植物生态学报 ›› 2024, Vol. 48 ›› Issue (10): 1336-1350.DOI: 10.17521/cjpe.2024.0012 cstr: 32100.14.cjpe.2024.0012
所属专题: 植物功能性状
胡楚婷1, 杨柳依依1, 石绍林1, 周琰1, 陈婷婷1, 郑博瀚1, 杨暘1, 卢小玲1, 王陈玲1, 倪健1,2,*()(
)
收稿日期:
2024-01-17
接受日期:
2024-06-14
出版日期:
2024-10-20
发布日期:
2024-06-17
通讯作者:
倪健
基金资助:
HU Chu-Ting1, YANG Liu-Yi-Yi1, SHI Shao-Lin1, ZHOU Yan1, CHEN Ting-Ting1, ZHENG Bo-Han1, YANG Yang1, LU Xiao-Ling1, WANG Chen-Ling1, Ni Jian1,2,*()(
)
Received:
2024-01-17
Accepted:
2024-06-14
Online:
2024-10-20
Published:
2024-06-17
Contact:
Ni Jian
Supported by:
摘要: 人类活动影响和管理之下的人工植被广泛分布于全球各地, 其结构与过程、格局与功能等是现代生态学不可忽视的主题, 但对其植物功能性状的研究仍较少, 限制了对人工植被, 尤其是农业植被的理解。该研究以金华地区常见的7种人工植被的优势种为研究对象, 分析其叶、茎、细根功能性状的变异性、相关性及权衡差异。结果表明: 1)不同人工植被的性状及其变异程度有一定差异。木本植物各器官的干物质含量、组织密度等较大, 体现较强的物质储存能力; 草本植物的比叶面积、比根长、比根表面积较大, 可快速获取资源。木本和草本植物的性状总变异系数分别为8.80%-40.94%和37.05%-61.60%。木本植物的性状变异小于草本植物, 表明后者对生境变化更为敏感。性状变异主要受物种、生境与管理方式交互作用的影响。2)不同器官性状间多呈显著正相关关系, 体现人工植被性状间普遍的协同性。3)人工植被不同物种的不同性状组合体现适应策略的差异。桃(Amygdalus persica)较大比叶面积和小枝树皮厚度及较小细根直径体现快速获取资源的能力, 山茶(Camellia japonica)较大叶厚度、比叶干质量和较大细根直径体现较强的物质积累和防御能力, 柑橘(Citrus reticulata)则介于以上两者之间, 茶(Camellia sinensis)浅根发达, 利于养分吸收; 水稻(Oryza sativa)和欧洲油菜(Brassica napus)的叶厚度和比叶干质量较大而茎、根系组织密度较小, 叶片物质积累和根系养分吸收能力较强, 人工草地的狗牙根(Cynodon dactylon)和早熟禾(Poa annua)则与之相反。从生态学角度研究人工植被的功能性状及其权衡和组合特征, 可为人为干扰生态系统的管理提供科学依据和新思路。
胡楚婷, 杨柳依依, 石绍林, 周琰, 陈婷婷, 郑博瀚, 杨暘, 卢小玲, 王陈玲, 倪健. 浙江金华典型人工植被的植物功能性状. 植物生态学报, 2024, 48(10): 1336-1350. DOI: 10.17521/cjpe.2024.0012
HU Chu-Ting, YANG Liu-Yi-Yi, SHI Shao-Lin, ZHOU Yan, CHEN Ting-Ting, ZHENG Bo-Han, YANG Yang, LU Xiao-Ling, WANG Chen-Ling, Ni Jian. Plant functional traits of typical artificial vegetation in Jinhua, Zhejiang, China. Chinese Journal of Plant Ecology, 2024, 48(10): 1336-1350. DOI: 10.17521/cjpe.2024.0012
植被类型 Vegetation type | 优势种 Dominant species | 品种 Variety | 地形地貌 Terrain | 管理措施 Management measures |
---|---|---|---|---|
桃园 Peach orchard | 桃 Amygdalus persica | 锦绣黄桃、红桃、水蜜桃 Jinxiu yellow peach, Red peach, Honey peach | 山地 Hill | 施肥, 灌溉 Fertilization, irrigation |
柑橘园 Orange orchard | 柑橘 Citrus reticulate | 红美人柑橘、宫川橘、温州蜜橘 Hongmeiren orange, Miyagawa tangerine, Satsuma mandarin | 山地、平地 Hill, flatland | 施肥, 灌溉; 半撂荒(无管理) Fertilization, irrigation; quasi- abandoned (no management) |
茶园 Tea plantation | 茶 Camellia sinensis | 鸠坑、举岩 Jiukeng, Juyan | 山地 Hill | 施肥, 灌溉; 或仅施肥 Fertilization, irrigation; or fertilization only |
山茶园 Camellia garden | 山茶 Camellia japonica | 六角大红、绯爪芙蓉、雪塔 Hongliujiao, Feizhua Furong, Xueta | 平地、山地 Flatland, hill | 施肥, 灌溉; 或仅施肥 Fertilization, irrigation; or fertilization only |
水稻田 Rice field | 水稻 Oryza sativa | 甬优1540、嘉丰优2号、巨型稻6号 Yongyou 1540, Jiafengyou 2, Giant rice 6 | 平地 Flatland | 施肥, 灌溉 Fertilization, irrigation |
油菜田 Rape field | 欧洲油菜 Brassica napus | 浙油51、越优1203、浙大630 Zheyou 51, Yueyou 1203, Zheda 630 | 平地、河漫滩或山谷 Flatland, flood plain or valley | 施肥, 灌溉 Fertilization, irrigation |
人工草地 Artificial grassland | 狗牙根、早熟禾 Cynodon dactylon, Poa annua | 平地 Flatland | 仅灌溉 Irrigation only |
表1 浙江金华7种人工植被的基本特征
Table 1 Characteristics of seven artificial vegetation in Jinhua, Zhejiang
植被类型 Vegetation type | 优势种 Dominant species | 品种 Variety | 地形地貌 Terrain | 管理措施 Management measures |
---|---|---|---|---|
桃园 Peach orchard | 桃 Amygdalus persica | 锦绣黄桃、红桃、水蜜桃 Jinxiu yellow peach, Red peach, Honey peach | 山地 Hill | 施肥, 灌溉 Fertilization, irrigation |
柑橘园 Orange orchard | 柑橘 Citrus reticulate | 红美人柑橘、宫川橘、温州蜜橘 Hongmeiren orange, Miyagawa tangerine, Satsuma mandarin | 山地、平地 Hill, flatland | 施肥, 灌溉; 半撂荒(无管理) Fertilization, irrigation; quasi- abandoned (no management) |
茶园 Tea plantation | 茶 Camellia sinensis | 鸠坑、举岩 Jiukeng, Juyan | 山地 Hill | 施肥, 灌溉; 或仅施肥 Fertilization, irrigation; or fertilization only |
山茶园 Camellia garden | 山茶 Camellia japonica | 六角大红、绯爪芙蓉、雪塔 Hongliujiao, Feizhua Furong, Xueta | 平地、山地 Flatland, hill | 施肥, 灌溉; 或仅施肥 Fertilization, irrigation; or fertilization only |
水稻田 Rice field | 水稻 Oryza sativa | 甬优1540、嘉丰优2号、巨型稻6号 Yongyou 1540, Jiafengyou 2, Giant rice 6 | 平地 Flatland | 施肥, 灌溉 Fertilization, irrigation |
油菜田 Rape field | 欧洲油菜 Brassica napus | 浙油51、越优1203、浙大630 Zheyou 51, Yueyou 1203, Zheda 630 | 平地、河漫滩或山谷 Flatland, flood plain or valley | 施肥, 灌溉 Fertilization, irrigation |
人工草地 Artificial grassland | 狗牙根、早熟禾 Cynodon dactylon, Poa annua | 平地 Flatland | 仅灌溉 Irrigation only |
性状名称及缩写 Name and abbreviation of trait | 单位 Unit | 公式 Formula | 生态意义 Ecological meaning |
---|---|---|---|
叶厚度 Leaf thickness, LT | mm | 直接测量 Direct measurement | 物质储存和防御 Material storage and defense |
比叶干质量 Leaf mass per area, LMA | g·m-2 | 叶干质量/鲜叶面积 Leaf dry mass/fresh leaf area | 物质储存 Material storage |
比叶面积 Specific leaf area, SLA | cm2·g-1 | 叶面积/叶干质量 Fresh leaf area/leaf dry mass | 资源获取 Resource capture |
叶干物质含量 Leaf dry matter content, LDMC | g·g-1 | 叶干质量/叶鲜质量 Leaf dry mass/leaf fresh mass | 物质储存和防御 Material storage and defense |
叶组织密度 Leaf tissue density, LTD | g·cm-3 | 叶干质量/(鲜叶面积×叶厚度) Leaf dry mass/(fresh leaf area × leaf thickness) | 防御 Defense |
小枝(茎)干物质含量1) Twig (stem) dry matter content, T(S)DMC1) | g·g-1 | 小枝(茎)干质量/小枝(茎)鲜质量 Twig (stem) dry mass/twig (stem) fresh mass | 物质储存和防御 Material storage and defense |
小枝(茎)组织密度1) Twig (stem) tissue density, T(S)TD1) | g·cm-3 | 小枝(茎)干质量/小枝(茎)体积 Twig (stem) dry mass/twig (stem) volume | 防御和支撑 Defense and physical support |
木本小枝直径1) Twig diameter, TD1) | mm | 直接测量 Direct measurement | 资源获取、运输和支撑 Resource capture, transport and physical support |
木本小枝树皮厚度1) Twig bark thickness, TBT1) | mm | 直接测量 Direct measurement | 防御 Defense |
细根直径 Fine root diameter, RD | mm | 直接测量 Direct measurement | 防御 Defense |
比根长 Specific root length, SRL | m·g-1 | 根长度/根干质量 Root length/root dry mass | 资源获取 Resource capture |
比根表面积 Specific root area, SRA | cm2·g-1 | 根表面积/根干质量 Root area/root dry mass | 资源获取 Resource capture |
细根干物质含量 Fine root dry matter content, RDMC | g·g-1 | 根干质量/根鲜质量 Root dry mass/root fresh mass | 物质储存和防御 Material storage and defense |
细根组织密度 Fine root tissue density, RTD | g·cm-3 | 根干质量/根体积 Root dry mass/root volume | 防御 Defense |
表2 14个植物功能性状指标及其生态意义
Table 2 14 plant functional traits and their ecological meanings
性状名称及缩写 Name and abbreviation of trait | 单位 Unit | 公式 Formula | 生态意义 Ecological meaning |
---|---|---|---|
叶厚度 Leaf thickness, LT | mm | 直接测量 Direct measurement | 物质储存和防御 Material storage and defense |
比叶干质量 Leaf mass per area, LMA | g·m-2 | 叶干质量/鲜叶面积 Leaf dry mass/fresh leaf area | 物质储存 Material storage |
比叶面积 Specific leaf area, SLA | cm2·g-1 | 叶面积/叶干质量 Fresh leaf area/leaf dry mass | 资源获取 Resource capture |
叶干物质含量 Leaf dry matter content, LDMC | g·g-1 | 叶干质量/叶鲜质量 Leaf dry mass/leaf fresh mass | 物质储存和防御 Material storage and defense |
叶组织密度 Leaf tissue density, LTD | g·cm-3 | 叶干质量/(鲜叶面积×叶厚度) Leaf dry mass/(fresh leaf area × leaf thickness) | 防御 Defense |
小枝(茎)干物质含量1) Twig (stem) dry matter content, T(S)DMC1) | g·g-1 | 小枝(茎)干质量/小枝(茎)鲜质量 Twig (stem) dry mass/twig (stem) fresh mass | 物质储存和防御 Material storage and defense |
小枝(茎)组织密度1) Twig (stem) tissue density, T(S)TD1) | g·cm-3 | 小枝(茎)干质量/小枝(茎)体积 Twig (stem) dry mass/twig (stem) volume | 防御和支撑 Defense and physical support |
木本小枝直径1) Twig diameter, TD1) | mm | 直接测量 Direct measurement | 资源获取、运输和支撑 Resource capture, transport and physical support |
木本小枝树皮厚度1) Twig bark thickness, TBT1) | mm | 直接测量 Direct measurement | 防御 Defense |
细根直径 Fine root diameter, RD | mm | 直接测量 Direct measurement | 防御 Defense |
比根长 Specific root length, SRL | m·g-1 | 根长度/根干质量 Root length/root dry mass | 资源获取 Resource capture |
比根表面积 Specific root area, SRA | cm2·g-1 | 根表面积/根干质量 Root area/root dry mass | 资源获取 Resource capture |
细根干物质含量 Fine root dry matter content, RDMC | g·g-1 | 根干质量/根鲜质量 Root dry mass/root fresh mass | 物质储存和防御 Material storage and defense |
细根组织密度 Fine root tissue density, RTD | g·cm-3 | 根干质量/根体积 Root dry mass/root volume | 防御 Defense |
植物性状 Plant trait | 平均值±标准差 Mean ± SD | 极小值-极大值 Minimum-Maximum | 变异系数1) Coefficient of variation (%)1) | |||
---|---|---|---|---|---|---|
木本 Wood | 草本 Herb | 木本 Wood | 草本 Herb | 木本 Wood | 草本 Herb | |
叶厚度 LT | 0.29 ± 0.11 | 0.13 ± 0.08 | 0.09-0.90 | 0.02-0.45 | 36.17 | 58.11 |
比叶干质量 LMA | 96.87 ± 29.78 | 43.57 ± 16.28 | 44.70-187.61 | 8.75-93.06 | 30.72 | 37.05 |
比叶面积 SLA | 113.46 ± 35.58 | 272.11 ± 132.25 | 53.30-223.39 | 107.46-1142.73 | 31.36 | 48.60 |
叶干物质含量 LDMC | 0.38 ± 0.03 | 0.22 ± 0.09 | 0.30-0.53 | 0.08-0.47 | 8.80 | 43.97 |
叶组织密度 LTD | 0.34 ± 0.06 | 0.41 ± 0.20 | 0.12-0.68 | 0.11-1.07 | 17.01 | 49.72 |
小枝(茎)干物质含量 T(S)DMC | 0.48 ± 0.06 | 0.23 ± 0.09 | 0.34-0.84 | 0.03-0.52 | 12.71 | 40.37 |
小枝(茎)组织密度 T(S)TD | 0.50 ± 0.08 | 0.17 ± 0.11 | 0.30-0.81 | 0.06-1.20 | 16.15 | 61.60 |
小枝直径 TD | 3.11 ± 0.79 | - | 1.50-6.07 | - | 25.38 | - |
小枝树皮厚度 TBT | 0.66 ± 0.27 | - | 0.003-1.820 | - | 40.94 | - |
细根直径 RD | 0.63 ± 0.16 | 0.46 ± 0.21 | 0.42-1.05 | 0.23-0.88 | 24.95 | 45.32 |
比根长 SRL | 6.28 ± 3.96 | 27.75 ± 14.66 | 2.16-18.82 | 10.40-61.42 | 63.05 | 52.82 |
比根表面积 SRA | 103.36 ± 45.11 | 323.08 ± 139.34 | 64.64-260.61 | 130.76-553.22 | 43.65 | 43.13 |
细根干物质含量 RDMC | 0.62 ± 0.09 | 0.40 ± 0.19 | 0.46-0.80 | 0.15-0.79 | 15.06 | 47.79 |
细根组织密度 RTD | 0.71 ± 0.16 | 0.42 ± 0.22 | 0.35-0.95 | 0.14-0.75 | 22.87 | 52.81 |
表3 浙江金华人工植被的植物功能性状总特征
Table 3 General characteristics of plant functional traits in artificial vegetation of Jinhua, Zhejiang
植物性状 Plant trait | 平均值±标准差 Mean ± SD | 极小值-极大值 Minimum-Maximum | 变异系数1) Coefficient of variation (%)1) | |||
---|---|---|---|---|---|---|
木本 Wood | 草本 Herb | 木本 Wood | 草本 Herb | 木本 Wood | 草本 Herb | |
叶厚度 LT | 0.29 ± 0.11 | 0.13 ± 0.08 | 0.09-0.90 | 0.02-0.45 | 36.17 | 58.11 |
比叶干质量 LMA | 96.87 ± 29.78 | 43.57 ± 16.28 | 44.70-187.61 | 8.75-93.06 | 30.72 | 37.05 |
比叶面积 SLA | 113.46 ± 35.58 | 272.11 ± 132.25 | 53.30-223.39 | 107.46-1142.73 | 31.36 | 48.60 |
叶干物质含量 LDMC | 0.38 ± 0.03 | 0.22 ± 0.09 | 0.30-0.53 | 0.08-0.47 | 8.80 | 43.97 |
叶组织密度 LTD | 0.34 ± 0.06 | 0.41 ± 0.20 | 0.12-0.68 | 0.11-1.07 | 17.01 | 49.72 |
小枝(茎)干物质含量 T(S)DMC | 0.48 ± 0.06 | 0.23 ± 0.09 | 0.34-0.84 | 0.03-0.52 | 12.71 | 40.37 |
小枝(茎)组织密度 T(S)TD | 0.50 ± 0.08 | 0.17 ± 0.11 | 0.30-0.81 | 0.06-1.20 | 16.15 | 61.60 |
小枝直径 TD | 3.11 ± 0.79 | - | 1.50-6.07 | - | 25.38 | - |
小枝树皮厚度 TBT | 0.66 ± 0.27 | - | 0.003-1.820 | - | 40.94 | - |
细根直径 RD | 0.63 ± 0.16 | 0.46 ± 0.21 | 0.42-1.05 | 0.23-0.88 | 24.95 | 45.32 |
比根长 SRL | 6.28 ± 3.96 | 27.75 ± 14.66 | 2.16-18.82 | 10.40-61.42 | 63.05 | 52.82 |
比根表面积 SRA | 103.36 ± 45.11 | 323.08 ± 139.34 | 64.64-260.61 | 130.76-553.22 | 43.65 | 43.13 |
细根干物质含量 RDMC | 0.62 ± 0.09 | 0.40 ± 0.19 | 0.46-0.80 | 0.15-0.79 | 15.06 | 47.79 |
细根组织密度 RTD | 0.71 ± 0.16 | 0.42 ± 0.22 | 0.35-0.95 | 0.14-0.75 | 22.87 | 52.81 |
图2 浙江金华常见人工植被的植物功能性状及其变异系数。箱线图上的圆圈表示异常值, 图中的百分数为变异系数。叶、枝(茎)性状纵轴坐标的1-8对应物种: 1, 桃; 2, 柑橘; 3, 山茶; 4, 茶; 5, 水稻; 6, 欧洲油菜; 7, 狗牙根; 8, 早熟禾。根系性状纵坐标的字母代表植被类型: Ca, 山茶园; Gr, 人工草地(狗牙根和早熟禾); Or, 柑橘园; Pe, 桃园; Ra, 油菜田; Ri, 水稻田; Te, 茶园。其中, 图中虚线上方为木本植物(植被), 下方为草本植物(植被)。性状名称同表2。
Fig. 2 Plant functional traits and their coefficient of variation of common plants of artificial vegetation in Jinhua, Zhejiang. The circle in the box plot indicates the abnormal value; the percentage of data in the figure is the coefficient of variation. The numbers 1-8 in the Y-axis for leaf and twig (stem) traits represent the species studied: 1, Amygdalus persica; 2, Citrus reticulata; 3, Camellia japonica; 4, Camellia sinensis; 5, Oryza sativa; 6, Brassica napus; 7, Cynodon dactylon; 8, Poa annua. The letters in the Y-axis for root traits represent the vegetation types: Ca, camellia garden; Gr, artificial grassland (Cynodon dactylon and Poa annua); Pe, peach orchard; Or, orange orchard; Ra, rape field; Ri, rice field; Te, tea plantation. Above the dotted line are woody plants (vegetation) and below are herbaceous plants (vegetation). Trait name is the same as in Table 2.
图3 浙江金华不同生长型人工植被的植物性状及其变异系数(CV)。图中百分数为植物性状变异系数; 其中, 上面为种内变异系数, 下面为种间变异系数。***, p < 0.001。性状名称同表2。
Fig. 3 Different plant functional traits of artificial vegetation and their coefficient of variation (CV) in different growth forms in Jinhua, Zhejiang. The numbers of percentage are the coefficient of variations (CV) of plant traits. Above, the intraspecific CV; below, the interspecific CV. ***, p < 0.001. Trait name is the same as in Table 2.
植物性状 Plant trait | 物种 Species | 生境 Habitat | 管理方式 Management | 生境×管理方式 Habitat × management | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p | R | F | p | R | F | p | R | F | p | R | |
叶厚度 LT | 250.91 | *** | 0.73 | 18.02 | *** | 0.08 | 66.17 | *** | 0.23 | 42.14 | *** | 0.28 |
比叶干质量 LMA | 650.00 | *** | 0.88 | 34.22 | *** | 0.14 | 65.32 | *** | 0.23 | 53.97 | *** | 0.33 |
比叶面积 SLA | 260.45 | *** | 0.74 | 61.22 | *** | 0.22 | 232.16 | *** | 0.52 | 200.91 | *** | 0.65 |
叶干物质含量 LDMC | 667.15 | *** | 0.88 | 181.30 | *** | 0.45 | 12.96 | *** | 0.06 | 90.28 | *** | 0.45 |
叶组织密度 LTD | 22.36 | *** | 0.19 | 19.39 | *** | 0.08 | 24.49 | *** | 0.10 | 18.89 | *** | 0.15 |
小枝(茎)干物质含量 T(S)DMC | 840.14 | *** | 0.90 | 191.52 | *** | 0.47 | 14.77 | *** | 0.06 | 98.36 | *** | 0.48 |
小枝(茎)组织密度 T(S)TD | 682.25 | *** | 0.88 | 178.98 | *** | 0.45 | 17.43 | *** | 0.07 | 96.65 | *** | 0.47 |
小枝直径 TD | 11.23 | *** | 0.08 | 4.22 | * | 0.10 | 2.49 | *** | 0.01 | 3.39 | *** | 0.03 |
小枝树皮厚度 TBT | 75.56 | *** | 0.36 | 27.28 | *** | 0.06 | 15.38 | *** | 0.07 | 27.23 | *** | 0.17 |
细根直径 RD | 13.01 | *** | 0.44 | 1.77 | ns | 0.16 | 9.15 | *** | 0.21 | 7.82 | *** | 0.32 |
比根长 SRL | 19.66 | *** | 0.37 | 19.79 | *** | 0.27 | 3.50 | * | 0.09 | 11.61 | *** | 0.42 |
比根表面积 SRA | 15.51 | *** | 0.49 | 15.69 | *** | 0.32 | 1.80 | ns | 0.05 | 7.69 | *** | 0.32 |
细根干物质含量 RDMC | 9.29 | *** | 0.36 | 12.66 | *** | 0.05 | 0.37 | ns | 0.01 | 6.97 | *** | 0.30 |
细根组织密度 RTD | 9.45 | *** | 0.55 | 7.15 | *** | 0.18 | 0.63 | ns | 0.02 | 4.71 | *** | 0.22 |
表4 物种、生境和管理方式对浙江金华人工植被性状变异的影响
Table 4 Effects of species, habitats and management on plant trait variation of artificial vegetation in Jinhua, Zhejiang
植物性状 Plant trait | 物种 Species | 生境 Habitat | 管理方式 Management | 生境×管理方式 Habitat × management | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p | R | F | p | R | F | p | R | F | p | R | |
叶厚度 LT | 250.91 | *** | 0.73 | 18.02 | *** | 0.08 | 66.17 | *** | 0.23 | 42.14 | *** | 0.28 |
比叶干质量 LMA | 650.00 | *** | 0.88 | 34.22 | *** | 0.14 | 65.32 | *** | 0.23 | 53.97 | *** | 0.33 |
比叶面积 SLA | 260.45 | *** | 0.74 | 61.22 | *** | 0.22 | 232.16 | *** | 0.52 | 200.91 | *** | 0.65 |
叶干物质含量 LDMC | 667.15 | *** | 0.88 | 181.30 | *** | 0.45 | 12.96 | *** | 0.06 | 90.28 | *** | 0.45 |
叶组织密度 LTD | 22.36 | *** | 0.19 | 19.39 | *** | 0.08 | 24.49 | *** | 0.10 | 18.89 | *** | 0.15 |
小枝(茎)干物质含量 T(S)DMC | 840.14 | *** | 0.90 | 191.52 | *** | 0.47 | 14.77 | *** | 0.06 | 98.36 | *** | 0.48 |
小枝(茎)组织密度 T(S)TD | 682.25 | *** | 0.88 | 178.98 | *** | 0.45 | 17.43 | *** | 0.07 | 96.65 | *** | 0.47 |
小枝直径 TD | 11.23 | *** | 0.08 | 4.22 | * | 0.10 | 2.49 | *** | 0.01 | 3.39 | *** | 0.03 |
小枝树皮厚度 TBT | 75.56 | *** | 0.36 | 27.28 | *** | 0.06 | 15.38 | *** | 0.07 | 27.23 | *** | 0.17 |
细根直径 RD | 13.01 | *** | 0.44 | 1.77 | ns | 0.16 | 9.15 | *** | 0.21 | 7.82 | *** | 0.32 |
比根长 SRL | 19.66 | *** | 0.37 | 19.79 | *** | 0.27 | 3.50 | * | 0.09 | 11.61 | *** | 0.42 |
比根表面积 SRA | 15.51 | *** | 0.49 | 15.69 | *** | 0.32 | 1.80 | ns | 0.05 | 7.69 | *** | 0.32 |
细根干物质含量 RDMC | 9.29 | *** | 0.36 | 12.66 | *** | 0.05 | 0.37 | ns | 0.01 | 6.97 | *** | 0.30 |
细根组织密度 RTD | 9.45 | *** | 0.55 | 7.15 | *** | 0.18 | 0.63 | ns | 0.02 | 4.71 | *** | 0.22 |
T(S)DMC | T(S)TD | TD | TBT | RD | SRL | SRA | RDMC | RTD | ||
---|---|---|---|---|---|---|---|---|---|---|
木本 Wood | LT | -0.037 | 0.122* | 0.104* | -0.379** | 0.542* | -0.365 | -0.276 | -0.151 | -0.204 |
LMA | -0.005 | 0.065 | 0.064 | -0.432** | 0.560* | -0.266 | -0.172 | -0.279 | -0.218 | |
SLA | 0.146** | 0.044 | 0.015 | 0.461** | -0.492* | 0.255 | 0.123 | 0.423 | 0.321 | |
LDMC | 0.204** | 0.069 | 0.112* | 0.105* | 0.147 | -0.011 | 0.050 | -0.032 | -0.164 | |
LTD | 0.079 | -0.043 | -0.058 | 0.075 | -0.180 | 0.379 | 0.327 | -0.062 | 0.117 | |
TDMC | 0.040 | -0.130 | -0.256 | 0.240 | 0.489* | |||||
TTD | 0.027 | -0.293 | -0.363 | 0.130 | 0.304 | |||||
TD | -0.243 | -0.259 | -0.292 | 0.649** | 0.244 | |||||
TBT | -0.387 | -0.074 | -0.200 | 0.515* | 0.328 | |||||
草本 Herb | LT | -0.166** | -0.218** | 0.421 | -0.058 | 0.257 | -0.098 | -0.363 | ||
LMA | -0.081 | -0.268** | 0.661** | -0.443 | 0.014 | -0.078 | -0.296 | |||
SLA | 0.160** | 0.357** | -0.634* | 0.354 | -0.126 | 0.247 | 0.383 | |||
LDMC | 0.787** | 0.454** | 0.110 | -0.256 | -0.057 | 0.153 | -0.039 | |||
LTD | 0.172** | 0.063 | 0.168 | -0.504 | -0.386 | 0.029 | 0.227 | |||
SDMC | -0.103 | -0.193 | -0.132 | 0.198 | 0.153 | |||||
STD | -0.489 | 0.008 | -0.353 | 0.456 | 0.517* |
表5 浙江金华人工植被不同器官功能性状间的Pearson相关性分析
Table 5 Pearson correlation analysis between plant functional traits of different organs in artificial vegetation in Jinhua, Zhejiang
T(S)DMC | T(S)TD | TD | TBT | RD | SRL | SRA | RDMC | RTD | ||
---|---|---|---|---|---|---|---|---|---|---|
木本 Wood | LT | -0.037 | 0.122* | 0.104* | -0.379** | 0.542* | -0.365 | -0.276 | -0.151 | -0.204 |
LMA | -0.005 | 0.065 | 0.064 | -0.432** | 0.560* | -0.266 | -0.172 | -0.279 | -0.218 | |
SLA | 0.146** | 0.044 | 0.015 | 0.461** | -0.492* | 0.255 | 0.123 | 0.423 | 0.321 | |
LDMC | 0.204** | 0.069 | 0.112* | 0.105* | 0.147 | -0.011 | 0.050 | -0.032 | -0.164 | |
LTD | 0.079 | -0.043 | -0.058 | 0.075 | -0.180 | 0.379 | 0.327 | -0.062 | 0.117 | |
TDMC | 0.040 | -0.130 | -0.256 | 0.240 | 0.489* | |||||
TTD | 0.027 | -0.293 | -0.363 | 0.130 | 0.304 | |||||
TD | -0.243 | -0.259 | -0.292 | 0.649** | 0.244 | |||||
TBT | -0.387 | -0.074 | -0.200 | 0.515* | 0.328 | |||||
草本 Herb | LT | -0.166** | -0.218** | 0.421 | -0.058 | 0.257 | -0.098 | -0.363 | ||
LMA | -0.081 | -0.268** | 0.661** | -0.443 | 0.014 | -0.078 | -0.296 | |||
SLA | 0.160** | 0.357** | -0.634* | 0.354 | -0.126 | 0.247 | 0.383 | |||
LDMC | 0.787** | 0.454** | 0.110 | -0.256 | -0.057 | 0.153 | -0.039 | |||
LTD | 0.172** | 0.063 | 0.168 | -0.504 | -0.386 | 0.029 | 0.227 | |||
SDMC | -0.103 | -0.193 | -0.132 | 0.198 | 0.153 | |||||
STD | -0.489 | 0.008 | -0.353 | 0.456 | 0.517* |
图4 浙江金华常见的人工植被功能性状主成分(PC)分析。A, 木本植物性状。B, 草本植物性状。Ca, 山茶园; Gr, 人工草地(狗牙根和早熟禾); Pe, 桃园; Or, 柑橘园; Ra, 油菜田; Ri, 水稻田; Te, 茶园。性状名称同表2。
Fig. 4 Principal component (PC) analysis of plant functional traits of artificial vegetation in Jinhua, Zhejiang. A, Woody plant traits. B, Herbaceous plant traits. Ca, camellia garden; Gr, artificial grassland (Cynodon dactylon and Poa annua); Pe, peach orchard; Or, orange orchard; Ra, rape field; Ri, rice field; Te, tea plantation. Trait name is the same as in Table 2.
植物性状 Plant trait | 木本 Wood | 草本 Herb | ||||
---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC1 | PC2 | PC3 | |
叶厚度 LT | -0.88 | 0.29 | -0.03 | -0.74 | 0.05 | -0.08 |
比叶干质量 LMA | -0.90 | 0.19 | 0.34 | -0.70 | 0.61 | -0.05 |
比叶面积 SLA | 0.94 | -0.05 | -0.21 | 0.77 | -0.49 | 0.004 |
叶干物质含量 LDMC | -0.30 | 0.16 | 0.82 | 0.46 | 0.51 | 0.69 |
叶组织密度 LTD | 0.32 | -0.23 | 0.71 | 0.23 | 0.68 | 0.04 |
小枝(茎)干物质含量 T(S)DMC | 0.27 | 0.70 | 0.36 | 0.65 | 0.38 | 0.60 |
小枝(茎)组织密度 T(S)TD | 0.12 | 0.75 | 0.15 | 0.89 | 0.14 | 0.25 |
小枝直径 TD | 0.22 | 0.70 | 0.30 | - | - | - |
小枝树皮厚度 TBT | 0.79 | 0.42 | -0.01 | - | - | - |
细根直径 RD | -0.64 | 0.23 | -0.10 | -0.65 | 0.56 | 0.23 |
比根长 SRL | 0.35 | -0.68 | 0.42 | 0.02 | -0.88 | 0.25 |
比根表面积 SRA | 0.21 | -0.76 | 0.42 | -0.48 | -0.54 | 0.65 |
细根干物质含量 RDMC | 0.47 | 0.43 | 0.01 | 0.44 | 0.31 | -0.36 |
细根组织密度 RTD | 0.40 | 0.40 | 0.05 | 0.69 | 0.09 | -0.61 |
特征值 Eigenvalue | 4.39 | 3.35 | 1.95 | 4.43 | 3.00 | 1.96 |
方差贡献率 Variance percent rate (%) | 31.34 | 23.95 | 13.91 | 36.94 | 24.96 | 16.34 |
表6 浙江金华常见人工植被功能性状主成分(PC)分析的载荷矩阵、特征值及方差贡献率
Table 6 Loadings matrix, eigenvalue and variance percent rate of principal component (PC) analysis of plant functional traits of artificial vegetation in Jinhua, Zhejiang
植物性状 Plant trait | 木本 Wood | 草本 Herb | ||||
---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC1 | PC2 | PC3 | |
叶厚度 LT | -0.88 | 0.29 | -0.03 | -0.74 | 0.05 | -0.08 |
比叶干质量 LMA | -0.90 | 0.19 | 0.34 | -0.70 | 0.61 | -0.05 |
比叶面积 SLA | 0.94 | -0.05 | -0.21 | 0.77 | -0.49 | 0.004 |
叶干物质含量 LDMC | -0.30 | 0.16 | 0.82 | 0.46 | 0.51 | 0.69 |
叶组织密度 LTD | 0.32 | -0.23 | 0.71 | 0.23 | 0.68 | 0.04 |
小枝(茎)干物质含量 T(S)DMC | 0.27 | 0.70 | 0.36 | 0.65 | 0.38 | 0.60 |
小枝(茎)组织密度 T(S)TD | 0.12 | 0.75 | 0.15 | 0.89 | 0.14 | 0.25 |
小枝直径 TD | 0.22 | 0.70 | 0.30 | - | - | - |
小枝树皮厚度 TBT | 0.79 | 0.42 | -0.01 | - | - | - |
细根直径 RD | -0.64 | 0.23 | -0.10 | -0.65 | 0.56 | 0.23 |
比根长 SRL | 0.35 | -0.68 | 0.42 | 0.02 | -0.88 | 0.25 |
比根表面积 SRA | 0.21 | -0.76 | 0.42 | -0.48 | -0.54 | 0.65 |
细根干物质含量 RDMC | 0.47 | 0.43 | 0.01 | 0.44 | 0.31 | -0.36 |
细根组织密度 RTD | 0.40 | 0.40 | 0.05 | 0.69 | 0.09 | -0.61 |
特征值 Eigenvalue | 4.39 | 3.35 | 1.95 | 4.43 | 3.00 | 1.96 |
方差贡献率 Variance percent rate (%) | 31.34 | 23.95 | 13.91 | 36.94 | 24.96 | 16.34 |
[1] | Cao JY, Liu JF, Yuan Q, Xu DY, Fan HD, Chen HY, Tan B, Liu LB, Ye D, Ni J (2020). Traits of shrubs in forests and bushes reveal different life strategies. Chinese Journal of Plant Ecology, 44, 715-729. |
[ 曹嘉瑜, 刘建峰, 袁泉, 徐德宇, 樊海东, 陈海燕, 谭斌, 刘立斌, 叶铎, 倪健 (2020). 森林与灌丛的灌木性状揭示不同的生活策略. 植物生态学报, 44, 715-729.] | |
[2] |
Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12, 351-366.
DOI PMID |
[3] |
Driever SM, Lawson T, Andralojc PJ, Raines CA, Parry MAJ (2014). Natural variation in photosynthetic capacity, growth, and yield in 64 field-grown wheat genotypes. Journal of Experimental Botany, 65, 4959-4973.
DOI PMID |
[4] | Du JG, Fang Y, Fan RR, Sun MK, Zhong QL, Hu DD, Zeng LJ, Cheng DL (2023). Convergence of main bark functional traits of tree and shrub twigs in evergreen broad-leaved forest of the Wuyi Mountain. Acta Ecologica Sinica, 43, 1610-1620. |
[ 杜金贵, 方毅, 范瑞瑞, 孙蒙柯, 钟全林, 胡丹丹, 曾利剑, 程栋梁 (2023). 武夷山常绿阔叶林乔木与灌木小枝树皮主要功能性状的趋同. 生态学报, 43, 1610-1620.] | |
[5] | Ellis EC, Klein Goldewijk K, Siebert S, Lightman D, Ramankutty N (2010). Anthropogenic transformation of the biomes, 1700 to 2000. Global Ecology and Biogeography, 19, 589-606. |
[6] | Ellis EC, Ramankutty N (2008). Putting people in the map: anthropogenic biomes of the world. Frontiers in Ecology and the Environment, 6, 439-447. |
[7] | Fort F, Jouany C, Cruz P (2013). Root and leaf functional trait relations in Poaceae species: implications of differing resource-acquisition strategies. Journal of Plant Ecology, 6, 211-219. |
[8] | Fortunel C, Fine PVA, Baraloto C (2012). Leaf, stem and root tissue strategies across 758 Neotropical tree species. Functional Ecology, 26, 1153-1161. |
[9] | Gagliardi S, Martin AR, de Melo Virginio Filho E, Rapidel B, Isaac ME (2015). Intraspecific leaf economic trait variation partially explains coffee performance across agroforestry management regimes. Agriculture, Ecosystems & Environment, 200, 151-160. |
[10] | Garibaldi LA, Aizen MA, Sáez A, Gleiser G, Strelin MM, Harder LD (2021). The influences of progenitor filtering, domestication selection and the boundaries of nature on the domestication of grain crops. Functional Ecology, 35, 1998-2011. |
[11] | He NP, Liu CC, Zhang JH, Xu L, Yu GR (2018). Perspectives and challenges in plant traits: from organs to communities. Acta Ecologica Sinica, 38, 6787-6796. |
[ 何念鹏, 刘聪聪, 张佳慧, 徐丽, 于贵瑞 (2018). 植物性状研究的机遇与挑战: 从器官到群落. 生态学报, 38, 6787-6796.] | |
[12] | Hu RZ, Du ZQ, Liu S, Shi JW (2016). Fine root morphology characteristics of Larix principis-rupprechtii along an elevation gradient. Chinese Journal of Ecology, 35, 1248-1253. |
[ 胡瑞芝, 杜自强, 刘爽, 史建伟 (2016). 不同海拔华北落叶松细根形态特征. 生态学杂志, 35, 1248-1253.] | |
[13] | Huang FY, Duan JH, Lei Y, Kang YK, Luo Y, Dong LJ, Li SJ (2017). Correlation between various factors and yield of tea seedling plants. Acta Tea Sinica, 58(1), 17-20. |
[ 黄飞毅, 段继华, 雷雨, 康彦凯, 罗意, 董丽娟, 李赛君 (2017). 实生茶树产量性状的相关性和通径分析. 茶叶学报, 58(1), 17-20.] | |
[14] | Jiang P, Hu YG, Gao FY, Lyu JQ, Liu S, Guo HM, Liu LP, Ren GS, Su XW, Ren MX, Ren GJ, Ren JS (2024). Allele variation of yield trait genes in 13 hybrid rice parents. Chinese Journal of Applied and Environmental Biology, 30, 367-376. |
[ 蒋平, 胡运高, 高方远, 吕建群, 刘松, 郭鸿鸣, 刘利平, 任国胜, 苏相文, 任明鑫, 任光俊, 任鄄胜 (2024). 13个杂交水稻亲本产量性状基因等位变异. 应用与环境生物学报, 30, 367-376.] | |
[15] | Lemoine T, Violle C, Montazeaud G, Isaac ME, Rocher A, Fréville H, Fort F (2023). Plant trait relationships are maintained within a major crop species: lack of artificial selection signal and potential for improved agronomic performance. New Phytologist, 240, 2227-2238. |
[16] | Li RN, Yan HL, Wang YL (2023). Research progress of Camellia japonica flower affected by environmental stress. Molecular Plant Breeding, 21, 3798-3805. |
[ 李仁娜, 闫会玲, 王亚玲 (2023). 山茶花受环境胁迫影响的研究进展. 分子植物育种, 21, 3798-3805.] | |
[17] | Lin JK, Lai MZ, Zhan ZJ (2000). Response of net photosynthetic rate to ecological factors in tea leaves. Acta Ecologica Sinica, 20, 404-408. |
[ 林金科, 赖明志, 詹梓金 (2000). 茶树叶片净光合速率对生态因子的响应. 生态学报, 20, 404-408.] | |
[18] | Liu JH (2021). Effects of different planting patterns on resource utilization and yield of rape. Liaoning Agricultural Sciences, (6), 38-41. |
[ 刘俊红 (2021). 不同种植模式对油菜资源利用率及产量的影响. 辽宁农业科学, (6), 38-41.] | |
[19] | Liu WQ, Li JX, Gong JW, Zhao LJ, Xiang WH, Cheng X, Wang WJ, Zhang YL (2022). Variation in leaf functional traits and adaptation strategies of dominant tree species in a Lithocarpus glaber - Cyclobalanopsis glauca evergreen broad-leaved forest. Acta Ecologica Sinica, 42, 7256-7265. |
[ 刘文倩, 李家湘, 龚俊伟, 赵丽娟, 项文化, 程幸, 王维嘉, 张意灵 (2022). 柯-青冈常绿阔叶林优势树种叶片性状变异及适应策略. 生态学报, 42, 7256-7265.] | |
[20] | Martin AR (2021). Crop domestication, functional traits and the boundaries of nature. Functional Ecology, 35, 1866-1868. |
[21] | Martin AR, Hale CE, Cerabolini BEL, Cornelissen JHC, Craine J, Gough WA, Kattge J, Tirona CKF (2018). Inter- and intraspecific variation in leaf economic traits in wheat and maize. AoB Plants, 10, ply006. DOI: 10.1093/aobpla/ply006. |
[22] | Martin AR, Isaac ME (2015). Plant functional traits in agroecosystems: a blueprint for research. Journal of Applied Ecology, 52, 1425-1435. |
[23] | Martin AR, Rapidel B, Roupsard O, van den Meersche K, de Melo Virginio Filho E, Barrios M, Isaac ME (2017). Intraspecific trait variation across multiple scales: the leaf economics spectrum in coffee. Functional Ecology, 31, 604-612. |
[24] | Meng TT, Ni J, Wang GH (2007). Plant functional traits, environments and ecosystem functioning. Chinese Journal of Plant Ecology, 31, 150-165. |
[ 孟婷婷, 倪健, 王国宏 (2007). 植物功能性状与环境和生态系统功能. 植物生态学报, 31, 150-165.]
DOI |
|
[25] |
Meyer RS, Purugganan MD (2013). Evolution of crop species: genetics of domestication and diversification. Nature Reviews Genetics, 14, 840-852.
DOI PMID |
[26] | Milla R, Morente-López J, Alonso-Rodrigo JM, Martín-Robles N, Chapin III FS (2014). Shifts and disruptions in resource-use trait syndromes during the evolution of herbaceous crops. Proceedings of the Royal Society B: Biological Sciences, 281, 20141429. DOI: 10.1098/rspb.2014.1429. |
[27] | Monfreda C, Ramankutty N, Foley JA (2008). Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global Biogeochemical Cycles, 22, GB1022. DOI: 10.1029/2007GB002947. |
[28] | Nimmo V, Violle C, Entz M, Rolhauser AG, Isaac ME (2023). Changes in crop trait plasticity with domestication history: management practices matter. Ecology and Evolution, 13, e10690. DOI: 10.1002/ece3.10690. |
[29] | Ordoñez JC, van Bodegom PM, Witte JPM, Wright IJ, Reich PB, Aerts R (2009). A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Global Ecology and Biogeography, 18, 137-149. |
[30] |
Pang SL, Ou ZY, Ling FC, He F, Lu GD, Peng YH (2021). Leaf trait variations and leaf economic spectrum of 18 plant species suitable in a karst area of southwest Guangxi. Chinese Journal of Ecology, 40, 3041-3049.
DOI |
[ 庞世龙, 欧芷阳, 凌福诚, 何峰, 陆国导, 彭玉华 (2021). 桂西南岩溶区18种适生植物叶性状变异及经济谱. 生态学杂志, 40, 3041-3049.] | |
[31] | Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, et al. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167-234. |
[32] | Reich PB (2014). The world-wide “fast-slow” plant economics spectrum: a traits manifesto. Journal of Ecology, 102, 275-301. |
[33] | Richards RA (2000). Selectable traits to increase crop photosynthesis and yield of grain crops. Journal of Experimental Botany, 51, 447-458. |
[34] | Roucou A, Violle C, Fort F, Roumet P, Ecarnot M, Vile D (2018). Shifts in plant functional strategies over the course of wheat domestication. Journal of Applied Ecology, 55, 25-37. |
[35] |
Sancho-Knapik D, Escudero A, Mediavilla S, Scoffoni C, Zailaa J, Cavender-Bares J, Álvarez-Arenas TG, Molins A, Alonso-Forn D, Ferrio JP, Peguero-Pina JJ, Gil-Pelegrín E (2021). Deciduous and evergreen oaks show contrasting adaptive responses in leaf mass per area across environments. New Phytologist, 230, 521-534.
DOI PMID |
[36] | Shao J, Fan QY, Chen XP, Li JL, Hu DD, Wang MT, Zhong QL, Cheng DL (2022). Variations of leaf functional traits of Cyclobalanopsis glauca at different altitudes in Wuyi Mountain. Chinese Journal of Ecology, 41, 1378-1384. |
[ 邵静, 范强勇, 陈晓萍, 李锦隆, 胡丹丹, 王满堂, 钟全林, 程栋梁 (2022). 武夷山不同海拔青冈叶片功能性状差异. 生态学杂志, 41, 1378-1384.] | |
[37] | Shi Y, Wen ZM, Gong SH (2011). Comparisons of relationships between leaf and fine root traits in hilly area of the Loess Plateau, Yanhe River Basin, Shaanxi Province, China. Acta Ecologica Sinica, 31, 6805-6814. |
[ 施宇, 温仲明, 龚时慧 (2011). 黄土丘陵区植物叶片与细根功能性状关系及其变化. 生态学报, 31, 6805-6814.] | |
[38] |
Tang QQ, Huang YT, Ding Y, Zang RG (2016). Interspecific and intraspecific variation in functional traits of subtropical evergreen and deciduous broad-leaved mixed forests. Biodiversity Science, 24, 262-270.
DOI |
[ 唐青青, 黄永涛, 丁易, 臧润国 (2016). 亚热带常绿落叶阔叶混交林植物功能性状的种间和种内变异. 生物多样性, 24, 262-270.]
DOI |
|
[39] | The Editorial Committee of Vegetation Map of China, the Chinese Academy of Sciences (2007). Vegetation of China and Its Geographic Pattern: Illustration of the Vegetation map of the People’s Republic of China (1:1000000). Geological Publishing House, Beijing. 450-476. |
[ 中国科学院中国植被图编辑委员会 (2007). 中国植被及其地理格局: 中华人民共和国植被图(1:1000000)说明书. 地质出版社, 北京. 450-476.] | |
[40] |
Weemstra M, Mommer L, Visser EJW, van Ruijven J, Kuyper TW, Mohren GMJ, Sterck FJ (2016). Towards a multidimensional root trait framework: a tree root review. New Phytologist, 211, 1159-1169.
DOI PMID |
[41] | Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827. |
[42] | Xiong DL, Flexas J (2018). Leaf economics spectrum in rice: leaf anatomical, biochemical, and physiological trait trade- offs. Journal of Experimental Botany, 69, 5599-5609. |
[43] | Xu GW, Lyu Q, Lu DK, Wang HZ, Chen MC (2016). Effect of wetting and drying alternative irrigation coupling with nitrogen application on root characteristic and grain-sink activity. Acta Agronomica Sinica, 42, 1495-1505. |
[ 徐国伟, 吕强, 陆大克, 王贺正, 陈明灿 (2016). 干湿交替灌溉耦合施氮对水稻根系性状及籽粒库活性的影响. 作物学报, 42, 1495-1505.]
DOI |
|
[44] | Xu YD, Dong SK, Li S, Shen H (2019). Research progress on ecological filtering mechanisms for plant community assembly. Acta Ecologica Sinica, 39, 2267-2281. |
[ 许驭丹, 董世魁, 李帅, 沈豪 (2019). 植物群落构建的生态过滤机制研究进展. 生态学报, 39, 2267-2281.] | |
[45] | Zhang HQ, Zhou HF, Wang MG, Xie M (2019). Status of peach industry in Zhejiang Province and its developing thoughts. Journal of Zhejiang Agricultural Sciences, 60(1), 1-3. |
[ 张慧琴, 周慧芬, 汪末根, 谢鸣 (2019). 浙江省桃产业现状与发展思路. 浙江农业科学, 60(1), 1-3.]
DOI |
|
[46] | Zhao GS, Liu M, Shi PL, Zong N, Zhang X, Zhang XZ (2020). Variation of leaf and root traits and ecological adaptive strategies along a precipitation gradient on Changtang Plateau. Acta Ecologica Sinica, 40, 295-309. |
[ 赵广帅, 刘珉, 石培礼, 宗宁, 张鑫, 张宪洲 (2020). 羌塘高原降水梯度植物叶片、根系性状变异和生态适应对策. 生态学报, 40, 295-309.] | |
[47] | Zhejiang Institute of Geological Survey (2016). Agricultural Geology Research in Jinhua Region of Zhejiang Province. Science Press, Beijing. 5-9+124-128. |
[ 浙江省地质调查院 (2016). 浙江金华地区农业地学研究. 科学出版社, 北京. 5-9+124-128.] | |
[48] | Zhu H, Yang L, Li DB, He LP, Yue CL, Li HP (2023). Functional traits of twelve species of marsh plants in Siming Mountain, Zhejiang Province. Acta Ecologica Sinica, 43, 2881-2890. |
[ 朱弘, 杨乐, 李东宾, 何立平, 岳春雷, 李贺鹏 (2023). 浙江四明山沼泽湿地植物功能性状研究. 生态学报, 43, 2881-2890.] |
[1] | 秦嘉晨, 王欢, 朱江, 王扬, 田晨, 白永飞, 杨培志, 郑淑霞. 基于种内与种间性状变异的放牧过滤作用及其尺度效应[J]. 植物生态学报, 2024, 48(7): 858-871. |
[2] | 文佳, 张新娜, 王娟, 赵秀海, 张春雨. 性状调节幼苗存活率对邻体竞争和环境的响应[J]. 植物生态学报, 2024, 48(6): 719-729. |
[3] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[4] | 徐铭泽 赵洪贤 李成 李满乐 田赟 Peng Liu 查天山. 季节尺度毛乌素沙地黑沙蒿的叶片性状网络特征及驱动因素[J]. 植物生态学报, 2024, 48(12): 1650-1665. |
[5] | 王思琦, 金光泽. 五角槭不同生活史阶段叶枝根性状的变异与权衡[J]. 植物生态学报, 2024, 48(11): 1510-1523. |
[6] | 袁雅妮, 周哲, 陈彬洲, 郭垚鑫, 岳明. 基于功能性状的锐齿槲栎林共存树种生态策略差异[J]. 植物生态学报, 2023, 47(9): 1270-1277. |
[7] | 汤璐瑶, 方菁, 钱海蓉, 张博纳, 上官方京, 叶琳峰, 李姝雯, 童金莲, 谢江波. 落羽杉和池杉功能性状随高度的变异与协同[J]. 植物生态学报, 2023, 47(11): 1561-1575. |
[8] | 张增可, 李曾燕, 杨柏钰, 赛碧乐, 杨安娜, 张立, 牟凌, 郑俊勇, 金乐薇, 赵钊, 王万胜, 杜运才, 阎恩荣. 上海大金山岛常见木本植物功能性状对生长和死亡的影响[J]. 植物生态学报, 2023, 47(10): 1398-1406. |
[9] | 江蓝, 魏晨思, 何中声, 朱静, 邢聪, 王雪琳, 刘金福, 沈彩霞, 施友文. 格氏栲天然林林窗植物群落功能性状的变异[J]. 植物生态学报, 2022, 46(3): 267-279. |
[10] | 张义, 程杰, 苏纪帅, 程积民. 长期封育演替下典型草原植物群落生产力与多样性关系[J]. 植物生态学报, 2022, 46(2): 176-187. |
[11] | 罗源林, 马文红, 张芯毓, 苏闯, 史亚博, 赵利清. 内蒙古锦鸡儿属植物地理替代分布种的功能性状沿环境梯度的变化[J]. 植物生态学报, 2022, 46(11): 1364-1375. |
[12] | 祁鲁玉, 陈浩楠, 库丽洪·赛热别力, 籍天宇, 孟高德, 秦慧颖, 王宁, 宋逸欣, 刘春雨, 杜宁, 郭卫华. 基于植物功能性状的暖温带5种灌木幼苗生长策略[J]. 植物生态学报, 2022, 46(11): 1388-1399. |
[13] | 严正兵, 刘树文, 吴锦. 高光谱遥感技术在植物功能性状监测中的应用与展望[J]. 植物生态学报, 2022, 46(10): 1151-1166. |
[14] | 张景慧, 王铮, 黄永梅, 陈慧颖, 李智勇, 梁存柱. 草地利用方式对温性典型草原优势种植物功能性状的影响[J]. 植物生态学报, 2021, 45(8): 818-833. |
[15] | 朱蔚娜, 张国龙, 张璞进, 张迁迁, 任瑾涛, 徐步云, 清华. 大针茅草原6种主要植物叶凋落物和根系分解特征与功能性状的关系[J]. 植物生态学报, 2021, 45(6): 606-616. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19