植物生态学报 ›› 2023, Vol. 47 ›› Issue (10): 1398-1406.DOI: 10.17521/cjpe.2022.0256
所属专题: 植物功能性状
张增可1, 李曾燕1, 杨柏钰1, 赛碧乐1, 杨安娜1, 张立1, 牟凌1, 郑俊勇1, 金乐薇1, 赵钊1, 王万胜2, 杜运才2, 阎恩荣1,*()
收稿日期:
2022-06-17
接受日期:
2022-12-05
出版日期:
2023-10-20
发布日期:
2023-11-23
通讯作者:
* (基金资助:
ZHANG Zeng-Ke1, LI Zeng-Yan1, YANG Bai-Yu1, SAI Bi-Le1, YANG An-Na1, ZHANG Li1, MOU Ling1, ZHENG Jun-Yong1, JIN Le-Wei1, ZHAO Zhao1, WANG Wan-Sheng2, DU Yun-Cai2, YAN En-Rong1,*()
Received:
2022-06-17
Accepted:
2022-12-05
Online:
2023-10-20
Published:
2023-11-23
Contact:
* (Supported by:
摘要:
揭示功能性状如何影响关键植物种群特征有助于深化对群落动态的理解。该研究基于上海大金山岛26种常见木本植物5年期(2016-2021年)生长死亡动态的监测数据, 通过测量各物种与光、水和养分资源竞争与利用策略相关的9个叶片和木质性状, 分析了不同功能性状单独及其综合形成的植物经济谱与物种相对生长率和死亡率的关系。结果显示: 叶面积和叶片氮含量与物种相对生长率显著正相关, 叶片厚度、小枝密度和叶干物质含量与相对生长率显著负相关。干材密度和小枝密度与物种相对死亡率显著负相关。由9个功能性状构成的植物经济谱可解释物种相对生长率32.8%的变异, 但是与相对死亡率无显著相关关系; 资源获取型物种比保守型物种具有更高的相对生长率。以上结果表明, 植物功能性状是影响植物生长的重要因素, 植物经济谱可较准确地预测物种间相对生长率的差异, 但对物种相对死亡率的预测较弱。
张增可, 李曾燕, 杨柏钰, 赛碧乐, 杨安娜, 张立, 牟凌, 郑俊勇, 金乐薇, 赵钊, 王万胜, 杜运才, 阎恩荣. 上海大金山岛常见木本植物功能性状对生长和死亡的影响. 植物生态学报, 2023, 47(10): 1398-1406. DOI: 10.17521/cjpe.2022.0256
ZHANG Zeng-Ke, LI Zeng-Yan, YANG Bai-Yu, SAI Bi-Le, YANG An-Na, ZHANG Li, MOU Ling, ZHENG Jun-Yong, JIN Le-Wei, ZHAO Zhao, WANG Wan-Sheng, DU Yun-Cai, YAN En-Rong. Functional traits influence the growth and mortality of common woody plants in Dajinshan Island, Shanghai, China. Chinese Journal of Plant Ecology, 2023, 47(10): 1398-1406. DOI: 10.17521/cjpe.2022.0256
物种 Species | 科 Family | 2016年多度(株) Abundance in 2016 (individual) | 2021年多度(株) Abundance in 2021 (individual) | 生长率 Growth rate (a?1) | 死亡率 Mortality rate (a?1) |
---|---|---|---|---|---|
天竺桂 Cinnamomum japonicum | 樟科 Lauraceae | 56 | 64 | 3.14 | 0.00 |
豆梨 Pyrus calleryana | 蔷薇科 Rosaceae | 10 | 9 | 2.14 | 2.09 |
白杜 Euonymus maackii | 卫矛科 Celastraceae | 16 | 16 | 1.93 | 0.00 |
小叶女贞 Ligustrum quihoui | 木犀科 Oleaceae | 87 | 84 | 4.61 | 0.70 |
柃木 Eurya japonica | 山茶科 Pentaphylacaceae | 148 | 142 | 4.34 | 0.82 |
楤木 Aralia elata | 五加科 Araliaceae | 21 | 20 | 5.67 | 0.97 |
白檀 Symplocos tanakana | 山矾科 Symplocaceae | 308 | 290 | 3.79 | 1.20 |
青冈 Cyclobalanopsis glauca | 壳斗科 Fagaceae | 256 | 237 | 4.34 | 1.53 |
桑 Morus alba | 桑科 Moraceae | 39 | 33 | 5.49 | 3.29 |
算盘子 Glochidion puberum | 叶下珠科 Phyllanthaceae | 16 | 13 | 2.99 | 4.07 |
小蜡 Ligustrum sinense | 木犀科 Oleaceae | 21 | 17 | 1.56 | 4.14 |
麻栎 Quercus acutissima | 壳斗科 Fagaceae | 28 | 22 | 2.91 | 4.71 |
椿叶花椒 Zanthoxylum ailanthoides | 芸香科 Rutaceae | 37 | 27 | 4.26 | 6.11 |
柘 Maclura tricuspidata | 桑科 Moraceae | 67 | 48 | 2.61 | 6.45 |
朴树 Celtis sinensis | 榆科 Ulmaceae | 60 | 41 | 2.57 | 7.33 |
红楠 Machilus thunbergii | 樟科 Lauraceae | 63 | 43 | 0.01 | 7.35 |
海桐 Pittosporum tobira | 海桐花科 Pittosporaceae | 11 | 7 | 1.44 | 8.64 |
黄连木 Pistacia chinensis | 漆树科 Anacardiaceae | 11 | 7 | 1.55 | 8.64 |
野桐 Mallotus tenuifolius | 大戟科 Euphorbiaceae | 683 | 430 | 2.84 | 8.84 |
枸骨 IIex cornuta | 冬青科 Aquifoliaceae | 13 | 8 | 1.59 | 9.25 |
胡颓子 Elaeagnus pungens | 胡颓子科 Elaeagnaceae | 10 | 5 | 1.73 | 12.94 |
黄檀 Dalbergia hupeana | 豆科 Fabaceae | 45 | 21 | 7.92 | 14.14 |
楝 Melia azedarach | 楝科 Meliaceae | 11 | 5 | 5.18 | 14.59 |
盐肤木 Rhus chinensis | 漆树科 Anacardiaceae | 17 | 7 | 8.70 | 16.26 |
构树 Broussonetia papyrifera | 桑科 Moraceae | 42 | 13 | 4.01 | 20.91 |
海州常山 Clerodendrum trichotomum | 马鞭草科 Lamiaceae | 117 | 34 | 8.15 | 21.90 |
表1 大金山岛26个优势树种信息
Table 1 Summary information of the 26 dominant tree species in Dajinshan Island
物种 Species | 科 Family | 2016年多度(株) Abundance in 2016 (individual) | 2021年多度(株) Abundance in 2021 (individual) | 生长率 Growth rate (a?1) | 死亡率 Mortality rate (a?1) |
---|---|---|---|---|---|
天竺桂 Cinnamomum japonicum | 樟科 Lauraceae | 56 | 64 | 3.14 | 0.00 |
豆梨 Pyrus calleryana | 蔷薇科 Rosaceae | 10 | 9 | 2.14 | 2.09 |
白杜 Euonymus maackii | 卫矛科 Celastraceae | 16 | 16 | 1.93 | 0.00 |
小叶女贞 Ligustrum quihoui | 木犀科 Oleaceae | 87 | 84 | 4.61 | 0.70 |
柃木 Eurya japonica | 山茶科 Pentaphylacaceae | 148 | 142 | 4.34 | 0.82 |
楤木 Aralia elata | 五加科 Araliaceae | 21 | 20 | 5.67 | 0.97 |
白檀 Symplocos tanakana | 山矾科 Symplocaceae | 308 | 290 | 3.79 | 1.20 |
青冈 Cyclobalanopsis glauca | 壳斗科 Fagaceae | 256 | 237 | 4.34 | 1.53 |
桑 Morus alba | 桑科 Moraceae | 39 | 33 | 5.49 | 3.29 |
算盘子 Glochidion puberum | 叶下珠科 Phyllanthaceae | 16 | 13 | 2.99 | 4.07 |
小蜡 Ligustrum sinense | 木犀科 Oleaceae | 21 | 17 | 1.56 | 4.14 |
麻栎 Quercus acutissima | 壳斗科 Fagaceae | 28 | 22 | 2.91 | 4.71 |
椿叶花椒 Zanthoxylum ailanthoides | 芸香科 Rutaceae | 37 | 27 | 4.26 | 6.11 |
柘 Maclura tricuspidata | 桑科 Moraceae | 67 | 48 | 2.61 | 6.45 |
朴树 Celtis sinensis | 榆科 Ulmaceae | 60 | 41 | 2.57 | 7.33 |
红楠 Machilus thunbergii | 樟科 Lauraceae | 63 | 43 | 0.01 | 7.35 |
海桐 Pittosporum tobira | 海桐花科 Pittosporaceae | 11 | 7 | 1.44 | 8.64 |
黄连木 Pistacia chinensis | 漆树科 Anacardiaceae | 11 | 7 | 1.55 | 8.64 |
野桐 Mallotus tenuifolius | 大戟科 Euphorbiaceae | 683 | 430 | 2.84 | 8.84 |
枸骨 IIex cornuta | 冬青科 Aquifoliaceae | 13 | 8 | 1.59 | 9.25 |
胡颓子 Elaeagnus pungens | 胡颓子科 Elaeagnaceae | 10 | 5 | 1.73 | 12.94 |
黄檀 Dalbergia hupeana | 豆科 Fabaceae | 45 | 21 | 7.92 | 14.14 |
楝 Melia azedarach | 楝科 Meliaceae | 11 | 5 | 5.18 | 14.59 |
盐肤木 Rhus chinensis | 漆树科 Anacardiaceae | 17 | 7 | 8.70 | 16.26 |
构树 Broussonetia papyrifera | 桑科 Moraceae | 42 | 13 | 4.01 | 20.91 |
海州常山 Clerodendrum trichotomum | 马鞭草科 Lamiaceae | 117 | 34 | 8.15 | 21.90 |
功能性状 Functional trait | 简写 Abbreviation | 单位 Unit | 平均值 Mean | 最大值 Max | 最小值 Min | 标准差 SD |
---|---|---|---|---|---|---|
干材密度 Wood density | WD | g·cm-3 | 0.56 | 0.98 | 0.26 | 0.13 |
叶干物质含量 Leaf dry matter content | LDMC | % | 0.33 | 0.50 | 0.17 | 0.08 |
比叶面积 Specific leaf area | SLA | cm2·g-1 | 182.63 | 397.55 | 32.00 | 79.43 |
单叶面积 Mean leaf area | MLA | cm2 | 55.68 | 328.68 | 2.49 | 64.98 |
小枝木材密度 Twig wood density | TWD | g·cm-3 | 0.51 | 1.19 | 0.11 | 0.19 |
最大树高 Maximum tree height | H | m | 11.19 | 30.00 | 3.00 | 6.91 |
叶厚度 Leaf thickness | LT | mm | 0.19 | 0.70 | 0.07 | 0.12 |
叶氮含量 Leaf nitrogen content | LNC | g·kg-1 | 21.68 | 34.71 | 8.81 | 6.54 |
叶磷含量 Leaf phosphorus content | LPC | g·kg-1 | 1.57 | 9.50 | 0.52 | 1.88 |
表2 大金山岛优势树种9种植物功能性状统计学分析
Table 2 Statistical analysis of 9 plant functional traits of dominant species in Dajinshan Island
功能性状 Functional trait | 简写 Abbreviation | 单位 Unit | 平均值 Mean | 最大值 Max | 最小值 Min | 标准差 SD |
---|---|---|---|---|---|---|
干材密度 Wood density | WD | g·cm-3 | 0.56 | 0.98 | 0.26 | 0.13 |
叶干物质含量 Leaf dry matter content | LDMC | % | 0.33 | 0.50 | 0.17 | 0.08 |
比叶面积 Specific leaf area | SLA | cm2·g-1 | 182.63 | 397.55 | 32.00 | 79.43 |
单叶面积 Mean leaf area | MLA | cm2 | 55.68 | 328.68 | 2.49 | 64.98 |
小枝木材密度 Twig wood density | TWD | g·cm-3 | 0.51 | 1.19 | 0.11 | 0.19 |
最大树高 Maximum tree height | H | m | 11.19 | 30.00 | 3.00 | 6.91 |
叶厚度 Leaf thickness | LT | mm | 0.19 | 0.70 | 0.07 | 0.12 |
叶氮含量 Leaf nitrogen content | LNC | g·kg-1 | 21.68 | 34.71 | 8.81 | 6.54 |
叶磷含量 Leaf phosphorus content | LPC | g·kg-1 | 1.57 | 9.50 | 0.52 | 1.88 |
功能性状 Functional trait | 相对生长率 Relative growth rate | 相对死亡率 Relative mortality rate | ||||||
---|---|---|---|---|---|---|---|---|
估计值 Estimate | R2 | 误差 Error | p | 估计值 Estimate | R2 | 误差 Error | p | |
干材密度 Wood density | -0.25 | 0.06 | 0.16 | 0.12 | -0.32 | 0.13 | 0.14 | 0.03 |
叶干物质含量 Leaf dry matter content | -0.48 | 0.23 | 0.14 | 0.02 | -0.28 | 0.09 | 0.15 | 0.07 |
小枝木材密度 Twig wood density | -0.36 | 0.18 | 0.15 | 0.02 | -0.35 | 0.14 | 0.14 | 0.01 |
比叶面积 Specific leaf area | 0.46 | 0.27 | 0.15 | 0.00 | 0.10 | 0.01 | 0.15 | 0.52 |
单叶面积 Mean leaf area | 0.28 | 0.07 | 0.17 | 0.11 | 0.22 | 0.06 | 0.15 | 0.14 |
叶厚度 Leaf thickness | -0.36 | 0.12 | 0.17 | 0.05 | -0.01 | 0.00 | 0.15 | 0.98 |
最大树高 Maximum tree height | 0.02 | 0.00 | 0.19 | 0.87 | 0.06 | 0.00 | 0.16 | 0.70 |
叶氮含量 Leaf nitrogen content | 0.45 | 0.18 | 0.17 | 0.02 | 0.11 | 0.01 | 0.17 | 0.51 |
叶磷含量 Leaf phosphorus content | 0.01 | 0.00 | 0.20 | 0.92 | 0.00 | 0.00 | 0.15 | 0.98 |
表3 大金山岛常见植物功能性状影响相对生长率和死亡率的线性混合模型评估结果
Table 3 Evaluation results of linear mixed model for the effects of plant functional traits on relative growth rates and mortality rates of common species in Dajinshan Island
功能性状 Functional trait | 相对生长率 Relative growth rate | 相对死亡率 Relative mortality rate | ||||||
---|---|---|---|---|---|---|---|---|
估计值 Estimate | R2 | 误差 Error | p | 估计值 Estimate | R2 | 误差 Error | p | |
干材密度 Wood density | -0.25 | 0.06 | 0.16 | 0.12 | -0.32 | 0.13 | 0.14 | 0.03 |
叶干物质含量 Leaf dry matter content | -0.48 | 0.23 | 0.14 | 0.02 | -0.28 | 0.09 | 0.15 | 0.07 |
小枝木材密度 Twig wood density | -0.36 | 0.18 | 0.15 | 0.02 | -0.35 | 0.14 | 0.14 | 0.01 |
比叶面积 Specific leaf area | 0.46 | 0.27 | 0.15 | 0.00 | 0.10 | 0.01 | 0.15 | 0.52 |
单叶面积 Mean leaf area | 0.28 | 0.07 | 0.17 | 0.11 | 0.22 | 0.06 | 0.15 | 0.14 |
叶厚度 Leaf thickness | -0.36 | 0.12 | 0.17 | 0.05 | -0.01 | 0.00 | 0.15 | 0.98 |
最大树高 Maximum tree height | 0.02 | 0.00 | 0.19 | 0.87 | 0.06 | 0.00 | 0.16 | 0.70 |
叶氮含量 Leaf nitrogen content | 0.45 | 0.18 | 0.17 | 0.02 | 0.11 | 0.01 | 0.17 | 0.51 |
叶磷含量 Leaf phosphorus content | 0.01 | 0.00 | 0.20 | 0.92 | 0.00 | 0.00 | 0.15 | 0.98 |
图1 大金山岛26个物种植物经济谱(A)及其系统发育主成分(PC)得分与物种相对生长率(B)和死亡率(C)的关系。回归线阴影部分为95%的置信区间。H, 最大树高; LDMC, 叶干物质含量; LNC, 叶氮含量; LPC, 叶磷含量; LT, 叶厚度; MLA, 单叶面积; SLA, 比叶面积; TWD, 小枝密度; WD, 干材密度。
Fig. 1 Plant economics spectrum of 26 species in Dajinshan Island (A) and the relationship of the phylogenetic principal component (PC) analysis score in the economics spectrum with each of relative growth rate (B) and mortality rate (C). The shadow of the regression line is the 95% confidence interval. H, maximum tree height; LDMC, leaf dry mass content; LNC, leaf nitrogen content; LPC, leaf phosphorus content; LT, leaf thickness; MLA, mean leaf area; SLA, specific leaf area; TWD, twig wood density; WD, wood density.
[1] | Ali AM, Darvishzadeh R, Shahi KR, Skidmore A (2019). Validating the predictive power of statistical models in retrieving leaf dry matter content of a coastal wetland from a Sentinel-2 Image. Remote Sensing, 11, 1936. DOI: 10.3390/rs11161936. |
[2] |
Baltzer JL, Davies SJ, Bunyavejchewin S, Noor NSM (2008). The role of desiccation tolerance in determining tree species distributions along the Malay-Thai Peninsula. Functional Ecology, 22, 221-231.
DOI URL |
[3] |
Chaturvedi RK, Raghubanshi AS, Singh JS (2013). Relative effects of different leaf attributes on sapling growth in tropical dry forest. Journal of Plant Ecology, 7, 544-558.
DOI URL |
[4] |
Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12, 351-366.
DOI PMID |
[5] |
Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380.
DOI URL |
[6] | Da LJ, Yang YC, Chen YP (2004). The diversity of plant community on Dajinshan Island, Shanghai. Journal of Chinese Urban Forestry, 2(3), 22-25. |
[达良俊, 杨永川, 陈燕萍 (2004). 上海大金山岛的自然植物群落多样性. 城镇绿化, 2(3), 22-25.] | |
[7] | Flores O, Hérault B, Delcamp M, Garnier É, Gourlet-Fleury S (2014). Functional traits help predict post-disturbance demography of tropical trees. PLoS ONE, 9, e105022. DOI: 10.1371/journal.pone.0105022. |
[8] |
Garnier E, Cortez J, Billès G, Navas ML, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint JP (2004). Plant functional markers capture ecosystem properties during secondary succession. Ecology, 85, 2630-2637.
DOI URL |
[9] |
He PC, Lian JY, Ye Q, Liu H, Zheng Y, Yu KL, Zhu SD, Li RH, Yin DY, Ye WH, Wright IJ (2022). How do functional traits influence tree demographic properties in a subtropical monsoon forest? Functional Ecology, 36, 3200-3210.
DOI URL |
[10] |
He NP, Li Y, Liu CC, Xu L, Li MX, Zhang JH, He JS, Tang ZY, Han XG, Ye Q, Xiao CW, Yu Q, Liu SR, Sun W, Niu SL, et al. (2020). Plant trait networks: improved resolution of the dimensionality of adaptation. Trends Ecology Evolution, 35, 908-918.
DOI URL |
[11] |
Kazakou E, Vile D, Shipley B, Gallet C, Garnier E (2006). Co-variations in litter decomposition, leaf traits and plant growth in species from a Mediterranean old-field succession. Functional Ecology, 20, 21-30.
DOI URL |
[12] |
Kraft NJB, Metz MR, Condit RS, Chave J (2010). The relationship between wood density and mortality in a global tropical forest data set. New Phytologist, 188, 1124-1136.
DOI PMID |
[13] |
Li YP, Ni YL, Xu H, Lian JY, Ye WH (2021). Relationship between variation of plant functional traits and individual growth at different vertical layers in a subtropical evergreen broad-leaved forest of Dinghushan. Biodiversity Science, 29, 1186-1197.
DOI URL |
[李艳朋, 倪云龙, 许涵, 练琚愉, 叶万辉 (2021). 鼎湖山南亚热带常绿阔叶林植物功能性状变异与不同垂直层次个体生长的关联. 生物多样性, 29, 1186-1197.]
DOI |
|
[14] | Liu XJ, Ma KP (2015). Plant functional traits—Concepts, applications and future directions. Scientia Sinica (Vitae), 45, 325-339. |
[刘晓娟, 马克平 (2015). 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.] | |
[15] |
Martínez-Vilalta J, Mencuccini M, Vayreda J, Retana J (2010). Interspecific variation in functional traits, not climatic differences among species ranges, determines demographic rates across 44 temperate and Mediterranean tree species. Journal of Ecology, 98, 1462-1475.
DOI URL |
[16] |
McGill BJ, Enquist BJ, Weiher E, Westoby M (2006). Rebuilding community ecology from functional traits. Trends in Ecology & Evolution, 21, 178-185.
DOI URL |
[17] |
Nijs I, Behaeghe T, Impens I (1995). Leaf nitrogen content as a predictor of photosynthetic capacity in ambient and global change conditions. Journal of Biogeography, 22, 177-183.
DOI URL |
[18] |
Paine CET, Amissah L, Auge H, Baraloto C, Baruffol M, Bourland N, Bruelheide H, Daïnou K, de Gouvenain RC, Doucet JL, Doust S, Fine PVA, Fortunel C, Haase J, Holl KD, et al. (2015). Globally, functional traits are weak predictors of juvenile tree growth, and we do not know why. Journal of Ecology, 103, 978-989.
DOI URL |
[19] |
Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, et al. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167-234.
DOI URL |
[20] |
Pianka ER (1970). On r- and K-selection. The American Naturalist, 104, 592-597.
DOI URL |
[21] |
Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009). Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytologist, 182, 565-588.
DOI URL |
[22] |
Poorter L, Bongers F (2006). Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology, 87, 1733-1743.
PMID |
[23] |
Poorter L, Wright SJ, Paz H, Ackerly DD, Condit R, Ibarra- Manríques G, Harms KE, Licona JC, Martínez-Ramos M, Mazer SJ, Muller-Landau HC, Peña-Claros M, Webb CO, Wright IJ (2008). Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology, 89, 1908-1920.
DOI PMID |
[24] | Prado-Junior JA, Schiavini I, Vale VS, Raymundo D, Lopes SF, Poorter L (2016). Functional traits shape size- dependent growth and mortality rates of dry forest tree species. Journal of Plant Ecology, 10, 895-906. |
[25] | Reich PB, Wright IJ, Cavender-Bares J, Craine JM, Oleksyn J, Westoby M, Walters MB (2003). The evolution of plant functional variation: traits, spectra, and strategies. International Journal of Plant Sciences, 164, S143-S164. |
[26] |
Revell LJ (2012). Phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3, 217-223.
DOI URL |
[27] |
Rüger N, Wirth C, Wright SJ, Condit R (2012). Functional traits explain light and size response of growth rates in tropical tree species. Ecology, 93, 2626-2636.
PMID |
[28] |
Shen Y, Umaña MN, Li WB, Fang M, Chen YX, Lu HP, Yu SX (2019). Coordination of leaf, stem and root traits in determining seedling mortality in a subtropical forest. Forest Ecology and Management, 446, 285-292.
DOI URL |
[29] |
Silva MAM, de Vasconcelos Freitas Pinto A, do Nascimento LM, Lins-e-Silva ACB, de Lima ALA, de Sá Barretto Sampaio EV, Rodal MJN (2017). Traits and functional strategies as predictors of demographic variations over a chronosequence. Brazilian Journal of Botany, 40, 761-770.
DOI URL |
[30] |
Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier EJO (2007). Let the concept of trait be functional! Oikos, 116, 882-892.
DOI URL |
[31] |
Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002). Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33, 125-159.
DOI URL |
[32] |
Westoby M, Wright IJ (2006). Land-plant ecology on the basis of functional traits. Trends in Ecology & Evolution, 21, 261-268.
DOI URL |
[33] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
DOI |
[34] |
Wright SJ, Kitajima K, Kraft NJB, Reich PB, Wright IJ, Bunker DE, Condit R, Dalling JW, Davies SJ, Díaz S, Engelbrecht BMJ, Harms KE, Hubbell SP, Marks CO, Ruiz-Jaen MC, et al. (2010). Functional traits and the growth-mortality trade-off in tropical trees. Ecology, 91, 3664-3674.
PMID |
[35] | Xu MS, Zhu XT, Wang WS, Du YC, Wang YY, Liang QM, Zheng LT, Yan ER (2022). Vegetation classification and mapping of Dajinshan Island: a grid inventory-based approach. Guihaia, 42, 1273-1283. |
[许洺山, 朱晓彤, 王万胜, 杜运才, 汪彦颖, 梁启明, 郑丽婷, 阎恩荣 (2022). 上海大金山岛植被分类与制图——基于网格化清查方法. 广西植物, 42, 1273-1283.] | |
[36] |
Yang J, Cao M, Swenson NG (2018). Why functional traits do not predict tree demographic rates. Trends in Ecology & Evolution, 33, 326-336.
DOI URL |
[1] | 周建 王焓. 森林径级结构研究:从统计描述到理论演绎[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 彭仲韬 金光泽 刘志理. 小兴安岭三种槭树叶性状随植株大小和林冠条件的变异[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 袁雅妮, 周哲, 陈彬洲, 郭垚鑫, 岳明. 基于功能性状的锐齿槲栎林共存树种生态策略差异[J]. 植物生态学报, 2023, 47(9): 1270-1277. |
[4] | 赵镇贤, 陈银萍, 王立龙, 王彤彤, 李玉强. 河西走廊荒漠区不同功能类群植物叶片建成成本的比较[J]. 植物生态学报, 2023, 47(11): 1551-1560. |
[5] | 代远萌, 李满乐, 徐铭泽, 田赟, 赵洪贤, 高圣杰, 郝少荣, 刘鹏, 贾昕, 查天山. 毛乌素沙地沙丘不同固定阶段黑沙蒿叶性状特征[J]. 植物生态学报, 2022, 46(11): 1376-1387. |
[6] | 祁鲁玉, 陈浩楠, 库丽洪·赛热别力, 籍天宇, 孟高德, 秦慧颖, 王宁, 宋逸欣, 刘春雨, 杜宁, 郭卫华. 基于植物功能性状的暖温带5种灌木幼苗生长策略[J]. 植物生态学报, 2022, 46(11): 1388-1399. |
[7] | 王钊颖, 陈晓萍, 程英, 王满堂, 钟全林, 李曼, 程栋梁. 武夷山49种木本植物叶片与细根经济谱[J]. 植物生态学报, 2021, 45(3): 242-252. |
[8] | 谭一波, 田红灯, 曾春阳, 沈浩, 申文辉, 叶建平, 甘国娟. 猫儿山铁杉相邻植株冠层机械磨损对枝叶性状的影响[J]. 植物生态学报, 2021, 45(12): 1281-1291. |
[9] | 李群, 赵成章, 王继伟, 文军, 李子琴, 马俊逸. 甘肃小苏干湖盐沼湿地盐地风毛菊叶形态-光合生理特征对淹水的响应[J]. 植物生态学报, 2019, 43(8): 685-696. |
[10] | 李志民, 王传宽, 罗丹丹. 兴安落叶松叶水力与光合性状的变异性和相关性[J]. 植物生态学报, 2017, 41(11): 1140-1148. |
[11] | 祝介东, 孟婷婷, 倪健, 苏宏新, 谢宗强, 张守仁, 郑元润, 肖春旺. 不同气候带间成熟林植物叶性状间异速生长关系 随功能型的变异[J]. 植物生态学报, 2011, 35(7): 687-698. |
[12] | 徐申林, 刘文哲. 喜树花序内性别表达及性别分配[J]. 植物生态学报, 2011, 35(12): 1290-1299. |
[13] | 万宏伟, 杨阳, 白世勤, 徐云虎, 白永飞. 羊草草原群落6种植物叶片功能特性对氮素添加的响应[J]. 植物生态学报, 2008, 32(3): 611-621. |
[14] | 牟美蓉, 蒋巧兰, 王文卿. 真红树和半红树植物叶片氯含量及叶性状的比较[J]. 植物生态学报, 2007, 31(3): 497-504. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19