植物生态学报 ›› 2024, Vol. 48 ›› Issue (11): 1510-1523.DOI: 10.17521/cjpe.2024.0081 cstr: 32100.14.cjpe.2024.0081
所属专题: 植物功能性状
收稿日期:
2024-03-22
接受日期:
2024-06-01
出版日期:
2024-11-20
发布日期:
2024-06-05
通讯作者:
ORCID: *金光泽: 0000-0002-9852-0965(taxus@126.com)
基金资助:
WANG Si-Qi1, JIN Guang-Ze1,2,*()(
)
Received:
2024-03-22
Accepted:
2024-06-01
Online:
2024-11-20
Published:
2024-06-05
Contact:
*JIN Guang-Ze (taxus@126.com)
Supported by:
摘要:
五角槭(Acer pictum subsp. mono)是阔叶红松林的主要伴生树种, 对阔叶红松林的结构与功能具有重要作用。研究五角槭在不同生活史阶段叶-枝-根功能性状及其相关关系, 对理解植物功能性状种内变异以及对资源的获取和分配策略具有重要意义。该研究以黑龙江凉水国家级自然保护区阔叶红松林内的五角槭幼苗、幼树和成年树为研究对象, 分析了叶、枝和根的12个生理、形态性状和碳(C)、氮(N)、磷(P)含量等化学计量学特征, 探讨了不同生活史阶段对叶-枝-根性状的变异及其性状间相关性的影响。结果表明: (1)随生活史阶段上升, 叶厚度、枝组织密度、根直径、叶N含量以及叶、枝和根的C含量均显著增加, 比叶面积、净光合速率、比根长均显著降低, 且各性状在生活史阶段存在不同程度的种内变异; (2)生理、形态性状与化学性状在叶和枝中相关性较高, 而细根中仅比根长与化学性状存在相关关系; (3)随生活史阶段上升, 叶片N含量和净光合速率增大, 光合产物积累较多, 叶片由“缓慢投资-收益”型转变为“快速投资-收益”型; 枝含水率等代谢能力以及细根的资源获取能力降低, 枝和根均由“资源获取”型转变为“资源保守”型。
王思琦, 金光泽. 五角槭不同生活史阶段叶枝根性状的变异与权衡. 植物生态学报, 2024, 48(11): 1510-1523. DOI: 10.17521/cjpe.2024.0081
WANG Si-Qi, JIN Guang-Ze. Variation and trade-offs in leaf, branch, and root traits at different life history stages of Acer pictum subsp. mono. Chinese Journal of Plant Ecology, 2024, 48(11): 1510-1523. DOI: 10.17521/cjpe.2024.0081
生活史阶段 Life history stage | 胸径 Diameter at breast height (cm) | 树高 Tree height (m) |
---|---|---|
幼苗 Seedling | 3.1 ± 0.63 | 3.98 ± 0.74 |
幼树 Sapling | 17.0 ± 2.72 | 14.88 ± 2.24 |
成年树 Adult tree | 29.9 ± 2.60 | 16.44 ± 1.01 |
表1 黑龙江凉水国家级自然保护区内五角槭样树信息表(平均值±标准差)
Table 1 Information of Acer pictum subsp. mono sample trees of Liangshui National Nature Reserve in Heilongjiang (mean ± SD)
生活史阶段 Life history stage | 胸径 Diameter at breast height (cm) | 树高 Tree height (m) |
---|---|---|
幼苗 Seedling | 3.1 ± 0.63 | 3.98 ± 0.74 |
幼树 Sapling | 17.0 ± 2.72 | 14.88 ± 2.24 |
成年树 Adult tree | 29.9 ± 2.60 | 16.44 ± 1.01 |
功能性状 Functional trait | 生态学意义 Ecological meaning | 功能性状 Functional trait | 生态学意义 Ecological meaning |
---|---|---|---|
叶厚度 Leaf thickness | 反映植物的保水能力 Reflects the water retention ability of plants | 整枝导水率 Pruning water conductivity | 反映植物的水分运输能力 Reflects the water transport capacity of plants |
叶干物质含量 Leaf dry matter content | 反映植物生长发育能力 Reflects the growth and development ability of plants | 根直径 Root diameter | 影响根资源获取和生理功能 Affects root resource acquisition and physiological function |
比叶面积 Specific leaf area | 反映植物对资源的利用效率 Reflects the efficiency of plant resource utilization | 根组织密度 Root tissue density | 反映根系资源的获取能力和防御能力 Reflects the ability to acquire and defend root resources |
叶面积 Leaf area | 反映植物生长发育的能力 Reflects the ability of plant growth and development | 比根长 Specific root length | 反映细根投入与产出关系 Reflects the relationship between fine root input and output |
叶绿素含量指数 Chlorophyll content index | 影响植物的光合作用 Affects plant photosynthesis | 枝含水率 Branch water content | 影响植物代谢效率和抗寒性 Affects plant metabolic efficiency and cold resistance |
净光合速率 Net photosynthetic rate | 反映叶片耐阴性和光合作用效率 Reflects leaf shade tolerance and photosynthetic efficiency | 碳含量 Carbon content | 影响资源获取和代谢速率 Affects resource acquisition and metabolic rate |
枝组织密度 Branch tissue density | 反映植物生长速率和水分运输效率 Reflects plant growth rate and water transport efficiency | 氮含量 Nitrogen content | 影响资源获取和代谢速率 Affects resource acquisition and metabolic rate |
磷含量 Phosphorus content | 影响资源获取和代谢速率 Affects resource acquisition and metabolic rate |
表2 测定的性状及其生态学意义
Table 2 Measured traits and ecological significance
功能性状 Functional trait | 生态学意义 Ecological meaning | 功能性状 Functional trait | 生态学意义 Ecological meaning |
---|---|---|---|
叶厚度 Leaf thickness | 反映植物的保水能力 Reflects the water retention ability of plants | 整枝导水率 Pruning water conductivity | 反映植物的水分运输能力 Reflects the water transport capacity of plants |
叶干物质含量 Leaf dry matter content | 反映植物生长发育能力 Reflects the growth and development ability of plants | 根直径 Root diameter | 影响根资源获取和生理功能 Affects root resource acquisition and physiological function |
比叶面积 Specific leaf area | 反映植物对资源的利用效率 Reflects the efficiency of plant resource utilization | 根组织密度 Root tissue density | 反映根系资源的获取能力和防御能力 Reflects the ability to acquire and defend root resources |
叶面积 Leaf area | 反映植物生长发育的能力 Reflects the ability of plant growth and development | 比根长 Specific root length | 反映细根投入与产出关系 Reflects the relationship between fine root input and output |
叶绿素含量指数 Chlorophyll content index | 影响植物的光合作用 Affects plant photosynthesis | 枝含水率 Branch water content | 影响植物代谢效率和抗寒性 Affects plant metabolic efficiency and cold resistance |
净光合速率 Net photosynthetic rate | 反映叶片耐阴性和光合作用效率 Reflects leaf shade tolerance and photosynthetic efficiency | 碳含量 Carbon content | 影响资源获取和代谢速率 Affects resource acquisition and metabolic rate |
枝组织密度 Branch tissue density | 反映植物生长速率和水分运输效率 Reflects plant growth rate and water transport efficiency | 氮含量 Nitrogen content | 影响资源获取和代谢速率 Affects resource acquisition and metabolic rate |
磷含量 Phosphorus content | 影响资源获取和代谢速率 Affects resource acquisition and metabolic rate |
![]() |
表3 不同生活史阶段五角槭叶-枝-根的生理、形态性状(平均值$ \pm$标准差)
Table 3 Physiological and morphological indexes of leaves, branches, and roots of Acer pictum subsp. mono at different life history stages (mean ± SD)
![]() |
![]() |
表4 不同生活史阶段五角槭叶-枝-根的碳(C)、氮(N)、磷(P)含量(平均值±标准差)
Table 4 Contents of carbon (C), nitrogen (N)and phosphorus (P) in leaves, branches, and roots of different life history of Acer pictum subsp. mono (mean ± SD)
![]() |
![]() |
表5 不同生活史阶段五角槭叶-枝-根的碳(C)、氮(N)、磷(P)含量比(平均值+标准差)
Table 5 The ratios of carbon (C), nitrogen (N) and phosphorus (P) contents in leaves, branches, and roots of different life history of Acer pictum subsp, mono (mean ± SD)
![]() |
图1 不同生活史阶段五角槭叶功能性状的相关性。Corr, 相关系数; I, 幼苗; II, 幼树; III, 成年树。C:N, 碳氮比; C:P, 碳磷比; LA, 叶面积; LC, 叶碳含量; LCHl, 叶绿素含量指数; LDMC, 叶干物质含量; LN, 叶氮含量; LP, 叶磷含量; LT, 叶厚度; N:P, 氮磷比; Pn, 净光合速率; SLA, 比叶面积. *, p < 0.05; **, p < 0.01; ***, p < 0.001。图中仅展示存在显著相关关系的线性回归拟合线。
Fig. 1 Correlations of leaf functional traits at different life history stages of Acer pictum subsp. mono. Corr, correlation coefficient; I, seedling; II, sapling; III, adult tree. C:N, carbon nitrogen ratio; C:P, carbon phosphorus ratio; LA, leaf area; LC, leaf carbon content; LCHl, leaf chlorophyll content index; LDMC, leaf dry matter content; LN, leaf nitrogen content; LP, leaf phosphorus content LT, leaf thickness; N:P, nitrogen phosphorus ratio; Pn, leaf net photosynthetic rate; SLA, specific leaf area. *, p < 0.05; **, p < 0.01; ***, p < 0.001. Only linear regression fitting lines with significant correlation are shown in the figure.
图2 不同生活史阶段五角槭枝功能性状的相关性。Corr, 相关系数; I, 幼苗; II, 幼树; III, 成年树。BC, 枝碳含量; BN, 枝氮含量; BP, 枝磷含量; BTD, 枝组织密度; BWC, 枝含水率; C:N, 碳氮比; C:P, 碳磷比; Kh, 整枝导水率; N:P, 氮磷比。*, p < 0.05; **, p < 0.01; ***, p < 0.001。图中仅展示存在显著相关关系的线性回归拟合线。
Fig. 2 Correlations of branch functional traits at different life history stages of Acer pictum subsp. mono. Corr, correlation coefficient; I, seedling; II, sapling; III, adult tree. BC, branch carbon content; BN, branch nitrogen content; BP, branch phosphorus content; BTD, branch tissue density; BWC, branch water content; C:N, carbon nitrogen ratio; C:P, carbon phosphorus ratio; Kh, pruning water conductivity; N:P, nitrogen phosphorus ratio. *, p < 0.05; **, p < 0.01; ***, p < 0.001. Only linear regression fitting lines with significant correlation are shown in the figure.
图3 不同生活史阶段五角槭根功能性状的相关性。Corr, 相关系数; I, 幼苗; II, 幼树; III, 成年树。C:N, 碳氮比; C:P, 碳磷比; N:P, 氮磷比; RC, 根碳含量; RD, 根直径; RN, 根氮含量; RP, 根磷含量; RTD, 根组织密度; SRL, 比根长。*, p < 0.05; **, p < 0.01; ***, p < 0.001。图中仅展示存在显著相关关系的线性回归拟合线。
Fig. 3 Correlations of fine root functional traits at different life history stages of Acer pictum subsp. mono. Corr, correlation coefficient; I, seedling; II, sapling; III, adult tree. C:N, carbon nitrogen ratio; C:P, carbon phosphorus ratio; N:P, nitrogen phosphorus ratio; RC, root carbon content; RD, root diameter; RN, root nitrogen content; RP, root phosphorus content; RTD, root tissue density; SRL, specific root length. *, p < 0.05; **, p < 0.01; ***, p < 0.001. Only linear regression fitting lines with significant correlation are shown in the figure.
图4 不同生活史阶段五角槭叶-枝-根功能性状主成分(PC)分析图。A, 叶-枝-根性状。B, 叶性状。C, 枝性状。D, 根性状。I, 幼苗; II, 幼树; III, 成年树。BC, 枝碳含量; BN, 枝氮含量; BP, 枝磷含量; BTD, 枝组织密度; BWC, 枝含水率; Kh, 整枝导水率; LA, 叶面积; LC, 叶碳含量; LCHl, 叶绿素含量指数; LDMC, 叶干物质含量; LN, 叶氮含量; LP, 叶磷含量; LT, 叶厚度; Pn, 净光合速率; RC, 根碳含量; RD, 根直径; RN, 根氮含量; RP, 根磷含量; RTD, 根组织密度; SLA, 比叶面积; SRL, 比根长。
Fig. 4 Principal component (PC) analysis of leaf, branch, root functional traits at different life history stages of Acer pictum subsp. mono. A, Leaf, branch and root traits. B, Leaf traits. C, Branch traits. D, Root traits. I, seedling. II, sapling; III, adult tree. BC, branch carbon content; BN, branch nitrogen content; BP, branch phosphorus content; BTD, branch tissue density; BWC, branch water content; Kh, pruning water conductivity; LA, leaf area; LC, leaf carbon content; LCHl, leaf chlorophyll content index; LDMC, leaf dry matter content; LN, leaf nitrogen content; LP, leaf phosphorus content; LT, leaf thickness; Pn, leaf net photosynthetic rate; RC, root carbon content; RD, root diameter; RN, root nitrogen content; RP, root phosphorus content; RTD, root tissue density; SLA, specific leaf area; SRL, specific root length.
[1] | Abbasi UA, You WH, Yan ER (2021). Correlations between leaf economics, hydraulic, and shade-tolerance traits among co-occurring individual trees. Acta Oecologica, 110, 103673. DOI: 10.1016/j.actao.2020.103673. |
[2] |
Ackerly DD, Cornwell WK (2007). A trait-based approach to community assembly: partitioning of species trait values into within-and among-community components. Ecology Letters, 10, 135-145.
PMID |
[3] | Albert CH, Thuiller W, Yoccoz NG, Soudant A, Boucher F, Saccone P, Lavorel S (2010). Intraspecific functional variability: extent, structure and sources of variation. Journal of Ecology, 98, 604-613. |
[4] |
Almeras T, Costes E, Salles JC (2004). Identification of biomechanical factors involved in stem shape variability between apricot tree varieties. Annals of Botany, 93, 455-468.
PMID |
[5] |
Blonder B, Violle C, Bentley LP, Enquist BJ (2011). Venation networks and the origin of the leaf economics spectrum. Ecology Letters, 14, 91-100.
DOI PMID |
[6] | Carrijo JN, Maracahipes L, Scalon MC, Silvério DV, Abadia AC, Fagundes MV, Veríssimo AA, Gonçalves LA, Carrijo D, Martins J, Lenza E (2021). Functional traits as indicators of ecological strategies of savanna woody species under contrasting substrate conditions. Flora, 284, 151925. DOI: 10.1016/j.flora.2021.151925. |
[7] |
Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12, 351-366.
DOI PMID |
[8] | Chen YT, Xu ZZ (2014). Review on research of leaf economics spectrum. Chinese Journal of Plant Ecology, 38, 1135-1153. |
[陈莹婷, 许振柱 (2014). 植物叶经济谱的研究进展. 植物生态学报, 38, 1135-1153.]
DOI |
|
[9] | Chou YL, Dong SL, Nie SQ (1986). Ligneous Flora of Heilongjiang. Heilongjiang Science Press, Harbin. |
[周以良, 董世林, 聂绍荃 (1986). 黑龙江树木志. 黑龙江科学技术出版社, 哈尔滨.] | |
[10] |
Coble AP, Cavaleri MA (2017). Vertical leaf mass per area gradient of mature sugar maple reflects both height-driven increases in vascular tissue and light-driven increases in palisade layer thickness. Tree Physiology, 37, 1337-1351.
DOI PMID |
[11] | Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380. |
[12] | Cui H, Zhang QQ, Chen MY, Wu Q, Feng Z, Wang Q, Hu QW (2020). Root C, N and C:N stoichiometry of 22 plant species in Nanji wetlands of Poyang Lake. Acta Ecologica Sinica, 40, 864-873. |
[崔浩, 张前前, 陈明月, 吴琴, 冯哲, 汪琴, 胡启武 (2020). 鄱阳湖南矶湿地22种植物根系碳氮及其化学计量研究. 生态学报, 40, 864-873.] | |
[13] | Cui NH, Liu XB, Zhang DJ, Zhang J, Liu Y, Deng CC, Ji TW, Chen YM (2014). The distribution pattern of carbon, nitrogen and phosphorus and the stoichiometry characteristics of Pinus massoniana plantation in different age. Ecology and Environmental Sciences, 23, 188-195. |
[崔宁浩, 刘小兵, 张丹桔, 张健, 刘洋, 邓长春, 纪托未, 陈亚梅 (2014). 不同林龄马尾松(Pinus massoniana)人工林碳氮磷分配格局及化学计量特征. 生态环境学报, 23, 188-195.] | |
[14] | de la Riva EG, Tosto A, Pérez-Ramos IM, Navarro-Fernández CM, Olmo M, Anten NPR, Marañón T, Villar R (2016). A plant economics spectrum in Mediterranean forests along environmental gradients: Is there coordination among leaf, stem and root traits? Journal of Vegetation Science, 27, 187-199. |
[15] | Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley E, Schulz KL, Siemann EH, Sterner RW (2000). Nutritional constraints in terrestrial and freshwater food webs. Nature, 408, 578-580. |
[16] |
Enquist BJ (2002). Universal scaling in tree and vascular plant allometry: toward a general quantitative theory linking plant form and function from cells to ecosystems. Tree Physiology, 22, 1045-1064.
PMID |
[17] |
Fajardo A, Siefert A (2019). The interplay among intraspecific leaf trait variation, niche breadth and species abundance along light and soil nutrient gradients. Oikos, 128, 881-891.
DOI |
[18] | Feng Y, Wang YQ, Li YK, Han L, Wang HZ (2024). Relationship between leaf functional traits of Populus euphratica and soil factors. Acta Ecologica Sinica, 44, 1717-1726. |
[冯宇, 王雨晴, 李沅楷, 韩路, 王海珍 (2024). 胡杨叶功能性状与土壤因子的关系. 生态学报, 44, 1717-1726.] | |
[19] | Freschet GT, Pagès L, Iversen CM, Comas LH, Rewald B, Roumet C, Klimešová J, Zadworny M, Poorter H, Postma JA, Adams TS, Bagniewska-Zadworna A, Bengough AG, Blancaflor EB, Brunner I, et al.(2021). A starting guide to root ecology: strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements. New Phytologist, 232, 973-1122. |
[20] | Fu RY, Zhang ZH, Hu C, Peng XB, Lu SN, Hu G (2020). Bibliometric analysis of research trends and focuses of plant functional traits. IOP Conference Series: Earth and Environmental Science, 615, 012102. DOI: 10.1088/1755- 1315/615/1/012102. |
[21] |
Gspaltl M, Bauerle W, Binkley D, Sterba H (2013). Leaf area and light use efficiency patterns of Norway spruce under different thinning regimes and age classes. Forest Ecology and Management, 288, 49-59.
PMID |
[22] | Jin MY, Jiang F, Jin GZ, Liu ZL (2018). Variations of specific leaf area in different growth periods and canopy positions of Betula platyphylla at different ages. Scientia Silvae Sinicae, 54(9), 18-26. |
[金明月, 姜峰, 金光泽, 刘志理 (2018). 不同年龄白桦比叶面积的生长阶段变异及冠层差异. 林业科学, 54(9), 18-26.] | |
[23] | Kerkhoff AJ, Fagan WF, Elser JJ, Enquist BJ (2006). Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. The American Naturalist, 168, E103-E122. |
[24] | Koerselman W, Meuleman AFM (1996). The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33, 1441-1450. |
[25] | Li L, Sun YT, Ren X, Mo LN, Hou YH, Yuan ZN (2021). Functional traits of branches and leaves, and their correlation with environmental factors for Lavandula angustifolia Mill. in different growth stages. Journal of Northeast Forestry University, 49(12), 21-28. |
[李玲, 孙宇婷, 任杏, 莫丽娜, 侯一航, 苑泽宁 (2021). 不同生长期薰衣草枝叶功能性状及其与环境因子的相关性. 东北林业大学学报, 49(12), 21-28.] | |
[26] | Li ZW, Liu Z, Gao GQ, Yang XL, Gu JC (2021). Shift from acquisitive to conservative root resource acquisition strategy associated with increasing tree age: a case study of Fraxinus mandshurica. Forests, 12, 1797. DOI: 10.3390/f12121797. |
[27] | Liu CC, He NP, Li Y, Zhang JH, Yan P, Wang RM, Wang RL (2024). Current and future trends of plant functional traits in macro-ecology. Chinese Journal of Plant Ecology, 48, 21-40. |
[刘聪聪, 何念鹏, 李颖, 张佳慧, 闫镤, 王若梦, 王瑞丽 (2024). 宏观生态学中的植物功能性状研究: 历史与发展趋势. 植物生态学报, 48, 21-40.]
DOI |
|
[28] | Liu GF, Liu YP, Baiyila DF, Cheng WY, Gao XL, Jiang LL (2017). Leaf traits of dominant plants of main forest communities in Daqinggou Nature Reserve. Acta Ecologica Sinica, 37, 4646-4655. |
[刘贵峰, 刘玉平, 达福白乙拉, 程伟燕, 高学磊, 姜丽丽 (2017). 大青沟自然保护区主要森林群落优势种的叶性状. 生态学报, 37, 4646-4655.] | |
[29] |
Liu J, Xiang WH, Xu X, Chen R, Tian DL, Peng CH, Fang X (2010). Analysis of architecture and functions of fine roots of five subtropical tree species in Huitong, Hunan Province, China. Chinese Journal of Plant Ecology, 34, 938-945.
DOI |
[刘佳, 项文化, 徐晓, 陈瑞, 田大伦, 彭长辉, 方晰 (2010). 湖南会同5个亚热带树种的细根构型及功能特征分析. 植物生态学报, 34, 938-945.]
DOI |
|
[30] | Liu MX, Liang GL (2016). Research progress on leaf mass per area. Chinese Journal of Plant Ecology, 40, 847-860. |
[刘明秀, 梁国鲁 (2016). 植物比叶质量研究进展. 植物生态学报, 40, 847-860.]
DOI |
|
[31] | Liu XJ, Ma KP (2015). Plant functional traits—Concepts, applications and future directions. Scientia Sinica (Vitae), 45, 325-339. |
[刘晓娟, 马克平 (2015). 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.] | |
[32] | Liu Z, Hikosaka K, Li F, Jin G (2020). Variations in leaf economics spectrum traits for an evergreen coniferous species: tree size dominates over environment factors. Functional Ecology, 34, 458-467. |
[33] |
Lu YM, Wang MT, Chen XP, Lyu M, Zhong QL, Cheng DL (2019). Effects of the current-year shoot stem configuration on leaf biomass in different canopy heights of woody plants in evergreen broad-leaved forest in Jiangxi Province, China. Chinese Journal of Applied Ecology, 30, 3653-3661.
DOI |
[卢艺苗, 王满堂, 陈晓萍, 吕敏, 钟全林, 程栋梁 (2019). 江西常绿阔叶林木本植物不同冠层高度当年生小枝茎构型对叶生物量的影响. 应用生态学报, 30, 3653-3661.]
DOI |
|
[34] |
Martin AR, Thomas SC (2013). Size-dependent changes in leaf and wood chemical traits in two Caribbean rainforest trees. Tree Physiology, 33, 1338-1353.
DOI PMID |
[35] | Meng TT, Ni J, Wang GH (2007). Plant functional traits, environments and ecosystem functioning. Journal of Plant Ecology (Chinese Version), 31, 150-165. |
[孟婷婷, 倪健, 王国宏 (2007). 植物功能性状与环境和生态系统功能. 植物生态学报, 31, 150-165.]
DOI |
|
[36] |
Mommer L, Weemstra M (2012). The role of roots in the resource economics spectrum. New Phytologist, 195, 725-727.
DOI PMID |
[37] | Ning ZY, Li YL, Yang HL, Sun DC, Bi JD (2017). Carbon, nitrogen and phosphorus stoichiometry in leaves and fine roots of dominant plants in Horqin Sandy Land. Chinese Journal of Plant Ecology, 41, 1069-1080. |
[宁志英, 李玉霖, 杨红玲, 孙殿超, 毕京东 (2017). 科尔沁沙地主要植物细根和叶片碳、氮、磷化学计量特征. 植物生态学报, 41, 1069-1080.]
DOI |
|
[38] |
Pierangelini M, Stojkovic S, Orr PT, Beardall J (2014). Photosynthetic characteristics of two Cylindrospermopsis raciborskii strains differing in their toxicity. Journal of Phycology, 50, 292-302.
DOI PMID |
[39] | Reich PB (2014). The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. Journal of Ecology, 102, 275-301. |
[40] |
Scoffoni C, Rawls M, McKown A, Cochard H, Sack L (2011). Decline of leaf hydraulic conductance with dehydration: relationship to leaf size and venation architecture. Plant Physiology, 156, 832-843.
DOI PMID |
[41] | Song YP, Yu YH, Li YT (2022). Leaf functional traits and relationships with soil properties of Zanthoxylum planispinum ‘dintanensis’ in plantations of different ages. Agronomy, 12, 1891. DOI: 10.3390/agronomy12081891. |
[42] | Song YH, Zhang P, Jin GZ (2021). Characteristics of shrub leaf carbon, nitrogen and phosphorus stoichiometry and influencing factors in mixed broadleaved-Korean pine forests at different successional stages. Chinese Journal of Plant Ecology, 45, 952-960. |
[宋语涵, 张鹏, 金光泽 (2021). 阔叶红松林不同演替阶段灌木叶片碳氮磷化学计量特征及其影响因素. 植物生态学报, 45, 952-960.]
DOI |
|
[43] | Sun JH, Shi HL, Chen KY, Ji BM, Zhang J (2023). Research advances on trade-off relationships of plant fine root functional traits. Chinese Journal of Plant Ecology, 47, 1055-1070. |
[孙佳慧, 史海兰, 陈科宇, 纪宝明, 张静 (2023). 植物细根功能性状的权衡关系研究进展. 植物生态学报, 47, 1055-1070.]
DOI |
|
[44] | Sun XJ, Chang SL, Song CC, Zhang YT (2018). Age-related N, P, and K stoichiometry in different organs of Picea schrenkiana. Chinese Journal of Ecology, 37, 1291-1298. |
[孙雪娇, 常顺利, 宋成程, 张毓涛 (2018). 雪岭云杉不同器官N、P、K化学计量特征随生长阶段的变化. 生态学杂志, 37, 1291-1298.] | |
[45] | Valverde-Barrantes OJ, Smemo KA, Blackwood CB (2015). Fine root morphology is phylogenetically structured, but nitrogen is related to the plant economics spectrum in temperate trees. Functional Ecology, 29, 796-807. |
[46] | van Ommen KA, Douma JC, Ordoñez JC, Reich PB, van Bodegom PM (2012). Global quantification of contrasting leaf life span strategies for deciduous and evergreen species in response to environmental conditions. Global Ecology and Biogeography, 21, 224-235. |
[47] | Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007). Let the concept of trait be functional! Oikos, 116, 882-892. |
[48] | Vogt KA, Grier CC, Vogt DJ (1986). Production, turnover, and nutrient dynamics of above- and belowground detritus of world forests. Advances in Ecological Research, 15, 303-377. |
[49] | Wang ZY, Cheng L, Wang MT, Sun J, Zhong QL, Li M, Cheng DL (2018). Fine root traits of woody plants in deciduous forest of the Wuyi Mountains. Acta Ecologica Sinica, 38, 8088-8097. |
[王钊颖, 程林, 王满堂, 孙俊, 钟全林, 李曼, 程栋梁 (2018). 武夷山落叶林木本植物细根性状研究. 生态学报, 38, 8088-8097.] | |
[50] |
Weemstra M, Mommer L, Visser EJW, van Ruijven J, Kuyper TW, Mohren GMJ, Sterck FJ (2016). Towards a multidimensional root trait framework: a tree root review. New Phytologist, 211, 1159-1169.
DOI PMID |
[51] | Withington JM, Reich PB, Oleksyn J, Eissenstat DM (2006). Comparisons of structure and life span in roots and leaves among temperate trees. Ecological Monographs, 76, 381-397. |
[52] | Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827. |
[53] | Xu R, Liu J, Wang LY, Yan Y, Ma XQ, Li M (2022). Analysis of root and leaf functional traits and C, N, P stoichiometry of Cunninghamia lanceolate from different provenances. Acta Ecologica Sinica, 42, 6298-6310. |
[徐睿, 刘静, 王利艳, 颜耀, 马祥庆, 李明 (2022). 不同地理种源杉木根叶功能性状与碳氮磷化学计量分析. 生态学报, 42, 6298-6310.] | |
[54] | Yan ER, Wang XH, Guo M, Zhong Q, Zhou W (2010). C:N:P stoichiometry across evergreen broad-leaved forests, evergreen coniferous forests and deciduous broad-leaved forests in the Tiantong Region, Zhejiang Province, Eastern China. Chinese Journal of Plant Ecology, 34, 48-57. |
[阎恩荣, 王希华, 郭明, 仲强, 周武 (2010). 浙江天童常绿阔叶林、常绿针叶林与落叶阔叶林的C:N:P化学计量特征. 植物生态学报, 34, 48-57.]
DOI |
|
[55] | Yu QH, Jin GZ, Liu ZL (2020). Plant size, branch age and environment factors co-drive variations of branch traits of Pinus koraiensis. Chinese Journal of Plant Ecology, 44, 939-950. |
[于青含, 金光泽, 刘志理 (2020). 植株大小、枝龄和环境共同驱动红松枝性状的变异. 植物生态学报, 44, 939-950.] | |
[56] | Yuan YN, Li ZC, Wang B, Zhang YJ, Huang SY (2021). Ecological stoichiometry in leaves, branches and roots of Torreya grandis with different forest ages and its stoichiometric homoeostasis. Journal of Nanjing Forestry University (Natural Sciences Edition), 45, 135-142. |
[原雅楠, 李正才, 王斌, 张雨洁, 黄盛怡 (2021). 不同林龄榧树根、枝、叶的C、N、P化学计量及内稳性特征. 南京林业大学学报(自然科学版), 45, 135-142.]
DOI |
|
[57] |
Zhai JT, Li YL, Han ZJ, Li ZJ (2020). Morphological, structural and physiological differences in heteromorphic leaves of Euphrates poplar during development stages and at crown scales. Plant Biology, 22, 366-375.
DOI PMID |
[58] | Zhang JR, Yan XJ, Jia LQ, Fan AL, Wang X, Chen TT, Chen GS (2022). Morphology and C and N stoichiometry traits of fine roots of nine understory shrubs in subtropical natural evergreen broad-leaved forest. Acta Ecologica Sinica, 42, 3716-3726. |
[张进如, 闫晓俊, 贾林巧, 范爱连, 王雪, 陈廷廷, 陈光水 (2022). 亚热带天然常绿阔叶林林下9种灌木细根形态和C、N化学计量特征. 生态学报, 42, 3716-3726.] | |
[59] | Zhang Q, Xiong GM, Li JX, Lu ZJ, Li YL, Xu WT, Wang Y, Zhao CM, Tang ZY, Xie ZQ (2018). Nitrogen and phosphorus concentrations and allocation strategies among shrub organs: the effects of plant growth forms and nitrogen-fixation types. Plant and Soil, 427, 305-319. |
[60] | Zhou XY (2012). The Research of Characteristic and Physiological Mechanism on Grapes Under Drought and Cold Stress. Master degree dissertation, Inner Mongolia Agricultural University, Hohhot. |
[周香云 (2012). 葡萄抗旱抗寒特性及生理机制的研究. 硕士学位论文, 内蒙古农业大学, 呼和浩特.] |
[1] | 廖苏慧, 倪隆康, 秦佳双, 谭羽, 顾大形. 中亚热带喀斯特森林不同演替阶段树种水力调节策略差异[J]. 植物生态学报, 2024, 48(9): 1223-1231. |
[2] | 王小林, 周维, 赵梅, 丁钰桐, 杨冬梅, 张吟霜, 尹梦琪, 庄悦, 彭国全. 雷竹和青皮竹导管结构的轴向变化[J]. 植物生态学报, 2024, 48(7): 915-929. |
[3] | 蔡慧颖, 梁亚涛, 娄虎, 杨光, 孙龙. 白桦细根功能性状和根际细菌群落随火后时间的变化[J]. 植物生态学报, 2024, 48(7): 828-843. |
[4] | 秦嘉晨, 王欢, 朱江, 王扬, 田晨, 白永飞, 杨培志, 郑淑霞. 基于种内与种间性状变异的放牧过滤作用及其尺度效应[J]. 植物生态学报, 2024, 48(7): 858-871. |
[5] | 文佳, 张新娜, 王娟, 赵秀海, 张春雨. 性状调节幼苗存活率对邻体竞争和环境的响应[J]. 植物生态学报, 2024, 48(6): 719-729. |
[6] | 彭仲韬, 金光泽, 刘志理. 小兴安岭三种槭树叶性状随植株大小和林冠条件的变异[J]. 植物生态学报, 2024, 48(6): 730-743. |
[7] | 刘瑶, 钟全林, 徐朝斌, 程栋梁, 郑跃芳, 邹宇星, 张雪, 郑新杰, 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(6): 744-759. |
[8] | 李闪闪, 刘学勤. 长江中游河漫滩湿地植物功能性状分析[J]. 植物生态学报, 2024, 48(5): 601-611. |
[9] | 徐子怡, 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡[J]. 植物生态学报, 2024, 48(5): 612-622. |
[10] | 常晨晖, 朱彪, 朱江玲, 吉成均, 杨万勤. 森林粗木质残体分解研究进展[J]. 植物生态学报, 2024, 48(5): 541-560. |
[11] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[12] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[13] | 范宏坤, 曾涛, 金光泽, 刘志理. 小兴安岭不同生长型阔叶植物叶性状变异及权衡[J]. 植物生态学报, 2024, 48(3): 364-376. |
[14] | 强亚琪 张新娜 王娟 张春雨. 东北天然次生林同种和异种密度制约效应随生活史阶段变化规律[J]. 植物生态学报, 2024, 48(12): 1612-1622. |
[15] | 马斌 佘维维 秦欢 宋春阳 袁新月 苗春 刘靓 冯薇 秦树高 张宇清. 氮素和水分添加对黑沙蒿(Artemisia ordosica)种子功能性状的影响[J]. 植物生态学报, 2024, 48(12): 1637-1649. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19