植物生态学报 ›› 2017, Vol. 41 ›› Issue (8): 850-861.DOI: 10.17521/cjpe.2016.0095
所属专题: 生态遥感及应用
刘畅, 孙鹏森*, 刘世荣
出版日期:
2017-08-10
发布日期:
2017-09-29
通讯作者:
孙鹏森
作者简介:
康璟瑶(1991-),男,江苏南京人,硕士生,主要从事旅游地理与旅游规划研究,E-mail: 基金资助:
Chang LIU, Peng-Sen SUN*, Shi-Rong LIU
Online:
2017-08-10
Published:
2017-09-29
Contact:
Peng-Sen SUN
About author:
KANG Jing-yao(1991-), E-mail: 摘要:
利用叶片反射光谱实时、无损地探测植物水分状况是森林干旱评估的新方法, 但是不同光谱指数的水分敏感性存在很大差异, 因此, 确定适用于树木叶片的水分指标与其敏感的光谱指标均非常重要。该研究选取锐齿槲栎(Quercus aliena var. acuteserrata)不同发育阶段和冠层位置上的叶片作为研究对象, 在失水条件下, 测定叶片的水分指标及其同步的反射光谱响应曲线, 探究叶片的光谱反射率变化与水分状况改变的关系, 比较并评估不同叶片发育阶段和冠层位置叶片的水分指标与不同反射光谱指数之间相关关系的优劣。结果表明: (1)在4个不同水分指标中, 与比叶含水量(SWC)和叶片水分鲜质量比(LMP)相比, 相对含水量(RWC)和等效水分厚度(EWT)在不同发育阶段和冠层位置之间的变异性更小, 能稳定地表征树木整体的水分状况; 且RWC和EWT具有更高的光谱敏感性, 适用于遥感探测。(2)光谱反射率差值分析法和光谱反射率敏感性分析法表明: 叶片的光谱敏感性受发育阶段的影响较大; 在短波红外区域, 成熟叶片在失水胁迫初始阶段的光谱变化较小, 而新展叶在整个失水阶段均表现出明显的光谱差异。(3)通过对15个不同光谱指数与水分指标的相关分析, 发现水分指数(WI)-RWC和双差值指数(DDn(1530,525))-EWT均具有较高的相关性, 其中, WI-RWC的拟合关系受叶片发育阶段和冠层位置的影响较大; 而DDn(1530,525)-EWT的拟合关系更为稳定。
刘畅, 孙鹏森, 刘世荣. 水分敏感的反射光谱指数比较研究——以锐齿槲栎为例. 植物生态学报, 2017, 41(8): 850-861. DOI: 10.17521/cjpe.2016.0095
Chang LIU, Peng-Sen SUN, Shi-Rong LIU. A comparison of spectral reflectance indices in response to water: A case study of Quercus aliena var. acuteserrata. Chinese Journal of Plant Ecology, 2017, 41(8): 850-861. DOI: 10.17521/cjpe.2016.0095
反射光谱指数 Spectral reflectance index | 缩写 Acronym | 定义 Definition | 参考文献 Reference |
---|---|---|---|
水分指数 Water index | WI | R900/R970 | Pe?uelas et al., 1993 |
水分指数/归一化植被指数 Water index/normalized difference vegetation index | WI/NDVI | (R900/R970)/[(R900-R680)/(R900+R680)] | Pe?uelas & Inoue, 1999 |
水分胁迫指数 Moisture stress index | MSI | R820/R1600 | Hunt & Rock, 1989 |
简单比值指数 Simple ratio index(760,1650) | SR(760,1650) | R760/R1650 | Tian et al., 2006 |
简单比值指数 Simple ratio index(1300,1450) | SR(1300,1450) | R1300/R1450 | Seelig et al., 2008 |
简单比值水分指数 Simple ratio water index | SRWI | R860/R1240 | Zarco-Tejada et al., 2003 |
归一化红外指数 Normalized difference infrared index | NDII | (R850-R1650)/(R850+R1650) | Hardisky et al., 1983 |
归一化水分指数 Normalized difference water index | NDWI | (R860-R1240)/(R860+R1240) | Gao, 1996 |
水分含量反射指数 Water content reflactance index | WCRI | R1455/(R1272-R1455) | Sun et al., 2008 |
三波段复合指数 Three-band composite index | SR(610,560)/ND(810,610) | (R610/R560)/[(R810-R610)/(R810+R610)] | Tian et al., 2004 |
四波段干旱指数 Four bands drought index | SR(1640,2130)/ND(855,555) | (R1640/R2130)/[(R855-R555)/(R855+R555)] | Zhang & Guo, 2006 |
归一化多波段干旱指数 Normalized multi-band drought index | NMDI | [(R860-(R1640-R2130)]/[R860+(R1640+R2130)] | Wang & Qu , 2007 |
三波段比值指数 Three-band ratio index975 | Ratio975 | 2R960-990/(R920-940+R1090-1110) | Pu et al., 2003 |
三波段比值指数 Three-band ratio index1200 | Ratio1200 | 2R1180-1220/(R1090-1110+R1265-1285) | Pu et al., 2003 |
双差值指数 Double difference index | DDn(1530, 525) | 2R1530-R1005-R2055 | Wang & Li, 2012 |
表1 水分状况相关的反射光谱指数及其定义
Table 1 Reflectance spectral indices related to water status and their definitions
反射光谱指数 Spectral reflectance index | 缩写 Acronym | 定义 Definition | 参考文献 Reference |
---|---|---|---|
水分指数 Water index | WI | R900/R970 | Pe?uelas et al., 1993 |
水分指数/归一化植被指数 Water index/normalized difference vegetation index | WI/NDVI | (R900/R970)/[(R900-R680)/(R900+R680)] | Pe?uelas & Inoue, 1999 |
水分胁迫指数 Moisture stress index | MSI | R820/R1600 | Hunt & Rock, 1989 |
简单比值指数 Simple ratio index(760,1650) | SR(760,1650) | R760/R1650 | Tian et al., 2006 |
简单比值指数 Simple ratio index(1300,1450) | SR(1300,1450) | R1300/R1450 | Seelig et al., 2008 |
简单比值水分指数 Simple ratio water index | SRWI | R860/R1240 | Zarco-Tejada et al., 2003 |
归一化红外指数 Normalized difference infrared index | NDII | (R850-R1650)/(R850+R1650) | Hardisky et al., 1983 |
归一化水分指数 Normalized difference water index | NDWI | (R860-R1240)/(R860+R1240) | Gao, 1996 |
水分含量反射指数 Water content reflactance index | WCRI | R1455/(R1272-R1455) | Sun et al., 2008 |
三波段复合指数 Three-band composite index | SR(610,560)/ND(810,610) | (R610/R560)/[(R810-R610)/(R810+R610)] | Tian et al., 2004 |
四波段干旱指数 Four bands drought index | SR(1640,2130)/ND(855,555) | (R1640/R2130)/[(R855-R555)/(R855+R555)] | Zhang & Guo, 2006 |
归一化多波段干旱指数 Normalized multi-band drought index | NMDI | [(R860-(R1640-R2130)]/[R860+(R1640+R2130)] | Wang & Qu , 2007 |
三波段比值指数 Three-band ratio index975 | Ratio975 | 2R960-990/(R920-940+R1090-1110) | Pu et al., 2003 |
三波段比值指数 Three-band ratio index1200 | Ratio1200 | 2R1180-1220/(R1090-1110+R1265-1285) | Pu et al., 2003 |
双差值指数 Double difference index | DDn(1530, 525) | 2R1530-R1005-R2055 | Wang & Li, 2012 |
样本 Sample | 水分相关变量 Variables related to water | 样本数 Number of sample | 最大值 Maximum value | 最小值 Minimum value | 平均值 Mean value | 标准偏差 Standard deviation | 变异系数 Coefficient of variation (%) |
---|---|---|---|---|---|---|---|
顶部新展叶 Top new expended leaf | SWC | 12 | 2.24 | 2.06 | 2.15 | 0.07 | 3.11 |
LMP | 12 | 0.69 | 0.67 | 0.68 | 0.01 | 0.99 | |
RWC | 12 | 0.94 | 0.90 | 0.92 | 0.01 | 1.12 | |
EWT | 12 | 93.40 | 87.40 | 90.60 | 1.81 | 2.00 | |
下部新展叶 Bottom new expended leaf | SWC | 12 | 2.49 | 2.31 | 2.39 | 0.07 | 3.11 |
LMP | 12 | 0.73 | 0.71 | 0.72 | 0.01 | 0.99 | |
RWC | 12 | 0.94 | 0.90 | 0.92 | 0.01 | 1.22 | |
EWT | 12 | 97.80 | 91.60 | 94.90 | 1.90 | 2.00 | |
顶部成熟叶 Top mature leaf | SWC | 12 | 1.36 | 1.20 | 1.28 | 0.05 | 4.21 |
LMP | 12 | 0.58 | 0.55 | 0.56 | 0.01 | 1.85 | |
RWC | 12 | 0.96 | 0.93 | 0.94 | 0.01 | 0.87 | |
EWT | 12 | 88.00 | 82.20 | 85.00 | 2.02 | 2.38 | |
下部成熟叶 Bottom mature leaf | SWC | 12 | 1.76 | 1.52 | 1.65 | 0.07 | 4.46 |
LMP | 12 | 0.65 | 0.62 | 0.63 | 0.01 | 1.73 | |
RWC | 12 | 0.96 | 0.93 | 0.95 | 0.01 | 0.91 | |
EWT | 12 | 98.30 | 93.10 | 95.50 | 1.92 | 2.01 |
表2 不同发育阶段和冠层位置的叶片样本失水前的水分状况
Table 2 Water status of leaf samples at different developmental stages and canopy position before dehydration
样本 Sample | 水分相关变量 Variables related to water | 样本数 Number of sample | 最大值 Maximum value | 最小值 Minimum value | 平均值 Mean value | 标准偏差 Standard deviation | 变异系数 Coefficient of variation (%) |
---|---|---|---|---|---|---|---|
顶部新展叶 Top new expended leaf | SWC | 12 | 2.24 | 2.06 | 2.15 | 0.07 | 3.11 |
LMP | 12 | 0.69 | 0.67 | 0.68 | 0.01 | 0.99 | |
RWC | 12 | 0.94 | 0.90 | 0.92 | 0.01 | 1.12 | |
EWT | 12 | 93.40 | 87.40 | 90.60 | 1.81 | 2.00 | |
下部新展叶 Bottom new expended leaf | SWC | 12 | 2.49 | 2.31 | 2.39 | 0.07 | 3.11 |
LMP | 12 | 0.73 | 0.71 | 0.72 | 0.01 | 0.99 | |
RWC | 12 | 0.94 | 0.90 | 0.92 | 0.01 | 1.22 | |
EWT | 12 | 97.80 | 91.60 | 94.90 | 1.90 | 2.00 | |
顶部成熟叶 Top mature leaf | SWC | 12 | 1.36 | 1.20 | 1.28 | 0.05 | 4.21 |
LMP | 12 | 0.58 | 0.55 | 0.56 | 0.01 | 1.85 | |
RWC | 12 | 0.96 | 0.93 | 0.94 | 0.01 | 0.87 | |
EWT | 12 | 88.00 | 82.20 | 85.00 | 2.02 | 2.38 | |
下部成熟叶 Bottom mature leaf | SWC | 12 | 1.76 | 1.52 | 1.65 | 0.07 | 4.46 |
LMP | 12 | 0.65 | 0.62 | 0.63 | 0.01 | 1.73 | |
RWC | 12 | 0.96 | 0.93 | 0.95 | 0.01 | 0.91 | |
EWT | 12 | 98.30 | 93.10 | 95.50 | 1.92 | 2.01 |
图1 失水过程中不同发育阶段和冠层位置的锐齿槲栎叶片的比叶含水量(A)、叶片水分鲜质量比(B)、相对含水量(C)和等效水分厚度(D)的变化(平均值±标准偏差)。
Fig. 1 Changes of specific leaf water content (A), leaf moisture percentage on fresh mass (B), relative water content (C), and equivalent water thickness (D) of Quercus aliena var. acuteserrata leaves in different growth stages and canopy positions during the dehydration process (mean ± SD).
图2 失水过程中不同发育阶段和冠层位置锐齿槲栎叶片的原始光谱反射率、反射率差值和反射率敏感性变化。
Fig. 2 Changes of original spectral reflectance, reflectance differences and reflectance sensitivities of Quercus aliena var. acuteserrata leaves in different growth stages and canopy positions during the dehydration process.
图3 顶部新展叶(A)、顶部成熟叶(B)、下部新展叶(C)和下部成熟叶(D)的不同水分指标与敏感反射光谱波段的相关性。EWT, 等效水分厚度; LMP, 叶片水分鲜质量比; SWC, 比叶含水量; RWC, 相对含水量。
Fig. 3 Correlations of different moisture indices of top new expended leaf (A), top mature leaf (B), bottom new expended leaf (C), and bottom mature leaf (D) and their sensitive reflectance spectral bands. EWT, equivalent water thickness; LMP, leaf moisture percentage on fresh quality; SWC, specific leaf water content; RWC, relative water content.
反射光谱指数 Reflectance spectral index | 下部新展叶 Bottom new expended leaf | 顶部新展叶 Top new expended leaf | 下部成熟叶 Bottom mature leaf | 顶部成熟叶 Top mature leaf | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SWC | LMP | RWC | EWT | SWC | LMP | RWC | EWT | SWC | LMP | RWC | EWT | SWC | LMP | RWC | EWT | |
水分指数 Water index | 0.751** | 0.751** | 0.836** | 0.801** | 0.831** | 0.830** | 0.894** | 0.867** | 0.678** | 0.685** | 0.876** | 0.806** | 0.708** | 0.713** | 0.818** | 0.776** |
水分指数/归一化植被指数 Water index/ normalized difference vegetation index | 0.400** | 0.401** | 0.439** | 0.432** | 0.413** | 0.415** | 0.457** | 0.465** | 0.372** | 0.376** | 0.626** | 0.634* | 0.553** | 0.556** | 0.594** | 0.602** |
水分胁迫指数 Moisture stress index | 0.411** | 0.412** | 0.493** | 0.336** | 0.401** | 0.403** | 0.483** | 0.330** | 0.251* | 0.253* | 0.633** | 0.471** | 0.338** | 0.340** | 0.603** | 0.475** |
简单比值指数 Simple ratio index(760,1650) | 0.491** | 0.494** | 0.565** | 0.463** | 0.462** | 0.465** | 0.505** | 0.393** | 0.283* | 0.285* | 0.682** | 0.550** | 0.404** | 0.406** | 0.655** | 0.536** |
简单比值指数 Simple ratio index(1300,1450) | 0.366** | 0.364** | 0.601** | 0.726** | 0.385** | 0.386** | 0.612** | 0.732** | 0.421** | 0.426** | 0.716** | 0.811** | 0.488** | 0.495** | 0.708** | 0.808** |
简单比值水分指数 Simple ratio water index | 0.722** | 0.722** | 0.798** | 0.736** | 0.771** | 0.773** | 0.829** | 0.786** | 0.619** | 0.617** | 0.801** | 0.695** | 0.663** | 0.665** | 0.756** | 0.732** |
归一化红外指数 Normalized difference infrared index | -0.363** | -0.363** | -0.477** | -0.373** | -0.377** | -0.375** | -0.472** | -0.395** | -0.217* | -0.219* | -0.631** | -0.465** | -0.317** | -0.319** | -0.577** | -0.452** |
归一化水分指数 Normalized difference water index | 0.715** | 0.717** | 0.787** | 0.726** | 0.763** | 0.764** | 0.824** | 0.777** | 0.621** | 0.623** | 0.808** | 0.697** | 0.664** | 0.667** | 0.758** | 0.733** |
水分含量反射指数 Water content reflectance index | -0.312** | -0.315** | -0.510** | -0.485** | -0.306** | -0.308** | -0.503** | -0.465** | -0.356** | -0.359** | -0.600** | -0.468** | -0.331** | -0.336** | -0.584** | -0.461** |
三波段复合指数 Three-band composite index | -0.426** | -0428** | -0.469** | -0.485** | -0.422** | -0423** | -0.466** | -0.473** | -0.486** | -0.505** | -0.529** | -0.535** | -0.568** | -0.577** | -0.578** | -0.592** |
四波段干旱指数 Four bands drought index | 0.463** | 0.466** | 0.496** | 0.382** | 0.456** | 0.459** | 0.485** | 0.367** | 0.163 | 0.164 | 0.414** | 0.193 | 0.023 | 0.024 | 0.364** | 0.176 |
归一化多波段干旱指数 Normalized multi-band drought index | 0.571** | 0.574** | 0.793** | 0.796** | 0.553** | 0.550** | 0.807** | 0.811** | 0.531** | 0.533** | 0.788** | 0.797** | 0.536** | 0.536** | 0.781** | 0.783** |
三波段比值指数 Three-band ratio index975 | -0.127 | -0.129 | -0.398** | -0.309** | -0.143 | -0.145 | -0.421** | -0.316** | -0.182* | -0.185* | -0.600** | -0.416** | -0.302** | -0.305** | -0.585** | -0.431** |
三波段比值指数 Three-band ratio index1200 | -0.093 | -0.096 | -0.355** | -0.202* | -0.085 | -0.088 | -0.322** | -0.182 | -0.103 | -0.106 | -0.565** | -0.382** | -0.233* | -0.236* | -0.537** | -0.379** |
双差值指数 Double difference index | 0.636** | 0.634** | 0.734** | 0.835** | 0.650** | 0.651** | 0.728** | 0.857** | 0.621** | 0.625** | 0.727** | 0.852** | 0.608** | 0.609** | 0.736** | 0.821** |
表3 不同反射光谱指数与锐齿槲栎叶片水分指标的相关性
Table 3 Correlation between different reflectance spectral indices and water indices of Quercus aliena var. acuteserrata leaf
反射光谱指数 Reflectance spectral index | 下部新展叶 Bottom new expended leaf | 顶部新展叶 Top new expended leaf | 下部成熟叶 Bottom mature leaf | 顶部成熟叶 Top mature leaf | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SWC | LMP | RWC | EWT | SWC | LMP | RWC | EWT | SWC | LMP | RWC | EWT | SWC | LMP | RWC | EWT | |
水分指数 Water index | 0.751** | 0.751** | 0.836** | 0.801** | 0.831** | 0.830** | 0.894** | 0.867** | 0.678** | 0.685** | 0.876** | 0.806** | 0.708** | 0.713** | 0.818** | 0.776** |
水分指数/归一化植被指数 Water index/ normalized difference vegetation index | 0.400** | 0.401** | 0.439** | 0.432** | 0.413** | 0.415** | 0.457** | 0.465** | 0.372** | 0.376** | 0.626** | 0.634* | 0.553** | 0.556** | 0.594** | 0.602** |
水分胁迫指数 Moisture stress index | 0.411** | 0.412** | 0.493** | 0.336** | 0.401** | 0.403** | 0.483** | 0.330** | 0.251* | 0.253* | 0.633** | 0.471** | 0.338** | 0.340** | 0.603** | 0.475** |
简单比值指数 Simple ratio index(760,1650) | 0.491** | 0.494** | 0.565** | 0.463** | 0.462** | 0.465** | 0.505** | 0.393** | 0.283* | 0.285* | 0.682** | 0.550** | 0.404** | 0.406** | 0.655** | 0.536** |
简单比值指数 Simple ratio index(1300,1450) | 0.366** | 0.364** | 0.601** | 0.726** | 0.385** | 0.386** | 0.612** | 0.732** | 0.421** | 0.426** | 0.716** | 0.811** | 0.488** | 0.495** | 0.708** | 0.808** |
简单比值水分指数 Simple ratio water index | 0.722** | 0.722** | 0.798** | 0.736** | 0.771** | 0.773** | 0.829** | 0.786** | 0.619** | 0.617** | 0.801** | 0.695** | 0.663** | 0.665** | 0.756** | 0.732** |
归一化红外指数 Normalized difference infrared index | -0.363** | -0.363** | -0.477** | -0.373** | -0.377** | -0.375** | -0.472** | -0.395** | -0.217* | -0.219* | -0.631** | -0.465** | -0.317** | -0.319** | -0.577** | -0.452** |
归一化水分指数 Normalized difference water index | 0.715** | 0.717** | 0.787** | 0.726** | 0.763** | 0.764** | 0.824** | 0.777** | 0.621** | 0.623** | 0.808** | 0.697** | 0.664** | 0.667** | 0.758** | 0.733** |
水分含量反射指数 Water content reflectance index | -0.312** | -0.315** | -0.510** | -0.485** | -0.306** | -0.308** | -0.503** | -0.465** | -0.356** | -0.359** | -0.600** | -0.468** | -0.331** | -0.336** | -0.584** | -0.461** |
三波段复合指数 Three-band composite index | -0.426** | -0428** | -0.469** | -0.485** | -0.422** | -0423** | -0.466** | -0.473** | -0.486** | -0.505** | -0.529** | -0.535** | -0.568** | -0.577** | -0.578** | -0.592** |
四波段干旱指数 Four bands drought index | 0.463** | 0.466** | 0.496** | 0.382** | 0.456** | 0.459** | 0.485** | 0.367** | 0.163 | 0.164 | 0.414** | 0.193 | 0.023 | 0.024 | 0.364** | 0.176 |
归一化多波段干旱指数 Normalized multi-band drought index | 0.571** | 0.574** | 0.793** | 0.796** | 0.553** | 0.550** | 0.807** | 0.811** | 0.531** | 0.533** | 0.788** | 0.797** | 0.536** | 0.536** | 0.781** | 0.783** |
三波段比值指数 Three-band ratio index975 | -0.127 | -0.129 | -0.398** | -0.309** | -0.143 | -0.145 | -0.421** | -0.316** | -0.182* | -0.185* | -0.600** | -0.416** | -0.302** | -0.305** | -0.585** | -0.431** |
三波段比值指数 Three-band ratio index1200 | -0.093 | -0.096 | -0.355** | -0.202* | -0.085 | -0.088 | -0.322** | -0.182 | -0.103 | -0.106 | -0.565** | -0.382** | -0.233* | -0.236* | -0.537** | -0.379** |
双差值指数 Double difference index | 0.636** | 0.634** | 0.734** | 0.835** | 0.650** | 0.651** | 0.728** | 0.857** | 0.621** | 0.625** | 0.727** | 0.852** | 0.608** | 0.609** | 0.736** | 0.821** |
图4 不同发育阶段和冠层位置的锐齿槲栎叶片水分指数-相对含水量(WI-RWC)(A)和双差值指数-等效水分厚度(DDn(1530,525)-EWT)(B)的线性拟合关系。
Fig. 4 Linear fitting relationship of water index - relative water content (WI-RWC)(A) and double difference index - equivalent water thickness (DDn(1530,525)-EWT)(B) of Quercus aliena var. acuteserrata leaves in different growth stages and canopy positions.
[1] |
Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests.Forest Ecology and Management, 259, 660-684.
DOI URL |
[2] |
Aoki M, Yabuki K, Totsuka T (1988). Effective spectral characteristics of leaf for the remote sensing of leaf water content.Journal of Agricultural Meteorology, 44, 111-117.
DOI URL |
[3] |
Augusti A, Scartazza A, Navari-Izzo F, Sgherri CLM, Stevanovic B, Brugnoli E (2001). Photosystem II photochemical efficiency, zeaxanthin and antioxidant contents in the poikilohydric Ramonda serbica during dehydration and rehydration.Photosynthesis Research, 67, 79-88.
DOI URL PMID |
[4] |
Cao Z, Wang Q, Zheng C (2015). Best hyperspectral indices for tracing leaf water status as determined from leaf dehydration experiments. Ecological Indicators, 54, 96-107.
DOI URL |
[5] |
Carter GA (1991). Primary and secondary effects of water content on the spectral reflectance of leaves.American Journal of Botany, 916-924.
DOI URL |
[6] |
Caturegli L, Grossi N, Saltari M, Gaetani M, Magni S, Nikolopoulou AE, Bonari E, Volterrani M (2015). Spectral reflectance of tall fescue (Festuca arundinacea Schreb.) under different irrigation and nitrogen conditions.Agriculture and Agricultural Science Procedia, 4, 59-67.
DOI URL |
[7] |
Ceccato P, Flasse S, Grégoire JM (2002a). Designing a spectral index to estimate vegetation water content from remote sensing data: Part 2. Validation and applications.Remote Sensing of Environment, 82, 198-207.
DOI URL |
[8] |
Ceccato P, Flasse S, Tarantola S, Jacquemoud S, Grégoire JM (2001). Detecting vegetation leaf water content using reflectance in the optical domain.Remote Sensing of Environment, 77, 22-33.
DOI URL |
[9] |
Ceccato P, Gobron N, Flasse S, Pinty B, Tarantola S (2002b). Designing a spectral index to estimate vegetation water content from remote sensing data: Part 1: Theoretical approach.Remote Sensing of Environment, 82, 188-197.
DOI URL |
[10] |
Cheng T, Rivard B, Sanchez-Azofeifa A (2011). Spectroscopic determination of leaf water content using continuous wavelet analysis.Remote Sensing of Environment, 115, 659-670.
DOI URL |
[11] |
Curran PJ (1989). Remote sensing of foliar chemistry.Remote Sensing of Environment, 30, 271-278.
DOI URL |
[12] |
Danson FM, Steven MD, Malthus TJ, Clark JA (1992). High-spectral resolution data for determining leaf water content.International Journal of Remote Sensing, 13, 461-470.
DOI URL |
[13] | Du PX, Sun PS, Liu SR, Liu XL (2011). Response of reflectance spectra of Quercus aquifolioides leaves to different degrees of water stress.Modern Agricultural Sciences and Technology, 15, 210-213.(in Chinese with English abstract)[杜朋选, 孙鹏森, 刘世荣, 刘兴良 (2011). 川滇高山栎幼树叶片反射光谱对不同程度水分胁迫的响应. 现代农业科技, 15, 210-213.] |
[14] |
Foley S, Rivard B, Sanchez-Azofeifa GA, Calvo J (2006). Foliar spectral properties following leaf clipping and implications for handling techniques.Remote Sensing of Environment, 103, 265-275.
DOI URL |
[15] |
Gao BC (1996). NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space.Remote Sensing of Environment, 58, 257-266.
DOI URL |
[16] |
Gerhards M, Rock G, Schlerf M, Udelhoven T (2016). Water stress detection in potato plants using leaf temperature, emissivity, and reflectance.International Journal of Applied Earth Observation and Geoinformation, 53, 27-39.
DOI URL |
[17] |
Graeff S, Claupein W (2007). Identification and discrimination of water stress in wheat leaves (Triticum aestivum L.) by means of reflectance measurements.Irrigation Science, 26, 61-70.
DOI URL |
[18] | Hardisky MA, Klemas V, Smart RM (1983). The influences of soil salinity, growth form, and leaf moisture on the spectral reflectance of Spartina alterniflora canopies.Photogrammetric Engineering & Remote Sensing, 49, 77-83. |
[19] |
Hunt ER, Rock BN (1989). Detection of changes in leaf water content using near- and middle-infrared reflectances.Remote Sensing of Environment, 30, 43-54.
DOI URL |
[20] |
Hunt ER, Rock BN, Nobel PS (1987). Measurement of leaf relative water content by infrared reflectance.Remote Sensing of Environment, 22, 429-435.
DOI URL |
[21] |
Inoue Y, Morinaga S, Shibayama M (1993). Non-destructive estimation of water status of intact crop leaves based on spectral reflectance measurements.Japanese Journal of Crop Science, 62, 462-469.
DOI URL |
[22] |
Jacquemoud S, Baret F (1990). PROSPECT: A model of leaf optical properties spectra.Remote Sensing of Environment, 34, 75-91.
DOI URL |
[23] |
Jacquemoud S, Ustin SL, Verdebout J, Schmuck G, Andreoli G, Hosgood B (1996). Estimating leaf biochemistry using the PROSPECT leaf optical properties model.Remote Sensing of Environment, 56, 194-202.
DOI URL |
[24] |
Knipling EB (1970). Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation.Remote Sensing of Environment, 1, 155-159.
DOI URL |
[25] |
Lawlor DW, Cornic G (2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants.Plant, Cell & Environment, 25, 275-294.
DOI URL PMID |
[26] |
le Maire G, Fran?ois C, Soudani K, Berveiller D, Pontailler JY, Bréda N, Genet H, Davi H, Dufrêne E (2008). Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass.Remote Sensing of Environment, 112, 3846-3864.
DOI URL |
[27] | Liu C, Sun PS, Liu SR (2016). A review of plant spectral reflectance response to water physiological changes.Chinese Journal of Plant Ecology, 40, 80-91.(in Chinese with English abstract)[刘畅, 孙鹏森, 刘世荣 (2016). 植物反射光谱对水分生理变化响应的研究进展. 植物生态学报, 40, 80-91.] |
[28] |
McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008). Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought?New Phytologist, 178, 719-739.
DOI URL |
[29] |
McDowell NG, Fisher RA, Xu C, Domec JC, H?ltt? T, Mackay DS, Sperry JS, Boutz A, Dickman L, Gehres N, Limousin JM, Macalady A, Martinez-Vilalta J, Mencuccini M, Plaut JA, Ogee J, Pangle RE, Rasse DP, Ryan MG, Sevanto S, Waring RH, Williams AP, Yepez EA, Pockman WT (2013). Evaluating theories of drought-induced vegetation mortality using a multimodel-experiment framework.New Phytologist, 200, 304-321.
DOI URL |
[30] | Muttiah RS (2002). From Laboratory Spectroscopy to Remotely Sensed Spectra of Terrestrial Ecosystems. Kluwer Academic Publishers, Dordrecht, the Netherlands. |
[31] |
Osório J, Osório ML, Romano A (2012). Reflectance indices as nondestructive indicators of the physiological status of Ceratonia siliqua seedlings under varying moisture and temperature regimes.Functional Plant Biology, 39, 588-597.
DOI URL |
[32] |
Pe?uelas J, Filella I, Biel C, Serrano L, Save R (1993). The reflectance at the 950-970 nm region as an indicator of plant water status.International Journal of Remote Sensing, 14, 1887-1905.
DOI URL |
[33] |
Pe?uelas J, Inoue Y (1999). Reflectance indices indicative of changes in water and pigment contents of peanut and wheat leaves.Photosynthetica, 36, 355-360.
DOI URL |
[34] |
Pe?uelas J, Pinol J, Ogaya R, Filella I (1997). Estimation of plant water concentration by the reflectance Water Index WI (R900/R970).International Journal of Remote Sensing, 18, 2869-2875.
DOI URL |
[35] |
Pu R, Ge S, Kelly NM, Gong P (2003). Spectral absorption features as indicators of water status in coast live oak (Quercus agrifolia) leaves.International Journal of Remote Sensing, 24, 1799-1810.
DOI URL |
[36] |
Seelig HD, Hoehn A, Stodieck LS, Klaus DM, Adams III WW, Emery WJ (2008). The assessment of leaf water content using leaf reflectance ratios in the visible, near-, and short-wave-infrared.International Journal of Remote Sensing, 29, 3701-3713.
DOI URL |
[37] |
Sevanto S, McDowell NG, Dickman LT, Pangle R, Pockman WT (2014). How do trees die? A test of the hydraulic failure and carbon starvation hypotheses.Plant, Cell & Environment, 37, 153-161.
DOI URL PMID |
[38] | Shi ZM, Cheng RM, Liu SR (1999). Niche characteristics of plant populations in deciduous broad-leaved forest in Baotianman.Chinese Journal of Applied Ecology, 10, 265-269.(in Chinese with English abstract)[史作民, 程瑞梅, 刘世荣 (1999). 宝天曼落叶阔叶林种群生态位特征. 应用生态学报, 10, 265-269. ] |
[39] |
Sims DA, Gamon JA (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages.Remote Sensing of Environment, 81, 337-354.
DOI URL |
[40] |
Souza RP, Machado EC, Silva JAB, Lag?a AMMA, Silveira JAG (2004). Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery.Environmental and Experimental Botany, 51, 45-56.
DOI URL |
[41] |
Sun P, Grignetti A, Liu S, Casacchia R, Salvatori R, Pietrini F, Loreto F, Centritto M (2008). Associated changes in physiological parameters and spectral reflectance indices in olive (Olea europaea L.) leaves in response to different levels of water stress.International Journal of Remote Sensing, 29, 1725-1743.
DOI URL |
[42] | Tian YC, Zhu Y, Cao WX, Dai TB (2004). Relationship between canopy reflectance and plant water status of wheat.Chinese Journal of Applied Ecology, 15, 2072-2076.(in Chinese with English abstract)[田永超, 朱艳, 曹卫星, 戴廷波 (2004). 小麦冠层反射光谱与植株水分状况的关系. 应用生态学报, 15, 2072-2076. ] |
[43] | Tian YC, Zhu Y, Yao X, Zhou CJ, Cao WX (2006). Quantitative relationships between canopy spectral reflectance and leaf stomatal conductance in rice. Journal of Plant Ecology (Chinese Version), 30, 261-267.(in Chinese with English abstract)[田永超, 朱艳, 姚霞, 周昌俊, 曹卫星 (2006). 水稻叶片气孔导度与冠层反射光谱的定量关系分析. 植物生态学报, 30, 261-267.] |
[44] |
Tucker CJ (1980). Remote sensing of leaf water content in the near infrared.Remote Sensing of Environment, 10, 23-32.
DOI URL |
[45] |
Wang L, Qu JJ (2007). NMDI: A normalized multi-band drought index for monitoring soil and vegetation moisture with satellite remote sensing.Geophysical Research Letters, 34, L20405. doi: 10.1029/2007GL031021.
DOI URL |
[46] |
Wang Q, Li P (2012). Hyperspectral indices for estimating leaf biochemical properties in temperate deciduous forests: Comparison of simulated and measured reflectance data sets.Ecological Indicators, 14, 56-65.
DOI URL |
[47] |
Yu GR, Miwa T, Nakayama K, Matsuoka N, Kon H (2000). A proposal for universal formulas for estimating leaf water status of herbaceous and woody plants based on spectral reflectance properties.Plant and Soil, 227, 47-58.
DOI URL |
[48] |
Zarco-Tejada PJ, Rueda CA, Ustin SL (2003). Water content estimation in vegetation with MODIS reflectance data and model inversion methods.Remote Sensing of Environment, 85, 109-124.
DOI URL |
[49] |
Zhang J, Guo W (2006). Quantitative retrieval of crop water content under different soil moistures levels.Agriculture and Hydrology Applications of Remote Sensing, 6411, 64110D. doi: 10.1117/12.697957.
DOI URL |
[50] | Zhao S, Wang Q, Yao Y, Du S, Zhang C, Li J, Zhao J (2016). Estimating and validating wheat leaf water content with three MODIS spectral indexes: A case study in Ningxia Plain, China.Journal of Agricultural Science and Technology, 18, 387-398. |
[1] | 袁雅妮, 周哲, 陈彬洲, 郭垚鑫, 岳明. 基于功能性状的锐齿槲栎林共存树种生态策略差异[J]. 植物生态学报, 2023, 47(9): 1270-1277. |
[2] | 李露, 金光泽, 刘志理. 阔叶红松林3种阔叶树种柄叶性状变异与相关性[J]. 植物生态学报, 2022, 46(6): 687-699. |
[3] | 韦博良, 袁志良, 牛帅, 刘霞, 贾宏汝, 叶永忠. 河南省宝天曼锐齿槲栎林树木死亡对空间格局及种间相关性的影响[J]. 植物生态学报, 2017, 41(4): 430-438. |
[4] | 刘峰, 陈伟烈, 贺金生. 神农架地区锐齿槲栎种群结构与更新的研究[J]. 植物生态学报, 2000, 24(4): 396-410. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19