植物生态学报 ›› 2020, Vol. 44 ›› Issue (7): 730-741.DOI: 10.17521/cjpe.2019.0307
收稿日期:
2019-11-14
接受日期:
2020-04-30
出版日期:
2020-07-20
发布日期:
2020-07-07
通讯作者:
*金光泽: ORCID:0000-0002-9852-0965,taxus@126.com基金资助:
XUN Yan-Han1, DI Xue-Ying1, JIN Guang-Ze2,3,*()
Received:
2019-11-14
Accepted:
2020-04-30
Online:
2020-07-20
Published:
2020-07-07
Contact:
JIN Guang-Ze: ORCID:0000-0002-9852-0965,taxus@126.comSupported by:
摘要:
分析不同树种叶片性状的变化有助于了解植物群落结构。该文通过对典型阔叶红松(Pinus koraiensis)林15种阔叶树种的比叶质量、叶片厚度、叶干物质含量、叶绿素含量指数、叶片碳、氮、磷含量的测定, 分析了冠层高度对叶性状及叶性状间相关关系的影响。结果表明, 水曲柳(Fraxinus mandshurica)和大青杨(Populus ussuriensis)上层的比叶质量显著大于下层, 而其他树种冠层间的比叶质量无显著变化; 叶绿素含量指数在白桦(Betula platyphylla)和春榆(Ulmus japonica)冠层间的分布分别为上层显著大于下层和上层显著大于中层; 单位质量氮含量在水曲柳的中层显著大于上层。叶片性状间存在着广泛的相关性, 比叶质量与叶片厚度、干物质含量在三层间均呈显著正相关关系, 而有些性状, 只在一或二个冠层中存在一定的相关性。山杨(Populus davidiana)和大青杨的叶片倾向于选择光合能力较低、营养浓度较低、呼吸速率较慢的一端, 而黄檗(Phellodendron amurense)和山槐(Maackia amurensis)叶片更倾向于光合能力强、营养物质浓度高的一端。不同树种对光照响应的差异可能会改变不同冠层中叶片的形态和化学性状, 从而有助于群落构建和物种共存。
荀彦涵, 邸雪颖, 金光泽. 典型阔叶红松林主要树种叶性状的垂直变异及经济策略. 植物生态学报, 2020, 44(7): 730-741. DOI: 10.17521/cjpe.2019.0307
XUN Yan-Han, DI Xue-Ying, JIN Guang-Ze. Vertical variation and economic strategy of leaf trait of major tree species in a typical mixed broadleaved-Korean pine forest. Chinese Journal of Plant Ecology, 2020, 44(7): 730-741. DOI: 10.17521/cjpe.2019.0307
树种 Species | 缩写 Abbreviation | 胸径 DBH (cm) | 树高 Tree height (m) | 重要值 Important value (%) |
---|---|---|---|---|
白桦 Betula platyphylla | BP | 21.2 ± 3.7 | 16.6 ± 1.1 | 0.09 |
风桦 Betula costata | BC | 25.0 ± 3.9 | 17.7 ± 0.9 | 3.73 |
春榆 Ulmus japonica | UJ | 48.0 ± 26.7 | 20.9 ± 4.2 | 1.42 |
水曲柳 Fraxinus mandschurica | FM | 45.3 ± 14.2 | 21.2 ± 2.6 | 2.61 |
蒙古栎 Quercus mongolica | QM | 38.3 ± 8.0 | 20.3 ± 1.5 | 0.33 |
山杨 Populus davidiana | PD | 27.5 ± 3.8 | 18.3 ± 0.9 | 0.19 |
大青杨 Populus ussuriensis | PU | 28.6 ± 7.4 | 18.4 ± 1.6 | 0.97 |
糠椴 Tilia mandshurica | TM | 29.3 ± 4.5 | 18.7 ± 1.1 | 0.85 |
紫椴 Tilia amurensis | TA | 43.3 ± 22.2 | 20.6 ± 3.0 | 5.13 |
胡桃楸 Juglans mandshurica | JM | 30.2 ± 5.3 | 18.9 ± 2.2 | 0.03 |
山槐 Maackia amurensis | MA | 12.2 ± 3.0 | 13.0 ± 1.7 | 0.26 |
黄檗 Phellodendron amurense | PA | 25.6 ± 6.5 | 17.7 ± 1.7 | 0.21 |
裂叶榆 Ulmus laciniata | UL | 52.1 ± 12.2 | 22.3 ± 1.4 | 4.65 |
花楸 Sorbus pohuashanensis | SP | 22.6 ± 8.6 | 16.5 ± 3.3 | 0.50 |
五角槭 Acer pictum subsp. mono | AM | 22.2 ± 7.5 | 16.7 ± 2.2 | 8.25 |
表1 典型阔叶红松(Pinus koraiensis)林主要阔叶树种胸径和树高的统计学信息
Table 1 Statistical information of DBH and height for major broadleaf tree species in a typical mixed broadleaved-Korean pine forest
树种 Species | 缩写 Abbreviation | 胸径 DBH (cm) | 树高 Tree height (m) | 重要值 Important value (%) |
---|---|---|---|---|
白桦 Betula platyphylla | BP | 21.2 ± 3.7 | 16.6 ± 1.1 | 0.09 |
风桦 Betula costata | BC | 25.0 ± 3.9 | 17.7 ± 0.9 | 3.73 |
春榆 Ulmus japonica | UJ | 48.0 ± 26.7 | 20.9 ± 4.2 | 1.42 |
水曲柳 Fraxinus mandschurica | FM | 45.3 ± 14.2 | 21.2 ± 2.6 | 2.61 |
蒙古栎 Quercus mongolica | QM | 38.3 ± 8.0 | 20.3 ± 1.5 | 0.33 |
山杨 Populus davidiana | PD | 27.5 ± 3.8 | 18.3 ± 0.9 | 0.19 |
大青杨 Populus ussuriensis | PU | 28.6 ± 7.4 | 18.4 ± 1.6 | 0.97 |
糠椴 Tilia mandshurica | TM | 29.3 ± 4.5 | 18.7 ± 1.1 | 0.85 |
紫椴 Tilia amurensis | TA | 43.3 ± 22.2 | 20.6 ± 3.0 | 5.13 |
胡桃楸 Juglans mandshurica | JM | 30.2 ± 5.3 | 18.9 ± 2.2 | 0.03 |
山槐 Maackia amurensis | MA | 12.2 ± 3.0 | 13.0 ± 1.7 | 0.26 |
黄檗 Phellodendron amurense | PA | 25.6 ± 6.5 | 17.7 ± 1.7 | 0.21 |
裂叶榆 Ulmus laciniata | UL | 52.1 ± 12.2 | 22.3 ± 1.4 | 4.65 |
花楸 Sorbus pohuashanensis | SP | 22.6 ± 8.6 | 16.5 ± 3.3 | 0.50 |
五角槭 Acer pictum subsp. mono | AM | 22.2 ± 7.5 | 16.7 ± 2.2 | 8.25 |
叶性状 Leaf trait | 缩写 Abbreviation | 单位 Unit | 平均值 Mean | 标准误差 SE | 最大值 Max | 最小值 Min |
---|---|---|---|---|---|---|
比叶质量 Leaf mass per area | LMA | kg·m-2 | 0.049 | 0.014 | 0.140 | 0.016 |
叶片厚度 Leaf thickness | LT | mm | 0.126 | 0.038 | 0.298 | 0.034 |
叶干物质含量 Leaf dry mass content | LDMC | g·g-1 | 0.286 | 0.056 | 0.509 | 0.109 |
叶绿素含量指数 Chlorophyll content index | CCI | 16.83 | 4.364 | 34.42 | 3.14 | |
叶碳含量 Leaf carbon content | C | mg·g-2 | 475.6 | 32.15 | 554.9 | 384.3 |
单位质量的叶氮含量 Leaf nitrogen content per leaf mass | Nmass | mg·g-2 | 28.16 | 6.405 | 48.43 | 15.00 |
单位面积的叶氮含量 Leaf nitrogen content per leaf area | Narea | mg·cm-2 | 0.134 | 0.043 | 0.385 | 0.042 |
单位质量的叶磷含量 Leaf phosphorus content per leaf mass | Pmass | mg·g-2 | 1.986 | 0.699 | 6.314 | 0.391 |
单位面积的叶磷含量 Leaf phosphorus content per leaf area | Parea | mg·cm-2 | 0.009 | 0.004 | 0.032 | 0.001 |
表2 典型阔叶红松(Pinus koraiensis)林主要阔叶树种的叶片性状特征
Table 2 Leaf traits for major broadleaf tree species in a typical mixed broadleaved-Korean pine forest
叶性状 Leaf trait | 缩写 Abbreviation | 单位 Unit | 平均值 Mean | 标准误差 SE | 最大值 Max | 最小值 Min |
---|---|---|---|---|---|---|
比叶质量 Leaf mass per area | LMA | kg·m-2 | 0.049 | 0.014 | 0.140 | 0.016 |
叶片厚度 Leaf thickness | LT | mm | 0.126 | 0.038 | 0.298 | 0.034 |
叶干物质含量 Leaf dry mass content | LDMC | g·g-1 | 0.286 | 0.056 | 0.509 | 0.109 |
叶绿素含量指数 Chlorophyll content index | CCI | 16.83 | 4.364 | 34.42 | 3.14 | |
叶碳含量 Leaf carbon content | C | mg·g-2 | 475.6 | 32.15 | 554.9 | 384.3 |
单位质量的叶氮含量 Leaf nitrogen content per leaf mass | Nmass | mg·g-2 | 28.16 | 6.405 | 48.43 | 15.00 |
单位面积的叶氮含量 Leaf nitrogen content per leaf area | Narea | mg·cm-2 | 0.134 | 0.043 | 0.385 | 0.042 |
单位质量的叶磷含量 Leaf phosphorus content per leaf mass | Pmass | mg·g-2 | 1.986 | 0.699 | 6.314 | 0.391 |
单位面积的叶磷含量 Leaf phosphorus content per leaf area | Parea | mg·cm-2 | 0.009 | 0.004 | 0.032 | 0.001 |
图1 典型阔叶红松(Pinus koraiensis)林不同树种冠层内的叶性状值(平均值+标准误差)。小写字母代表同一树种不同冠层之间叶性状的差异显著性(α = 0.05)。 C, 叶碳含量; CCI, 叶绿素含量指数; LDMC, 叶干物质含量; LMA, 比叶质量; LT, 叶片厚度; Narea, 单位面积的叶氮含量; Nmass, 单位质量的叶氮含量; Parea, 单位面积的叶磷含量; Pmass, 单位质量的叶磷含量。横坐标物种名称缩写见表1。
Fig. 1 Difference of leaf traits (mean + SE) across the canopy layers for different tree species in a typical mixed broadleaved- Korean pine forest. The lowercase letters indicate whether the trait differences were significant across the canopy layers (α = 0.05). C, leaf carbon content; CCI, chlorophyll content index; LDMC, leaf dry mass content; LMA, leaf mass per area; LT, leaf thickness; Narea, leaf nitrogen content per leaf area; Nmass, leaf nitrogen content per leaf mass; Parea, leaf phosphorus content per leaf area; Pmass, leaf phosphorus content per leaf mass. The full names and abbreviations of species on the horizontal axis are shown in Table 1.
图2 典型阔叶红松(Pinus koraiensis)林主要阔叶树种叶片结构性状与叶绿素含量指数的关系。 CCI, 叶绿素含量指数; LDMC, 叶干物质含量; LMA, 比叶质量; LT, 叶片厚度。
Fig. 2 Relationships among leaf structural traits and chlorophyll content index (CCI) for major broadleaf tree species in a typical mixed broadleaved-Korean pine forest. CCI, chlorophyll content index; LDMC, leaf dry mass content; LMA, leaf mass per area; LT, leaf thickness.
图3 典型阔叶红松(Pinus koraiensis)林主要阔叶树种叶片结构性状、叶绿素含量指数与化学性状的关系。 C, 叶碳含量; CCI, 叶绿素含量指数; LDMC, 叶干物质含量; LMA, 比叶质量; LT, 叶片厚度; Narea, 单位面积的叶氮含量; Nmass, 单位质量的叶氮含量; Parea, 单位面积的叶磷含量; Pmass, 单位质量的叶磷含量。
Fig. 3 Relationships among leaf structural traits, chlorophyll content index (CCI) and nutrient contents for major broadleaf tree species in a typical mixed broadleaved-Korean pine forest. C, leaf carbon content; CCI, chlorophyll content index; LDMC, leaf dry mass content; LMA, leaf mass per area; LT, leaf thickness; Narea, leaf nitrogen content per leaf area; Nmass, leaf nitrogen content per leaf mass; Parea, leaf phosphorus content per leaf area; Pmass, leaf phosphorus content per leaf mass.
图4 典型阔叶红松(Pinus koraiensis)林主要阔叶树种叶片化学性状的关系。 C, 叶碳含量; Narea, 单位面积的叶氮含量; Nmass, 单位质量的叶氮含量; Parea, 单位面积的叶磷含量; Pmass, 单位质量的叶磷含量。
Fig. 4 Relationships among leaf chemical traits for major broad-leaved tree species in a typical mixed broadleaved-Korean pine forest. C, leaf carbon content; Narea, leaf nitrogen content per leaf area; Nmass, leaf nitrogen content per leaf mass; Parea, leaf phosphorus content per leaf area; Pmass, leaf phosphorus content per leaf mass.
图5 典型阔叶红松(Pinus koraiensis)林主要阔叶树种叶片性状的主成分分析。 C, 叶碳含量; CCI, 叶绿素含量指数; LDMC, 叶干物质含量; LMA, 比叶质量; LT, 叶片厚度; Narea, 单位面积的叶氮含量; Nmass, 单位质量的叶氮含量; Parea, 单位面积的叶磷含量; Pmass, 单位质量的叶磷含量。B中物种名称缩写见表1。
Fig. 5 Principal component analysis of leaf traits for major broadleaf tree species in a typical mixed broadleaved-Korean pine forest. C, leaf carbon content; CCI, chlorophyll content index; LDMC, leaf dry mass content; LMA, leaf mass per area; LT, leaf thickness; Narea, leaf nitrogen content per leaf area; Nmass, leaf nitrogen content per leaf mass; Parea, leaf phosphorus content per leaf area; Pmass, leaf phosphorus content per leaf mass. The full names and abbreviations of species in panel B are shown in Table 1.
[1] |
Ackerly D (1999). Self-shading, carbon gain and leaf dynamics: a test of alternative optimality models. Oecologia, 119, 300-310.
DOI URL PMID |
[2] | Al Afas N, Marron N, Ceulemans R (2007). Variability in Populus leaf anatomy and morphology in relation to canopy position, biomass production, and varietal taxon. Annals of Forest Science, 64, 521-532. |
[3] |
Aleric KM, Kirkman LK (2005). Growth and photosynthetic responses of the federally endangered shrub,Lindera melissifolia(Lauraceae), to varied light environments. American Journal of Botany, 92, 682-689.
URL PMID |
[4] | Asner GP, Knapp DE, Anderson CB, Martin RE, Vaughn N (2016). Large-scale climatic and geophysical controls on the leaf economics spectrum. Proceedings of the National Academy of Sciences of the United States of America, 113, 4043-4051. |
[5] |
Cate TM, Perkins TD (2003). Chlorophyll content monitoring in sugar maple (Acer saccharum). Tree Physiology, 23, 1077-1079.
DOI URL PMID |
[6] |
Chen YZ, Murchie EH, Hubbart S, Horton P, Peng SB (2003). Effects of season-dependent irradiance levels and nitrogen-deficiency on photosynthesis and photoinhibition in field-grown rice (Oryza sativa). Physiologia Plantarum, 117, 343-351.
DOI URL PMID |
[7] | Cheng XB, Wu J, Han SJ, Zhou YM, Wang XX, Wang CG, Zhao J, Hu QH (2012). Photosynthesis, leaf morphology and chemistry of Pinus koraiensis and Quercus mongolica in broadleaved Korean pine mixed forest. Photosynthetica, 50, 56-66. |
[8] | Cianciaruso MV, Silva IA, Manica LT, Souza JP (2013). Leaf habit does not predict leaf functional traits in cerrado woody species. Basic and Applied Ecology, 14, 404-412. |
[9] |
Coble AP, Cavaleri MA (2015). Light acclimation optimizes leaf functional traits despite height-related constraints in a canopy shading experiment. Oecologia, 177, 1131-1143.
URL PMID |
[10] | Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380. |
[11] |
Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Colin Prentice I, Garnier E, Bönisch G, Westoby M, Poorter H, Reich PB, Moles AT, Dickie J, Gillison AN, Zanne AE, Chave J, Joseph Wright S, Sheremetʼev SN, Jactel H, Baraloto C, Cerabolini B, Pierce S, Shipley B, Kirkup D, Casanoves F, Joswig JS, Günther A, Falczuk V, Rüger N, Mahecha MD, Gorné LD (2016). The global spectrum of plant form and function. Nature, 529, 167-171.
DOI URL PMID |
[12] | Duursma RA, Marshall JD (2006). Vertical canopy gradients in δ 13C correspond with leaf nitrogen content in a mixed- species conifer forest. Trees, 20, 496-506. |
[13] | Ellsworth DS, Reich PB (1993). Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest. Oecologia, 96, 169-178. |
[14] |
Evans JR (1989). Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia, 78, 9-19.
URL PMID |
[15] |
Flores O, Garnier E, Wright IJ, Reich PB, Pierce S, Dìaz S, Pakeman RJ, Rusch GM, Bernard-Verdier M, Testi B, Bakker JP, Bekker RM, Cerabolini BEL, Ceriani RM, Cornu G, Cruz P, Delcamp M, Dolezal J, Eriksson O, Fayolle A, Freitas H, Golodets C, Gourlet-Fleury S, Hodgson JG, Brusa G, Kleyer M, Kunzmann D, Lavorel S, Papanastasis VP, Pérez-Harguindeguy N, Vendramini F, Weiher E (2014). An evolutionary perspective on leaf economics: phylogenetics of leaf mass per area in vascular plants. Ecology and Evolution, 4, 2799-2811.
DOI URL PMID |
[16] | Gáborčík N (2003). Relationship between contents of chlorophyll (a+b)(SPAD values) and nitrogen of some temperate grasses. Photosynthetica, 41, 285-287. |
[17] | Garnier E, Shipley B, Roumet C, Laurent G (2001). A standardized protocol for the determination of specific leaf area and leaf dry matter content. Functional Ecology, 15, 688-695. |
[18] |
Green DS, Kruger EL (2001). Light-mediated constraints on leaf function correlate with leaf structure among deciduous and evergreen tree species. Tree Physiology, 21, 1341-1346.
URL PMID |
[19] |
Hallik L, Niinemets Ü, Kull O (2012). Photosynthetic acclimation to light in woody and herbaceous species: a comparison of leaf structure, pigment content and chlorophyll fluorescence characteristics measured in the field. Plant Biology, 14, 88-99.
URL PMID |
[20] |
Hikosaka K, Shigeno A (2009). The role of Rubisco and cell walls in the interspecific variation in photosynthetic capacity. Oecologia, 160, 443-451.
URL PMID |
[21] | Joffre R, Rambal S, Damesin C (2007). Functional attributes in Mediterranean-type ecosystems//Pugnaire F, Valladares F. Functional Plant Ecology. CRC Press, New York. 285-312. |
[22] | Kazakou E, Vile D, Shipley B, Gallet C, Garnier E (2006). Co-variations in litter decomposition, leaf traits and plant growth in species from a Mediterranean old-field succession. Functional Ecology, 20, 21-30. |
[23] |
Keenan TF, Niinemets Ü (2017). Global leaf trait estimates biased due to plasticity in the shade. Nature Plants, 3, 16201. DOI: 10.1038/nplants.2016.201.
DOI URL PMID |
[24] | Kitao M, Lei TT, Koike T, Tobita H, Maruyama Y (2000). Susceptibility to photoinhibition of three deciduous broadleaf tree species with different successional traits raised under various light regimes. Plant, Cell & Environment, 23, 81-89. |
[25] |
Koike T, Kitao M, Maruyama Y, Mori S, Lei TT (2001). Leaf morphology and photosynthetic adjustments among deciduous broad-leaved trees within the vertical canopy profile. Tree Physiology, 21, 951-958.
DOI URL PMID |
[26] | Legner N, Fleck S, Leuschner C (2014). Within-canopy variation in photosynthetic capacity, SLA and foliar N in temperate broad-leaved trees with contrasting shade tolerance. Trees, 28, 263-280. |
[27] |
Lemoine NP, Burkepile DE, Parker JD (2016). Quantifying differences between native and introduced species. Trends in Ecology & Evolution, 31, 372-381.
URL PMID |
[28] | Liu Z, Wang C, Chen JM, Wang X, Jin G (2015). Empirical models for tracing seasonal changes in leaf area index in deciduous broadleaf forests by digital hemispherical photography. Forest Ecology & Management, 351, 67-77. |
[29] | Messier J, McGill BJ, Enquist BJ, Lechowicz MJ (2017). Trait variation and integration across scales: Is the leaf economic spectrum present at local scales? Ecography, 40, 685-697. |
[30] | Niinemets Ü (2001). Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology, 82, 453-469. |
[31] |
Niinemets Ü (2007). Photosynthesis and resource distribution through plant canopies. Plant, Cell & Environment, 30, 1052-1071.
URL PMID |
[32] | Niinemets Ü, Anten NPR (2009). Packing the photosynthesis machinery: from leaf to canopy//Laisk A, Nedbal L, Govindjee. Photosynthesis in Silico. Springer, Berlin. 363-399. |
[33] | Niinemets Ü, Bilger W, Kull O, Tenhunen JD (1998). Acclimation to high irradiance in temperate deciduous trees in the field: changes in xanthophyll cycle pool size and in photosynthetic capacity along a canopy light gradient. Plant, Cell & Environment, 21, 1205-1218. |
[34] |
Niinemets Ü, Keenan TF, Hallik L (2015). A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types. New Phytologist, 205, 973-993.
DOI URL PMID |
[35] |
Osnas JLD, Lichstein JW, Reich PB, Pacala SW (2013). Global leaf trait relationships: mass, area, and the leaf economics spectrum. Science, 340, 741-744.
DOI URL PMID |
[36] |
Ozanne CMP, Anhuf D, Boulter SL, Keller M, Kitching RL, Körner C, Meinzer FC, Mitchell AW, Nakashizuka T, Silva Dias PL, Stork NE, Wright SJ, Yoshimura M (2003). Biodiversity meets the atmosphere: a global view of forest canopies. Science, 301, 183-186.
DOI URL PMID |
[37] |
Pierce S, Brusa G, Sartori M, Cerabolini BEL (2012). Combined use of leaf size and economics traits allows direct comparison of hydrophyte and terrestrial herbaceous adaptive strategies. Annals of Botany, 109, 1047-1053.
URL PMID |
[38] | Pons TL, Anten NPR (2004). Is plasticity in partitioning of photosynthetic resources between and within leaves important for whole-plant carbon gain in canopies? Functional Ecology, 18, 802-811. |
[39] |
Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009). Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytologist, 182, 565-588.
URL PMID |
[40] |
Rajsnerová P, Klem K, Holub P, Novotná K, Večeřová K, Kozáčiková M, Rivas-Ubach A, Sardans J, Marek MV, Peñuelas J, Urban O (2015). Morphological, biochemical and physiological traits of upper and lower canopy leaves of European beech tend to converge with increasing altitude. Tree Physiology, 35, 47-60.
URL PMID |
[41] | Read QD, Moorhead LC, Swenson NG, Bailey JK, Sanders NJ (2014). Convergent effects of elevation on functional leaf traits within and among species. Functional Ecology, 28, 37-45. |
[42] | Reich PB (2014). The world-wide “fast-slow” plant economics spectrum: a traits manifesto. Journal of Ecology, 102, 275-301. |
[43] | Reich PB, Walters MB, Ellsworth DS (1997). From tropics to tundra: global convergence in plant functioning. Proceedings of the National Academy of Sciences of the United States of America, 94, 13730-13734. |
[44] | Reich PB, Wright IJ, Cavender-Bares J, Craine JM, Oleksyn J, Westoby M, Walters MB (2003). The evolution of plant functional variation: traits, spectra, and strategies. International Journal of Plant Sciences, 164, S143-S164. |
[45] | Sanches MC, Ribeiro SP, Dalvi VC, da Silva Junior MB, de Sousa HC, de Lemos-Filho JP (2010). Differential leaf traits of a neotropical tree Cariniana legalis(Mart.) Kuntze (Lecythidaceae): comparing saplings and emergent trees. Trees, 24, 79-88. |
[46] | Saura-Mas S, Shipley B, Lloret F (2009). Relationship between post-fire regeneration and leaf economics spectrum in Mediterranean woody species. Functional Ecology, 23, 103-110. |
[47] | Sims DA, Pearcy RW (1992). Response of leaf anatomy and photosynthetic capacity in Alocasia macrorrhiza(Araceae) to a transfer from low to high light. American Journal of Botany, 79, 449-455. |
[48] | Vierling LA, Wessman CA (2000). Photosynthetically active radiation heterogeneity within a monodominant Congolese rain forest canopy. Agricultural and Forest Meteorology, 103, 265-278. |
[49] | Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007). Let the concept of trait be functional! Oikos, 116, 882-892. |
[50] | Wilson PJ, Thompson K, Hodgson JG (1999). Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytologist, 143, 155-162. |
[51] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
URL PMID |
[52] |
Wyka TP, Oleksyn J, Żytkowiak R, Karolewski P, Jagodziński AM, Reich PB (2012). Responses of leaf structure and photosynthetic properties to intra-canopy light gradients: a common garden test with four broadleaf deciduous angiosperm and seven evergreen conifer tree species. Oecologia, 170, 11-24.
URL PMID |
[53] | Zirbel CR, Bassett T, Grman E, Brudvig LA (2017). Plant functional traits and environmental conditions shape community assembly and ecosystem functioning during restoration. Journal of Applied Ecology, 54, 1070-1079. |
[54] |
Zukswert JM, Prescott CE (2017). Relationships among leaf functional traits, litter traits, and mass loss during early phases of leaf litter decomposition in 12 woody plant species. Oecologia, 185, 305-316.
DOI URL PMID |
[1] | 郑宁, 李素英, 王鑫厅, 吕世海, 赵鹏程, 臧琛, 许玉珑, 何静, 秦文昊, 高恒睿. 基于环境因子对叶绿素影响的典型草原植物生活型优势研究[J]. 植物生态学报, 2022, 46(8): 951-960. |
[2] | 王广亚, 陈柄华, 黄雨晨, 金光泽, 刘志理. 着生位置对水曲柳小叶性状变异及性状间相关性的影响[J]. 植物生态学报, 2022, 46(6): 712-721. |
[3] | 程思祺, 姜峰, 金光泽. 温带森林阔叶植物幼苗叶经济谱及其与防御性状的关系[J]. 植物生态学报, 2022, 46(6): 678-686. |
[4] | 李露, 金光泽, 刘志理. 阔叶红松林3种阔叶树种柄叶性状变异与相关性[J]. 植物生态学报, 2022, 46(6): 687-699. |
[5] | 熊淑萍, 曹文博, 曹锐, 张志勇, 付新露, 徐赛俊, 潘虎强, 王小纯, 马新明. 水平结构配置对冬小麦冠层垂直结构、微环境及产量的影响[J]. 植物生态学报, 2022, 46(2): 188-196. |
[6] | 刘兵兵, 魏建新, 胡天宇, 杨秋丽, 刘小强, 吴发云, 苏艳军, 郭庆华. 卫星遥感监测产品在中国森林生态系统的验证和不确定性分析——基于海量无人机激光雷达数据[J]. 植物生态学报, 2022, 46(10): 1305-1316. |
[7] | 陈胜楠, 陈左司南, 张志强. 北京山区油松和元宝槭冠层气孔导度特征及其环境响应[J]. 植物生态学报, 2021, 45(12): 1329-1340. |
[8] | 谭一波, 田红灯, 曾春阳, 沈浩, 申文辉, 叶建平, 甘国娟. 猫儿山铁杉相邻植株冠层机械磨损对枝叶性状的影响[J]. 植物生态学报, 2021, 45(12): 1281-1291. |
[9] | 袁锋, 王艳艳, 李茂瑾, 江传阳, 刘贺娜, 李坤玲, 洪滔, 吴承祯, 陈灿. 不同海岸距离上木麻黄凋落叶金属元素含量及归还量动态特征[J]. 植物生态学报, 2020, 44(8): 819-827. |
[10] | 张峰,周广胜. 植被含水量高光谱遥感监测研究进展[J]. 植物生态学报, 2018, 42(5): 517-525. |
[11] | 申奥, 朱教君, 闫涛, 卢德亮, 杨凯. 辽东山区主要阔叶树种叶片养分含量和再吸收对落叶时间的影响[J]. 植物生态学报, 2018, 42(5): 573-584. |
[12] | 张振振, 赵平, 赵秀华, 张锦秀, 朱丽薇, 欧阳磊, 张笑颜. 环境因子对常绿阔叶树种脱耦联系数及冠层气孔导度估算的影响[J]. 植物生态学报, 2018, 42(12): 1179-1191. |
[13] | 刘畅, 孙鹏森, 刘世荣. 水分敏感的反射光谱指数比较研究——以锐齿槲栎为例[J]. 植物生态学报, 2017, 41(8): 850-861. |
[14] | 陈静, 赵成章, 王继伟, 赵连春. 不同密度旱柳的树冠构型与光截获[J]. 植物生态学报, 2017, 41(6): 661-669. |
[15] | 李志民, 王传宽, 罗丹丹. 兴安落叶松叶水力与光合性状的变异性和相关性[J]. 植物生态学报, 2017, 41(11): 1140-1148. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19