植物生态学报 ›› 2017, Vol. 41 ›› Issue (11): 1140-1148.DOI: 10.17521/cjpe.2017.0049
所属专题: 植物功能性状
收稿日期:
2017-02-28
接受日期:
2017-08-26
出版日期:
2017-11-10
发布日期:
2017-11-10
通讯作者:
王传宽
基金资助:
Zhi-Min LI, Chuan-Kuan WANG*(), Dan-Dan LUO
Received:
2017-02-28
Accepted:
2017-08-26
Online:
2017-11-10
Published:
2017-11-10
Contact:
Chuan-Kuan WANG
摘要:
树木叶水力和光合性状的变异性及权衡策略对评估和预测气候变化对树木的存活、生长及分布至关重要。在帽儿山森林生态站27年生兴安落叶松(Larix gmelinii)人工林从山谷至山脊设立一条由5个样地组成的全坡位样带, 测量兴安落叶松黎明前叶水势(Ψpre)、基于叶面积和叶质量的水力导度(Karea和Kmass)、抗栓塞能力(P50)、比叶质量(LMA)、净光合速率(A)、叶氮含量(N)等叶水力和光合相关参数, 探索其叶性状随立地条件的变异性和相关性。结果表明: 不同样地的Ψpre、Karea、Kmass、P50、A、LMA和N均存在显著差异(p < 0.05), 表明叶性状随立地条件变化而表现出显著的种内变异性。Ψpre和Karea或Kmass均与P50显著相关(p < 0.05), 表明兴安落叶松种内存在一定的水力效率与安全权衡关系。A、LMA和N均存在成对相关关系(p < 0.05)。然而,水力性状与光合性状之间相关不显著。兴安落叶松响应于立地条件变化而表现出的叶水力和光合性状的可塑性和多重相关性, 是该树种的一种生存生长策略。
李志民, 王传宽, 罗丹丹. 兴安落叶松叶水力与光合性状的变异性和相关性. 植物生态学报, 2017, 41(11): 1140-1148. DOI: 10.17521/cjpe.2017.0049
Zhi-Min LI, Chuan-Kuan WANG, Dan-Dan LUO. Variations and interrelationships of foliar hydraulic and photosynthetic traits for Larix gmelinii. Chinese Journal of Plant Ecology, 2017, 41(11): 1140-1148. DOI: 10.17521/cjpe.2017.0049
样地号 Plot code | 离山谷的距离 Distance from valley (m) | 样地 Plot | 样树 Sample tree | |||
---|---|---|---|---|---|---|
胸高断面积 Basal area (m2·hm-2) | 密度 Density (trees·hm-2) | 平均胸径 Mean DBH (cm) | 平均胸径 Mean DBH (cm) | 平均树高 Mean tree height (m) | ||
P1 | 20-40 | 28.2 ± 5.0ab | 1β778 ± 192ab | 12.9 ± 3.5a | 13.9 ± 0.5b | 13.0 ± 0.6c |
P2 | 140-160 | 54.5 ± 21.3a | 2β222 ± 855ab | 19.5 ± 7.3a | 17.2 ± 1.4ab | 16.3 ± 1.7ab |
P3 | 260-280 | 64.5 ± 20.2a | 2β444 ± 385a | 17.3 ± 3.3a | 17.9 ± 1.7a | 17.3 ± 1.0a |
P4 | 540-560 | 28.2 ± 7.2ab | 1β167 ± 167bc | 16.1 ± 0.6a | 17.2 ± 1.3ab | 15.1 ± 1.0ab |
P5 | 980-1β000 | 13.2 ± 4.9b | 722 ± 192c | 15.5 ± 2.8a | 14.9 ± 1.0ab | 14.3 ± 0.8b |
表1 样地和样树的基本特征(平均值±标准偏差, n = 15)
Table 1 Basic characteristics of the sample plots and trees (mean ± SD, n = 15)
样地号 Plot code | 离山谷的距离 Distance from valley (m) | 样地 Plot | 样树 Sample tree | |||
---|---|---|---|---|---|---|
胸高断面积 Basal area (m2·hm-2) | 密度 Density (trees·hm-2) | 平均胸径 Mean DBH (cm) | 平均胸径 Mean DBH (cm) | 平均树高 Mean tree height (m) | ||
P1 | 20-40 | 28.2 ± 5.0ab | 1β778 ± 192ab | 12.9 ± 3.5a | 13.9 ± 0.5b | 13.0 ± 0.6c |
P2 | 140-160 | 54.5 ± 21.3a | 2β222 ± 855ab | 19.5 ± 7.3a | 17.2 ± 1.4ab | 16.3 ± 1.7ab |
P3 | 260-280 | 64.5 ± 20.2a | 2β444 ± 385a | 17.3 ± 3.3a | 17.9 ± 1.7a | 17.3 ± 1.0a |
P4 | 540-560 | 28.2 ± 7.2ab | 1β167 ± 167bc | 16.1 ± 0.6a | 17.2 ± 1.3ab | 15.1 ± 1.0ab |
P5 | 980-1β000 | 13.2 ± 4.9b | 722 ± 192c | 15.5 ± 2.8a | 14.9 ± 1.0ab | 14.3 ± 0.8b |
图2 不同样地兴安落叶松水力和光合性状的比较(平均值±标准偏差)。Karea, 基于叶面积的水力导度; P50, 导水率丢失50%所对应的叶水势; Ψpre, 黎明前叶水势; A, 净光合速率; LMA, 比叶质量; N, 叶氮含量; P1-P5, 样地代码见表1。不同小写字母表示样地间差异显著(p < 0.05)。
Fig. 2 Comparisons of leaf hydraulic and photosynthesis traits among the plots of Larix gmelinii (mean ± SD). Karea, area-based leaf hydraulic conductance; Ψpre, predawn leaf water potential; A, net photosynthesis rate; P50, leaf water potential inducing 50% loss of the leaf hydraulic conductance; LMA, leaf mass per area; N, leaf nitrogen content; P1-P5, refer to Table 1 for Plot codes. Different lowercase letters indicate significant differences among the plots (p < 0.05).
图3 兴安落叶松水力性状之间的关系。Karea, 基于叶面积的水力导度; P50, 导水率丢失50%所对应的叶水势; Ψpre, 黎明前叶水势; H, 树高. 空心方形、圆形和三角形分别表示P1、P2和P3样地, 实心方形和圆形分别表示P4和P5样地。所有的样本数均为60。
Fig. 3 Relationships between leaf hydraulic traits for Larix gmelinii. Karea, area-based leaf hydraulic conductance; P50, leaf water potential inducing 50% loss of the leaf hydraulic conductance; Ψpre, predawn leaf water potential; H, tree height. Hollow square circle, and triangle represent P1 plot, P2 plot, and P3 plot, respectively; solid square and triangle represent P4 plot and P5 plot, respectively. All sample sizes are 60.
图4 兴安落叶松光合性状间的关系。A, 净光合速率; N, 叶氮含量; LMA, 比叶质量; 空心方形、圆形和三角形分别表示P1、P2和P3样地, 实心方形和圆形分别表示P4和P5样地。所有的样本数均为60。
Fig. 4 Relationships between leaf photosynthetic traits for Larix gmelinii. A, net photosynthesis rate; N, leaf nitrogen content; LMA, leaf mass per area. Hollow square circle, and triangle represent P1 plot, P2 plot, and P3 plot, respectively; solid square and triangle represent P4 plot and P5 plot, respectively. All sample sizes are 60.
图5 兴安落叶松光合和水力性状的关系。A, 净光合速率; Karea, 基于叶面积的水力导度; ek, 水力导度与树高的残差。空心方形、圆形和三角形分别表示P1、P2和P3样地, 实心方形和圆形分别表示P4和P5样地。所有的样本数为60。
Fig. 5 Relationships between leaf photosynthetic and hydraulic traits for Larix gmelinii. A, net photosynthesis rate; Karea, area-based leaf hydraulic conductance; ek, residuals between Karea and height. Hollow square circle, and triangle represent P1 plot, P2 plot, and P3 plot, respectively; solid square and triangle represent P4 plot and P5 plot, respectively. All sample sizes are 60.
图6 兴安落叶松水力和光合性状的主成分分析。Karea, 基于叶面积的水力导度; P50, 导水率丢失50%所对应的叶水势; A, 净光合速率; LMA, 比叶质量; N, 叶氮含量。灰色圆形, 光合性状; 黑色圆形, 水力性状。
Fig. 6 Principal component analysis of the hydraulic and photosynthetic traits for Larix gmelinii. Karea, area-based leaf hydraulic conductance; P50, leaf water potential inducing 50% loss of the leaf hydraulic conductance; A, net photosynthesis rate; LMA, leaf mass per area; N, leaf nitrogen content. Solid and hollow symbols represent hydraulic and photosynthetic traits, respectively.
[1] |
Ameglio T, Archer P, Cohen M, Valancogne C, Daudet F-A, Dayau S, Cruiziat P (1999). Significance and limits in the use of predawn leaf water potential for tree irrigation.Plant and Soil, 207, 155-167.
DOI URL |
[2] |
Aranda I, Cano FJ, Gascó A, Cochard H, Nardini A, Mancha JA, López R, Sánchez-Gómez D (2014). Variation in photosynthetic performance and hydraulic architecture across European beech (Fagus sylvatica L.) populations supports the case for local adaptation to water stress. Tree Physiology, 35, 34-46.
DOI URL PMID |
[3] |
Blackman CJ, Aspinwall MJ, Dios VR, Smith RA, Tissue DT (2016). Leaf photosynthetic, economics and hydraulic traits are decoupled among genotypes of a widespread species of eucalypt grown under ambient and elevated CO2.Functional Ecology, 30, 1491-1500.
DOI URL |
[4] |
Blackman CJ, Brodribb TJ, Jordan GJ (2010). Leaf hydraulic vulnerability is related to conduit dimensions and drought resistance across a diverse range of woody angiosperms.New Phytologist, 188, 1113-1123.
DOI URL PMID |
[5] | Brodribb TJ, Field TS, Jordan GJ (2007). Leaf maximum photosynthetic rate and venation are linked by hydraulic.Plant Physiology, 144, 1890-1898. |
[6] | Brodribb TJ, Holbrook NM (2003). Stomatal closure during leaf dehydration correlation with other leaf physiological traits.Plant Physiology, 132, 2166-2173. |
[7] | Brodribb TJ, Holbrook NM, Zwieniechi MA, Palma B (2005). Leaf hydraulic capacity in ferns, conifers and angiosperms: Impacts on photosynthetic maxima.New Phytologist, 165, 839-846. |
[8] |
Brodribb TJ, McAdam SAM, Jordan GJ, Martins SCV (2014). Conifer species adapt to low-rainfall climates by following one of two divergent pathways.Proceeding of the National Academy of Science of the United States of America, 111, 14489-14493.
DOI URL PMID |
[9] |
Faustino LI, Bulfe NML, Pinazo MA, Monteoliva SE, Graciano C (2013). Dry weight partitioning and hydraulic traits in young Pinus taeda trees fertilized with nitrogen and phosphorus in a subtropical area. Tree Physiology, 33, 241-251.
DOI URL PMID |
[10] |
Funk JL, Cornwell WK (2013). Leaf traits within communities: Context may affect the mapping of traits to function. Ecology, 94, 1893-1897.
DOI URL PMID |
[11] |
Gong R, Gao Q (2015). Research progress in the effects of leaf hydraulic characteristics on plant physiological functions.Chinese Journal of Plant Ecology, 39, 300-308. (in Chinese with English abstract)[龚容, 高琼 (2015). 叶片结构的水力学特性对植物生理功能影响的研究进展. 植物生态学报, 39, 300-308.]
DOI URL |
[12] |
Hajek P, Kurjar D, Wühlisch G, Delzon S, Schuldt B (2016). Intraspecific variation in wood anatomical, hydraulic, and foliar traits in ten European beech provenances differing in growth yield.Frontiers in Plant Science, 7, 791.
DOI URL PMID |
[13] |
Hassiotou F, Renton M, Ludwig M, Evans JR, Veneklaas EJ (2010). Photosynthesis at an extreme end of the leaf traits spectrum: How does it relate to high leaf dry mass per area and associated structural parameters?Journal of Experimental Botany, 61, 3015-3028.
DOI URL PMID |
[14] |
Jin Y, Wang C, Zhou Z, Li Z (2016). Co-ordinated performance of leaf hydraulic and economics in 10 Chinese temperate tree species.Functional Plant Biology, 42, 1082-1090.
DOI URL |
[15] |
Jin Y, Wang CK (2015). Trade-offs between plant leaf hydraulic and economic traits.Chinese Journal of Plant Ecology, 39, 1021-1032. (in Chinese with English abstract)[金鹰, 王传宽 (2015). 植物叶片水力与经济性状权衡关系的研究进展. 植物生态学报, 39, 1021-1032.]
DOI URL |
[16] |
Laughlin DC (2014). The intrinsic dimensionality of plant traits and its relevance to community assembly.Journal of Ecology, 102, 186-193.
DOI URL |
[17] | Li F, Zhou G, Cao M (2006). Responses of Larix gmelinii geographical distribution to future climate change—A simulation study. Chinese Journal of Applied Ecology, 17, 2255-2260. (in Chinese with English abstract)[李峰, 周广胜, 曹铭昌 (2006). 兴安落叶松地理分布对气候变化响应的模拟. 应用生态学报, 17, 2255-2260.] |
[18] |
Li L, McCormack ML, Ma C, Kong D, Zhang Q, Chen X, Zeng H, Niinemets ü, Guo D (2015). Leaf economics and hydraulic traits are decoupled in five species-rich tropical-subtropical forests.Ecology Letters, 18, 899-906.
DOI URL PMID |
[19] |
Maire V, Wright IJ, Prentice IC, Batjes NH, Bhaskar R, Bodegom PM, Cornwell WK, Ellsworth D, Niinemets ü, Ordonez A, Reich PB, Santiago LS (2015). Global effects of soil and climate on leaf photosynthetic traits and rates.Global Ecology and Biogeography, 24, 706-717.
DOI URL |
[20] |
Nardini A, Luglio J (2014). Leaf hydraulic capacity and drought vulnerability: Possible trade-offs and correlations with climate across three major biomes. Functional Ecology, 28, 810-818.
DOI URL |
[21] |
Nardini A, Pedà G, Rocca NL (2012). Trade-offs between leaf hydraulic capacity and drought vulnerability: Morpho- anatomical bases, carbon costs and ecological consequences.New Phytologist, 196, 788-798.
DOI URL PMID |
[22] |
Niinemets ü (2015). Is there a species spectrum within the world-wide leaf economics spectrum? Major variations in leaf functional traits in the Mediterranean sclerophyllQuercus iles. New Phytologist, 205, 79-96.
DOI URL PMID |
[23] |
Ocheltree TW, Nippert JB, Prasad PVV (2016). A safety vs efficiency trade-off identified in the hydraulic pathway of grass leaves is decoupled from photosynthesis, stomatal conductance and precipitation.New Phytologist, 210, 97-107.
DOI URL PMID |
[24] |
Ordonez JC, van Bodegom PM, Witte JPM, Wright IJ, Reich PB, Aerts R (2009). A global study of relationships between leaf traits, climate and soil measures of nutrient fertility.Global Ecology and Biogeography, 18, 137-149.
DOI URL |
[25] | Osnas JLD, Lichstein JW, Reich PB, Pacala SW (2013). Global leaf traits relationship: Mass, area, and the leaf economics spectrum.Science, 340, 741-744. |
[26] |
Ping C, Wang CK, Quan XK (2014). Influence of environmental changes on stoichiometric traits of nitrogen and phosphorus for Larix gmelinii trees. Acta Ecologica Sinica, 34, 1965-1974. (in Chinese with English abstract)[平川, 王传宽, 全先奎 (2014). 环境变化对兴安落叶松氮磷化学计量特征的影响. 生态学报, 34, 1965-1974.]
DOI URL |
[27] |
Poorter L, Bongers F (2006). Leaf traits are good predictors of plant performance across 53 rain forest species.Ecology, 87, 1733-1743.
DOI URL PMID |
[28] |
Quan XK, Wang CK (2015). Comparison of foliar water use efficiency among 17 provenances of Larix gmelinii in the Mao’ershan area. Chinese Journal of Plant Ecology, 39, 352-361. (in Chinese with English abstract)[全先奎, 王传宽 (2015). 帽儿山17个种源落叶松针叶的水分利用效率比较. 植物生态学报, 39, 352-361.]
DOI URL |
[29] | Quan XK, Wang CK (2016). Responses and influencing factors of foliar photosynthetic characteristics of Larix gmelinii to changing environments. China Science Bulletin, 61, 2273-2286. (in Chinese)[全先奎, 王传宽 (2016). 兴安落叶松光合特性对环境的适应及其影响因素. 科学通报, 61, 2273-2286.] |
[30] |
Reich PB (2014). The world-wide “fast-slow” plant economics spectrum: A traits manifesto.Journal of Ecology, 102, 275-301.
DOI URL |
[31] |
Sack L, Scoffoni C, John GP, Poorter H, Mason CM, Alonzo MR, Donovan LA (2013). How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis.Journal of Experimental Botany, 64, 4053-4080.
DOI URL PMID |
[32] |
Sack L, Tyree M, Holbrook NM (2005). Leaf hydraulic architecture correlates with regeneration irradiance in tropical rainforest trees.New Phytologist, 167, 403-413.
DOI URL PMID |
[33] |
Santiago LS, Goldstein G, Meinzer FC, Fisher JB, Machado K, Woodruff D, Jones T (2004). Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees.Oecologia, 140, 543-550.
DOI URL PMID |
[34] |
Schuldt B, Knutzen F, Delzon S, Jansen S, Haubold HM, Burlett R, Clough Y, Leuschner C (2016). How adaptable is the hydraulic system of European beech in the face of climate change-related precipitation reduction?New Phytologist, 210, 443-458.
DOI URL PMID |
[35] | Skelton BP, West AG, Dawson TE (2015). Predicting plant vulnerability to drought in biodiverse regions using functional traits.Proceeding of the National Academy of Science of the United States of America, 112, 5744-5749. |
[36] |
Tang Y, Wang CK (2011). A feasible method for measuring photosynthesisin vitro for major tree species in northeastern China. Chinese Journal of Plant Ecology, 35, 452-462. (in Chinese with English abstract)[唐艳, 王传宽 (2011). 东北主要树种光合作用可行的离体测定方法. 植物生态学报, 35, 452-462.]
DOI URL |
[37] |
Wang C, Han Y, Chen J, Wang X, Zhang Q, Lamberty BB (2013). Seasonality of soil CO2 efflux in a temperate forest: Biophysical effects of snowpack and spring freeze-thaw cycles.Agricultural and Forest Meteorology, 177, 83-92.
DOI URL |
[38] | Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Bares JC, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov WI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The worldwide leaf economics spectrum.Nature, 428, 821-827. |
[39] |
Xiong D, Flexas J, Yu T, Peng S, Huang J (2017). Leaf anatomy mediates coordination of leaf hydraulic conductance and mesophyll conductance to CO2 inOryza. New Phytologist, 213, 572-583.
DOI URL PMID |
[1] | 彭仲韬 金光泽 刘志理. 小兴安岭三种槭树叶性状随植株大小和林冠条件的变异[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 陈雪纯, 刘虹, 朱少琦, 孙铭遥, 宇振荣, 王庆刚. 漓江流域不同弃耕年限下4种常见草本植物功能性状种内变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 559-570. |
[3] | 冯旭飞, 雷长英, 张玉洁, 向导, 杨明凤, 张旺锋, 张亚黎. 棉花花铃期叶片氮分配对光合氮利用效率的影响[J]. 植物生态学报, 2023, 47(11): 1600-1610. |
[4] | 赵镇贤, 陈银萍, 王立龙, 王彤彤, 李玉强. 河西走廊荒漠区不同功能类群植物叶片建成成本的比较[J]. 植物生态学报, 2023, 47(11): 1551-1560. |
[5] | 张增可, 李曾燕, 杨柏钰, 赛碧乐, 杨安娜, 张立, 牟凌, 郑俊勇, 金乐薇, 赵钊, 王万胜, 杜运才, 阎恩荣. 上海大金山岛常见木本植物功能性状对生长和死亡的影响[J]. 植物生态学报, 2023, 47(10): 1398-1406. |
[6] | 林雍, 陈智, 杨萌, 陈世苹, 高艳红, 刘冉, 郝彦宾, 辛晓平, 周莉, 于贵瑞. 中国干旱半干旱区生态系统光合参数的时空变异及其影响因素[J]. 植物生态学报, 2022, 46(12): 1461-1472. |
[7] | 代远萌, 李满乐, 徐铭泽, 田赟, 赵洪贤, 高圣杰, 郝少荣, 刘鹏, 贾昕, 查天山. 毛乌素沙地沙丘不同固定阶段黑沙蒿叶性状特征[J]. 植物生态学报, 2022, 46(11): 1376-1387. |
[8] | 祁鲁玉, 陈浩楠, 库丽洪·赛热别力, 籍天宇, 孟高德, 秦慧颖, 王宁, 宋逸欣, 刘春雨, 杜宁, 郭卫华. 基于植物功能性状的暖温带5种灌木幼苗生长策略[J]. 植物生态学报, 2022, 46(11): 1388-1399. |
[9] | 向响, 黄永梅, 杨崇曜, 李泽卿, 陈慧颖, 潘莹萍, 霍佳璇, 任梁. 海拔对青海湖流域群落水平植物功能性状的影响[J]. 植物生态学报, 2021, 45(5): 456-466. |
[10] | 谭一波, 田红灯, 曾春阳, 沈浩, 申文辉, 叶建平, 甘国娟. 猫儿山铁杉相邻植株冠层机械磨损对枝叶性状的影响[J]. 植物生态学报, 2021, 45(12): 1281-1291. |
[11] | 刘润红, 白金连, 包含, 农娟丽, 赵佳佳, 姜勇, 梁士楚, 李月娟. 桂林岩溶石山青冈群落主要木本植物功能性状变异与关联[J]. 植物生态学报, 2020, 44(8): 828-841. |
[12] | 荀彦涵, 邸雪颖, 金光泽. 典型阔叶红松林主要树种叶性状的垂直变异及经济策略[J]. 植物生态学报, 2020, 44(7): 730-741. |
[13] | 宋慧清, 倪鸣源, 朱师丹. 乔木与木质藤本的水力与光合性状的差异: 以热带森林崖豆藤属和买麻藤属为例[J]. 植物生态学报, 2020, 44(3): 192-204. |
[14] | 李群, 赵成章, 王继伟, 文军, 李子琴, 马俊逸. 甘肃小苏干湖盐沼湿地盐地风毛菊叶形态-光合生理特征对淹水的响应[J]. 植物生态学报, 2019, 43(8): 685-696. |
[15] | 朱启林, 向蕊, 汤利, 龙光强. 间作对氮调控玉米光合速率和光合氮利用效率的影响[J]. 植物生态学报, 2018, 42(6): 672-680. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19