1 247.00 | 6.60 | 186.00 |
甘肃民勤 Minqin, Gansu | MQ | 103.14 | 38.66 | 1 376.00 | 7.90 | 113.20 |
甘肃瓜州 Guazhou, Gansu | GZ | 95.78 | 40.50 | 1 139.00 | 7.60 | 54.40 |
新疆阜康 Fukang, Xinjiang | FK | 87.93 | 44.29 | 465.00 | 6.00 | 158.80 |
性状 Trait | 缩写 Abbreviation | 单位 Unit | |
---|---|---|---|
叶性状 Leaf trait | 最大净光合速率 Maximum net photosynthetic rate | Pn 1) | µmol·m-2·s-1 |
单位质量最大净光合速率 Maximum net photosynthetic rate per unit leaf mass | Amass 1) | µmol·g-1·s-1 | |
可操作气孔导度 Maximized operational stomatal conductance | Gop 1) | mol·m-2·s-1 | |
解剖学最大气孔导度 Anatomical maximum stomatal conductanc | Gsmax 1) | mol·m-2·s-1 | |
气孔打开比率 Stomatal opening ratio during gas exchange at light saturated conditions | Gratio 1) | % | |
水分利用效率 Water use efficiency | WUE 1) | % | |
膨压损失点叶水势 Turgor pressure loss point leaf water potential | Ψtlp 1) | MPa | |
气孔大小 Stomatal size | Ss 1) | µm2 | |
气孔密度 Stomatal density | Sd 1) | pore·mm-2 | |
气孔面积分数 Stomatal area fraction | Sf 1) | % | |
比叶质量 Leaf mass per area | LMA 1) | g·m-2 | |
叶脉密度 Vein density | Dv 1) | mm·mm-2 | |
叶片厚度 Leaf thickness | LT | µm | |
上表皮厚度 Upper tissue thickness | UET | µm | |
下表皮厚度 Lower tissue thickness | LET | µm | |
栅栏组织厚度 Palisade tissue thickness | PMT | µm | |
海绵组织厚度 Sponge tissue thickness | SMT | µm | |
栅栏组织厚度/海绵组织厚度 Ratio of palisade tissue thickness to sponge tissue thickness | PMT/SMT | ||
组织紧密度 Leaf tissue structure tightness | CTR | ||
组织疏松度 Looseness of leaf tissue structure | SR | ||
枝性状 Branch trait | 胡伯尔值 Huber value | Hv 1) | 103 mm2·cm-2 |
导管直径 Vessel diameter | D | µm | |
导管密度 Vessel density | Nv | pore·µm-2 | |
导管壁厚 Double thickness of vessel wall | Tw | µm | |
导管厚度跨度比 Thickness-to-span ratio | Ttob | 103 | |
木质部密度 Wood density | WD | g·cm-3 | |
比导率 Specific hydraulic conductivity | Ks | kg·m-1·s-1·MPa-1 | |
导水损失率为50%时水势 Water potential causing 50% loss of conductivity | P50 | MPa |
表2 降水梯度带上榆树相关性状、缩写及单位
Table 2 Relevant traits, abbreviations, and units of Ulmus pumila along the precipitation gradient zone
性状 Trait | 缩写 Abbreviation | 单位 Unit | |
---|---|---|---|
叶性状 Leaf trait | 最大净光合速率 Maximum net photosynthetic rate | Pn 1) | µmol·m-2·s-1 |
单位质量最大净光合速率 Maximum net photosynthetic rate per unit leaf mass | Amass 1) | µmol·g-1·s-1 | |
可操作气孔导度 Maximized operational stomatal conductance | Gop 1) | mol·m-2·s-1 | |
解剖学最大气孔导度 Anatomical maximum stomatal conductanc | Gsmax 1) | mol·m-2·s-1 | |
气孔打开比率 Stomatal opening ratio during gas exchange at light saturated conditions | Gratio 1) | % | |
水分利用效率 Water use efficiency | WUE 1) | % | |
膨压损失点叶水势 Turgor pressure loss point leaf water potential | Ψtlp 1) | MPa | |
气孔大小 Stomatal size | Ss 1) | µm2 | |
气孔密度 Stomatal density | Sd 1) | pore·mm-2 | |
气孔面积分数 Stomatal area fraction | Sf 1) | % | |
比叶质量 Leaf mass per area | LMA 1) | g·m-2 | |
叶脉密度 Vein density | Dv 1) | mm·mm-2 | |
叶片厚度 Leaf thickness | LT | µm | |
上表皮厚度 Upper tissue thickness | UET | µm | |
下表皮厚度 Lower tissue thickness | LET | µm | |
栅栏组织厚度 Palisade tissue thickness | PMT | µm | |
海绵组织厚度 Sponge tissue thickness | SMT | µm | |
栅栏组织厚度/海绵组织厚度 Ratio of palisade tissue thickness to sponge tissue thickness | PMT/SMT | ||
组织紧密度 Leaf tissue structure tightness | CTR | ||
组织疏松度 Looseness of leaf tissue structure | SR | ||
枝性状 Branch trait | 胡伯尔值 Huber value | Hv 1) | 103 mm2·cm-2 |
导管直径 Vessel diameter | D | µm | |
导管密度 Vessel density | Nv | pore·µm-2 | |
导管壁厚 Double thickness of vessel wall | Tw | µm | |
导管厚度跨度比 Thickness-to-span ratio | Ttob | 103 | |
木质部密度 Wood density | WD | g·cm-3 | |
比导率 Specific hydraulic conductivity | Ks | kg·m-1·s-1·MPa-1 | |
导水损失率为50%时水势 Water potential causing 50% loss of conductivity | P50 | MPa |
图1 榆树枝叶性状沿降水梯度的回归分析(平均值±标准误)。各研究点缩写见表1; 性状缩写见表2。NS, 无相关关系。
Fig. 1 Regression analysis of branches and leaves traits of Ulmus pumila along the precipitation gradient (mean ± SE). Abbreviations of each research site are shown in Table 1, and abbreviations of traits are shown in Table 2. NS, no significant correlation.
图2 榆树枝叶性状在不同干湿区的变化(平均值±标准误)。不同大写字母表示不同区域间差异显著(p < 0.05)。其中, 叶水力、光合、气孔等13个性状在不同干湿区的变化已在发表文章(Xie et al., 2022, Fig. 3)中展示。
Fig. 2 Changes of branches and leaves traits of Ulmus pumila across different wet and dry regions (mean ± SE). Different uppercase letters indicated significant difference in different regions (p < 0.05). Among them, the changes of 13 traits such as leaf hydraulics, photosynthesis, and stomata from humid to arid areas have been shown in a published article (Xie et al., 2022, Fig. 3). Abbreviations of traits are shown in Table 2.
图3 榆树功能性状的变异系数(A)、嵌套方差分析(B)、主成分(PC)分析(C)。主成分分析的箱线图说明不同区域间的差异, 不同大写字母表示不同区域间差异显著(p < 0.05)。各研究性状的缩写见表2。
Fig. 3 Coefficient of variation (A), variance components of traits based on nested ANOVAs (B) and principal component (PC) analysis (C) of traits in Ulmus pumila. Box plots from PC analysis illustrate the differences in different regions, different uppercase letters indicated significant difference in different regions (p < 0.05). Abbreviations of traits are shown in Table 2.
图4 样带整体及不同干湿区榆树枝叶互作网络。各研究性状的缩写见表2。
Fig. 4 Transect and the interaction network of branches and leaves across a gradient from humid to arid regions of Ulmus pumila. Abbreviations of the analyzed traits are shown in Table 2.
图5 榆树枝叶性状间的关系(平均值±标准误)。不同区域的拟合采用所有数据散点, 各研究点的缩写见表1, 各研究性状的缩写见表2。NS, 无相关关系。
Fig. 5 Relationship between branches and leaves traits of Ulmus pumila (mean ± SE). Data from all sites were used to model variations across different regions. The abbreviations of the studied sites are shown in Table 1, and the abbreviations of the studied traits are shown in Table 2. NS, no significant correlation.
[1] | Bauman D, Fortunel C, Delhaye G, Malhi Y, Cernusak LA, Bentley LP, Rifai SW, Aguirre-Gutiérrez J, Menor IO, Phillips OL, McNellis BE, Bradford M, Laurance SGW, Hutchinson MF, Dempsey R, et al. (2022). Tropical tree mortality has increased with rising atmospheric water stress. Nature, 608, 528-533. |
[2] | Chave J (2013). The problem of pattern and scale in ecology: What have we learned in 20 years? Ecology Letters, 16, 4-16. |
[3] | Chen ZC, Jiang LN, Feng JX, Wan XC (2018). Progress and controversy of xylem embolism determination techniques in woody plants. Scientia Silvae Sinicae, 54(5), 143-151. |
[陈志成, 姜丽娜, 冯锦霞, 万贤崇 (2018). 木本植物木质部栓塞测定技术的争议与进展. 林业科学, 54(5), 143-151.] | |
[4] | Choat B, Brodribb TJ, Brodersen CR, Duursma RA, López R, Medlyn BE (2018). Triggers of tree mortality under drought. Nature, 558, 531-539. |
[5] | Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martínez-Vilalta J, Mayr S, et al. (2012). Global convergence in the vulnerability of forests to drought. Nature, 491, 752-755. |
[6] | Du BM, Zhu YH, Kang HZ, Liu CJ (2021). Spatial variations in stomatal traits and their coordination with leaf traits in Quercus variabilis across Eastern Asia. Science of the Total Environment, 789, 147757. DOI: 10.1016/j.scitotenv.2021.147757. |
[7] | Fraser LH, Greenall A, Carlyle C, Turkington R, Friedman CR (2009). Adaptive phenotypic plasticity of Pseudoroegneria spicata: response of stomatal density, leaf area and biomass to changes in water supply and increased temperature. Annals of Botany, 103, 769-775. |
[8] | Freschet GT, Cornelissen JHC, Aerts R (2010). Evidence of the ‘plant economics spectrum’ in a subarctic flora. Journal of Ecology, 98, 362-373. |
[9] |
Gleason SM, Westoby M, Jansen S, Choat B, Hacke UG, Pratt RB, Bhaskar R, Brodribb TJ, Bucci SJ, Cao K, Cochard H, Delzon S, Domec JC, Fan ZX, Feild TS, et al. (2016). Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species. New Phytologist, 209, 123-136.
DOI PMID |
[10] | Gong X, Guo J, Fang L, Bucci SJ, Goldstein G, Hao G (2021). Hydraulic dysfunction due to root-exposure-initiated water stress is responsible for the mortality of Salix gordejevii shrubs on the windward slopes of active sand dunes. Plant and Soil, 459, 185-201. |
[11] |
Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001). Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia, 126, 457-461.
DOI PMID |
[12] |
Hacke UG, Sperry JS, Wheeler JK, Castro L (2006). Scaling of angiosperm xylem structure with safety and efficiency. Tree physiology, 26, 689-701.
PMID |
[13] | Hammond WM, Williams AP, Abatzoglou JT, Adams HD, Klein T, López R, Sáenz-Romero C, Hartmann H, Breshears DD, Allen CD (2022). Global field observations of tree die-off reveal hotter-drought fingerprint for Earth’s forests. Nature Communications, 13, 1761. DOI: 10.1038/S41467-022-29289-2. |
[14] | He NP, Li Y, Liu CC, Xu L, Li MX, Zhang JH, He JS, Tang ZY, Han XG, Ye Q, Xiao CW, Yu Q, Liu SR, Sun W, Niu SL, et al. (2020). Plant trait networks: improved resolution of the dimensionality of adaptation. Trends in Ecology & Evolution, 35, 908-918. |
[15] | He YY, Guo SL, Wang Z (2019). Research progress of trade-off relationships of plant functional traits. Chinese Journal of Plant Ecology, 43, 1021-1035. |
[何芸雨, 郭水良, 王喆 (2019). 植物功能性状权衡关系的研究进展. 植物生态学报, 43, 1021-1035.]
DOI |
|
[16] | Jin Y (2017). Coupling Relationships of Hydraulic and Economic Traits of Leaf-stem-root for 10 Tree Species in the Temperate Forest of Northeastern China. PhD dissertation, Northeast Forestry University, Harbin. |
[金鹰 (2017). 东北温带森林10种树种叶-茎-根水力和经济性状耦联关系研究. 博士学位论文, 东北林业大学, 哈尔滨.] | |
[17] |
Johnson DM, Wortemann R, McCulloh KA, Jordan-Meille L, Ward E, Warren JM, Palmroth S, Domec JC (2016). A test of the hydraulic vulnerability segmentation hypothesis in angiosperm and conifer tree species. Tree Physiology, 36, 983-993.
DOI PMID |
[18] | Kleyer M, Minden V (2015). Why functional ecology should consider all plant organs: an allocation-based perspective. Basic and Applied Ecology, 16, 1-9. |
[19] | Krieg CP, Seeger K, Campany C, Watkins Jr JE, McClearn D, McCulloh KA, Sessa EB (2023). Functional traits and trait coordination change over the life of a leaf in a tropical fern species. American Journal of Botany, 110, e16151. DOI: 10.1002/AJB2.16151. |
[20] | Lens F, Sperry JS, Christman MA, Choat B, Rabaey D, Jansen S (2011). Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New Phytologist, 190, 709-723. |
[21] | Li JW, Dong LB, Liu YL, Wu JZ, Wang J, Shangguan ZP, Deng L (2022a). Soil organic carbon variation determined by biogeographic patterns of microbial carbon and nutrient limitations across a 3,000-km humidity gradient in China. Catena, 209, 105849. DOI: 10.1016/J.CATENA.2021.105849. |
[22] | Li Y, Liu C, Sack L, Xu L, Li M, Zhang J, He N (2022b). Leaf trait network architecture shifts with species-richness and climate across forests at continental scale. Ecology Letters, 25, 1442-1457. |
[23] |
Liu G, Freschet GT, Pan X, Cornelissen JHC, Li Y, Dong M (2010). Coordinated variation in leaf and root traits across multiple spatial scales in Chinese semi-arid and arid ecosystems. New Phytologist, 188, 543-553.
DOI PMID |
[24] |
Liu H, Ye Q, Gleason SM, He P, Yin D (2021). Weak tradeoff between xylem hydraulic efficiency and safety: climatic seasonality matters. New Phytologist, 229, 1440-1452.
DOI PMID |
[25] | Liu XJ, Ma KP (2015). Plant functional traits—Concepts, applications and future directions. Scientia Sinica (Vitae), 45, 325-339. |
[刘晓娟, 马克平 (2015). 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.] | |
[26] | Lu HM, Sun M, Ma YD, Si MY, Xie JB, Wang ZY, Wu TG, Li Y, Zhang H (2022). Contrasting patterns of variation in foliar pH between a woody species and an herbaceous species along a 3300 km water availability gradient in China. Catena, 216, 106408. DOI: 10.1016/J.CATENA.2022.106408. |
[27] |
Mencuccini M, Rosas T, Rowland L, Choat B, Cornelissen H, Jansen S, Kramer K, Lapenis A, Manzoni S, Niinemets Ü, Reich P, Schrodt F, Soudzilovskaia N, Wright IJ, Martínez-Vilalta J (2019). Leaf economics and plant hydraulics drive leaf: wood area ratios. New Phytologist, 224, 1544-1556.
DOI PMID |
[28] | Messier J, McGill BJ, Enquist BJ, Lechowicz MJ (2017). Trait variation and integration across scales: Is the leaf economic spectrum present at local scales? Ecography, 40, 685-697. |
[29] | Pang SL, Ou ZY, Shen WH, He F, Lu GD (2021). Leaf function traits variations and adaptive strategies of dominant woody economic plants in karst area of Southwest Guangxi. Guihaia, 41, 707-714. |
[庞世龙, 欧芷阳, 申文辉, 何峰, 陆国导 (2021). 桂西南喀斯特地区优势木本经济植物叶功能性状变异及其适应策略. 广西植物, 41, 707-714.] | |
[30] | Prislan P, Gričar J, de Luis M, Smith KT, Čufar K (2013). Phenological variation in xylem and phloem formation in Fagus sylvatica from two contrasting sites. Agricultural and Forest Meteorology, 180, 142-151. |
[31] |
Pritzkow C, Williamson V, Szota C, Trouvé R, Arndt SK (2020). Phenotypic plasticity and genetic adaptation of functional traits influences intra-specific variation in hydraulic efficiency and safety. Tree Physiology, 40, 215-229.
DOI PMID |
[32] | Reich PB (2014). The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. Journal of Ecology, 102, 275-301. |
[33] |
Rosas T, Mencuccini M, Barba J, Cochard H, Saura-Mas S, Martínez-Vilalta J (2019). Adjustments and coordination of hydraulic, leaf and stem traits along a water availability gradient. New Phytologist, 223, 632-646.
DOI PMID |
[34] |
Santiago LS, Goldstein G, Meinzer FC, Fisher JB, Machado K, Woodruff D, Jones T (2004). Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees. Oecologia, 140, 543-550.
PMID |
[35] |
Schuldt B, Knutzen F, Delzon S, Jansen S, Müller-Haubold H, Burlett R, Clough Y, Leuschner C (2016). How adaptable is the hydraulic system of European beech in the face of climate change-related precipitation reduction? New Phytologist, 210, 443-458.
DOI PMID |
[36] | Schumann K, Leuschner C, Schuldt B (2019). Xylem hydraulic safety and efficiency in relation to leaf and wood traits in three temperate Acer species differing in habitat preferences. Trees, 33, 1475-1490. |
[37] | Scoffoni C, Kunkle J, Pasquet-Kok J, Vuong C, Patel AJ, Montgomery RA, Givnish TJ, Sack L (2015). Light- induced plasticity in leaf hydraulics, venation, anatomy, and gas exchange in ecologically diverse Hawaiian lobeliads. New Phytologist, 207, 43-58. |
[38] | Sperry J (2003). Evolution of water transport and xylem structure. International Journal of Plant Sciences, 164, S115-S127. |
[39] |
Sperry JS, Ikeda T (1997). Xylem cavitation in roots and stems of Douglas-fir and white fir. Tree Physiology, 17, 275-280.
PMID |
[40] | Sperry JS, Meinzer FC, McCulloh KA (2008). Safety and efficiency conflicts in hydraulic architecture: scaling from tissues to trees. Plant, Cell & Environment, 31, 632-645. |
[41] | Tissier J, Lambs L, Peltier JP, Marigo G (2004). Relationships between hydraulic traits and habitat preference for six Acer species occurring in the French Alps. Annals of Forest Science, 61, 81-86. |
[42] | Venturas MD, MacKinnon ED, Jacobsen AL, Pratt RB (2015). Excising stem samples underwater at native tension does not induce xylem cavitation. Plant, Cell & Environment, 38, 1060-1068. |
[43] | Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827. |
[44] |
Xie JB, Wang ZY, Li Y (2022). Stomatal opening ratio mediates trait coordinating network adaptation to environmental gradients. New Phytologist, 235, 907-922.
DOI PMID |
[45] |
Xu H, Wang H, Prentice IC, Harrison SP, Wright IJ (2021). Coordination of plant hydraulic and photosynthetic traits: confronting optimality theory with field measurements. New Phytologist, 232, 1286-1296.
DOI PMID |
[46] |
Xu ZZ, Zhou GS (2008). Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. Journal of Experimental Botany, 59, 3317-3325.
DOI PMID |
[47] | Yan YJ, Zhou L, Zhou GS, Wang Y, Song JX, Zhang S, Zhou MZ (2023). Extreme temperature events reduced carbon uptake of a boreal forest ecosystem in Northeast China: evidence from an 11-year eddy covariance observation. Frontiers in Plant Science, 14, 1119670. DOI: 10.3389/ FPLS.2023.1119670. |
[48] |
Yu GR, Li WH, Shao MA, Zhang YJ, Wang SQ, Niu SL, He HL, Dai EF, Li FD, Ma ZQ (2020). Ecosystem science research and ecosystem management. Acta Geographica Sinica, 75, 2620-2635.
DOI |
[于贵瑞, 李文华, 邵明安, 张扬建, 王绍强, 牛书丽, 何洪林, 戴尔阜, 李发东, 马泽清 (2020). 生态系统科学研究与生态系统管理. 地理学报, 75, 2620-2635.]
DOI |
|
[49] | Zhang F, Zhang J, Brodribb TJ, Hu H (2021). Cavitation resistance of peduncle, petiole and stem is correlated with bordered pit dimensions in Magnolia grandiflora. Plant Diversity, 43, 324-330. |
[50] | Zhao YH, Gong XW, Ning QR, Zhang C, Duan CY, Hao GY (2023). Plasticity and coordination of branch and leaf traits in Ulmus pumila along a precipitation gradient. Chinese Journal of Applied Ecology, 34, 324-332. |
[赵宇航, 龚雪伟, 宁秋蕊, 张驰, 段春旸, 郝广友 (2023). 沿降水梯度白榆的枝叶性状可塑性与协同变异. 应用生态学报, 34, 324-332.]
DOI |
|
[51] | Zhong QL, Liu LB, Xu X, Yang Y, Guo YM, Xu HY, Cai XL, Ni J (2018). Variations of plant functional traits and adaptive strategy of woody species in a karst forest of central Guizhou Province, southwestern China. Chinese Journal of Plant Ecology, 42, 562-572. |
[钟巧连, 刘立斌, 许鑫, 杨勇, 郭银明, 许海洋, 蔡先立, 倪健 (2018). 黔中喀斯特木本植物功能性状变异及其适应策略. 植物生态学报, 42, 562-572.]
DOI |
[1] | 杜英杰 范爱连 王雪 闫晓俊 陈廷廷 贾林巧 姜琦 陈光水. 亚热带天然常绿阔叶林乔木树种与林下灌木树种根-叶功能性状协调性及差异[J]. 植物生态学报, 2025, 49(4): 1-0. |
[2] | 李梦琦 苗灵凤 李大东 龙奕帆 叶冰冰 杨帆. 海南东寨港红树林细根功能性状对不同潮位沉积物养分变化的响应[J]. 植物生态学报, 2025, 49(4): 1-0. |
[3] | 廖苏慧, 倪隆康, 秦佳双, 谭羽, 顾大形. 中亚热带喀斯特森林不同演替阶段树种水力调节策略差异[J]. 植物生态学报, 2024, 48(9): 1223-1231. |
[4] | 王小林, 周维, 赵梅, 丁钰桐, 杨冬梅, 张吟霜, 尹梦琪, 庄悦, 彭国全. 雷竹和青皮竹导管结构的轴向变化[J]. 植物生态学报, 2024, 48(7): 915-929. |
[5] | 秦嘉晨, 王欢, 朱江, 王扬, 田晨, 白永飞, 杨培志, 郑淑霞. 基于种内与种间性状变异的放牧过滤作用及其尺度效应[J]. 植物生态学报, 2024, 48(7): 858-871. |
[6] | 刘瑶, 钟全林, 徐朝斌, 程栋梁, 郑跃芳, 邹宇星, 张雪, 郑新杰, 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(6): 744-759. |
[7] | 徐子怡, 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡[J]. 植物生态学报, 2024, 48(5): 612-622. |
[8] | 常晨晖, 朱彪, 朱江玲, 吉成均, 杨万勤. 森林粗木质残体分解研究进展[J]. 植物生态学报, 2024, 48(5): 541-560. |
[9] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[10] | 范宏坤, 曾涛, 金光泽, 刘志理. 小兴安岭不同生长型阔叶植物叶性状变异及权衡[J]. 植物生态学报, 2024, 48(3): 364-376. |
[11] | 王振宇, 黄志群. 亚热带27种木本植物叶片性状对植食作用的影响: 验证生长-防御权衡假说[J]. 植物生态学报, 2024, 48(11): 1501-1509. |
[12] | 王思琦, 金光泽. 五角槭不同生活史阶段叶枝根性状的变异与权衡[J]. 植物生态学报, 2024, 48(11): 1510-1523. |
[13] | 胡楚婷, 杨柳依依, 石绍林, 周琰, 陈婷婷, 郑博瀚, 杨暘, 卢小玲, 王陈玲, 倪健. 浙江金华典型人工植被的植物功能性状[J]. 植物生态学报, 2024, 48(10): 1336-1350. |
[14] | 刘聪聪, 何念鹏, 李颖, 张佳慧, 闫镤, 王若梦, 王瑞丽. 宏观生态学中的植物功能性状研究: 历史与发展趋势[J]. 植物生态学报, 2024, 48(1): 21-40. |
[15] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19