植物生态学报 ›› 2022, Vol. 46 ›› Issue (10): 1305-1316.DOI: 10.17521/cjpe.2022.0158
• 研究论文 • 上一篇
刘兵兵1,2, 魏建新1,2,3,*(), 胡天宇4,5, 杨秋丽4,5, 刘小强4,5, 吴发云6, 苏艳军4,5, 郭庆华7
收稿日期:
2022-04-24
接受日期:
2022-09-05
出版日期:
2022-10-20
发布日期:
2022-09-28
通讯作者:
魏建新
作者简介:
*(wjxlr@126.com)基金资助:
LIU Bing-Bing1,2, WEI Jian-Xin1,2,3,*(), HU Tian-Yu4,5, YANG Qiu-Li4,5, LIU Xiao-Qiang4,5, WU Fa-Yun6, SU Yan-Jun4,5, GUO Qing-Hua7
Received:
2022-04-24
Accepted:
2022-09-05
Online:
2022-10-20
Published:
2022-09-28
Contact:
WEI Jian-Xin
Supported by:
摘要:
准确获取森林结构参数对森林生态系统研究及其保护有着重要意义。卫星遥感数据作为获取大尺度森林结构参数的重要数据源, 已被制作成各种植被监测产品并被应用于森林质量状况变化评估、森林生物量估算以及森林干扰和生物多样性监测等研究。然而, 这些卫星遥感植被监测产品针对中国复杂多样的森林区域缺乏有效验证, 在不同林况和地形条件下的不确定性也不明确。激光雷达具备高精度三维信息采集的优势, 在国内外已被广泛用于森林生态系统监测和卫星遥感产品验证。为此, 该研究利用在中国114个样地收集的153 km2的无人机激光雷达数据, 构建了我国森林结构参数验证数据集, 并以此为基础对3套全球遥感监测产品(全球叶面积指数(GLASS LAI)、全球冠层覆盖度(GLCF TCC)、全球冠层高度(GFCH))进行了像元尺度的验证, 并分析了其在不同坡度、覆盖度和林型条件下的不确定性。研究结果表明: 与无人机激光雷达获取的叶面积指数、覆盖度以及冠层高度相比, GLASS LAI、GLCF TCC、GFCH在中国森林区域均存在一定的不确定性, 且受林况和地形因素影响的程度不一致。对GLASS LAI和GLCF TCC影响的最大因素分别为林型和覆盖度; 而GFCH则更易受地形坡度和覆盖度的影响。
刘兵兵, 魏建新, 胡天宇, 杨秋丽, 刘小强, 吴发云, 苏艳军, 郭庆华. 卫星遥感监测产品在中国森林生态系统的验证和不确定性分析——基于海量无人机激光雷达数据. 植物生态学报, 2022, 46(10): 1305-1316. DOI: 10.17521/cjpe.2022.0158
LIU Bing-Bing, WEI Jian-Xin, HU Tian-Yu, YANG Qiu-Li, LIU Xiao-Qiang, WU Fa-Yun, SU Yan-Jun, GUO Qing-Hua. Validation and uncertainty analysis of satellite remote sensing products for monitoring China’s forest ecosystems—Based on massive UAV LiDAR data. Chinese Journal of Plant Ecology, 2022, 46(10): 1305-1316. DOI: 10.17521/cjpe.2022.0158
图1 无人机激光雷达数据采集样地分布以及按高程渲染的三维点云示例图。A, 吉林省塔子沟林场。B, 山东省天麻林场。C, 海南省吊罗山国家森林公园。
Fig. 1 Spatial distribution of unmanned aerial vehicle (UAV) LiDAR data used in this study, and examples of 3D point cloud rendered by elevation. A, Tazigou Forest Farm, Jilin Province. B, Tianma Forest Farm, Shandong Province. C, Diaoluo Mountain National Forest Park, Hainan Province.
无人机 激光雷 达系统 UAV LiDAR system | 激光 传感器 Laser sensor | 最大扫描 频率 Maximum scanning frequency (kHz) | 测量精度 Measurement accuracy (mm) | 视场角 Field of view | 回波次数 Number of returns |
---|---|---|---|---|---|
LiAir 220 | HESAI Pandar40 | 720 | ±20 | 360° | 2次 Dual returns |
LiAir Pro | Riegl VUX-1 | 550 | ±10 | 360° | 多次 Multi-returns |
表1 无人机激光雷达系统相关参数
Table 1 Parameters of unmanned aerial vehicle (UAV) LiDAR system
无人机 激光雷 达系统 UAV LiDAR system | 激光 传感器 Laser sensor | 最大扫描 频率 Maximum scanning frequency (kHz) | 测量精度 Measurement accuracy (mm) | 视场角 Field of view | 回波次数 Number of returns |
---|---|---|---|---|---|
LiAir 220 | HESAI Pandar40 | 720 | ±20 | 360° | 2次 Dual returns |
LiAir Pro | Riegl VUX-1 | 550 | ±10 | 360° | 多次 Multi-returns |
产品 Product | 版本 Version | 覆盖范围 Spatial coverage | 覆盖时段 Time period | 时空分辨率 Spatiotemporal resolution | 坐标系统及投影基准 Coordinate system and projection datum | 数据来源 Data source |
---|---|---|---|---|---|---|
GLASS LAI | V50 | 全球 Global | 2017 | 8 d, 500 m | 正弦投影 Sinusoidal projection | |
GLCF TCC | V4 | 全球 Global | 2015 | 1 a, 30 m | UTM投影 UTM projection | |
GFCH | - | 全球 Global | 2019 | 1 a, 30 m | UTM投影 UTM projection | |
表2 卫星遥感监测产品基本信息
Table 2 Basic information of satellite remote sensing products
产品 Product | 版本 Version | 覆盖范围 Spatial coverage | 覆盖时段 Time period | 时空分辨率 Spatiotemporal resolution | 坐标系统及投影基准 Coordinate system and projection datum | 数据来源 Data source |
---|---|---|---|---|---|---|
GLASS LAI | V50 | 全球 Global | 2017 | 8 d, 500 m | 正弦投影 Sinusoidal projection | |
GLCF TCC | V4 | 全球 Global | 2015 | 1 a, 30 m | UTM投影 UTM projection | |
GFCH | - | 全球 Global | 2019 | 1 a, 30 m | UTM投影 UTM projection | |
图2 无人机激光雷达获取的3个森林结构参数分布直方图。
Fig. 2 Histograms of three forest structural attributes derived from unmanned aerial vehicle (UAV) LiDAR data. LAI, leaf area index.
图3 不同不确定性水平下无人机激光雷达获取的冠层覆盖度与全球冠层覆盖度产品(GLCF TCC)的散点图。虚线为1:1线, 实线为拟合线; 散点图右侧的色带表示数据点的概率密度, 颜色越黄, 点密度越大。A, 不确定性0-5%。 B, 不确定性5%-10%。C, 不确定性10%-15%。D, 不确定性≥15%。Bias, 偏差; R2, 决定系数; RMSE, 均方根误差。
Fig. 3 Scatter plots of canopy cover estimated from unmanned aerial vehicle (UAV) LiDAR data and Global Land Cover Facility-Tree Canopy Cover (GLCF TCC) under different uncertainty levels provided by GLCL TCC. The dotted lines are 1:1 lines, the solid lines are fitted lines, and color bars represent the probability density of observations with dark blue for low density and yellow for high density. A, Uncertainty: 0-5%. B, Uncertainty: 5%-10%. C, Uncertainty: 10%-15%. D, Uncertainty: above 15%. R2, determinant coefficient; RMSE, root mean square error.
图4 3种卫星遥感监测产品精度验证结果散点图。虚线为1:1线, 实线为拟合线; 散点图右侧的色带表示数据点的概率密度, 颜色越黄, 点密度越大。GFCH, 全球冠层高度产品; GLASS LAI, 全球叶面积指数产品; GLCF TCC, 全球冠层覆盖度产品。
Fig. 4 Accuracy of three satellite remote sensing products against unmanned aerial vehicle (UAV) LiDAR observations. The dotted line is the 1:1 line, the solid line is the fitted line, and the color bar represents the probability density of observations. GFCH, Global Forest Canopy Height; GLASS LAI, Global Land Surface Satellite Products System-Leaf Area Index; GLCF TCC, Global Land Cover Facility-Tree Canopy Cover.
产品 Product | 林型 Forest type | 坡度 Slope (°) | 冠层覆盖度 Canopy cover (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
a | b | c | 0-10 | 10-20 | 20-30 | ≥30 | 0-30 | 30-60 | 60-80 | ≥80 | ||
GLCF TCC | R2 | 0.64 | 0.29 | 0.60 | 0.39 | 0.54 | 0.48 | 0.52 | 0.10 | 0.03 | 0.02 | 0.05 |
Bias (%) | 18.13 | 19.96 | 21.37 | 22.81 | 21.72 | 19.54 | 14.49 | -4.78 | 11.55 | 25.39 | 33.35 | |
RMSE (%) | 28.40 | 34.16 | 29.45 | 31.70 | 31.17 | 31.63 | 28.69 | 17.02 | 25.72 | 32.57 | 36.87 | |
像元数量 N | 15 584 | 37 167 | 51 969 | 39 301 | 23 792 | 23 441 | 18 186 | 21 231 | 16 446 | 23 837 | 43 206 | |
GLASS LAI | R2 | 0.73 | 0.15 | 0.36 | 0.29 | 0.38 | 0.28 | 0.34 | 0.17 | 0.3 | 0.04 | 0.11 |
Bias (m2·m-2) | -1.46 | -1.39 | -1.86 | -1.81 | -1.98 | -1.63 | -0.72 | -1.22 | -1.68 | -2.05 | -1.45 | |
RMSE (m2·m-2) | 1.76 | 2.01 | 2.23 | 2.16 | 2.30 | 2.11 | 1.62 | 1.44 | 2.12 | 2.35 | 2.03 | |
像元数量 N | 52 | 196 | 204 | 136 | 87 | 162 | 67 | 24 | 64 | 112 | 252 | |
GFCH | R2 | 0.35 | 0.40 | 0.34 | 0.45 | 0.37 | 0.31 | 0.37 | 0.09 | 0.14 | 0.27 | 0.25 |
Bias (m) | 0.64 | 2.87 | 1.23 | 1.67 | 0.79 | 2.09 | 3.22 | -1.73 | 0.20 | 1.36 | 2.72 | |
RMSE (m) | 3.91 | 6.29 | 4.22 | 4.10 | 4.40 | 5.84 | 6.72 | 5.16 | 4.83 | 4.40 | 5.61 | |
像元数量 N | 16 794 | 85 571 | 74 047 | 58 565 | 34 454 | 41 776 | 41 617 | 9 291 | 19 420 | 32 156 | 115 545 |
表3 不同因子对3种卫星遥感监测产品精度的影响分析
Table 3 Influences of different factors on the accuracy of three satellite remote sensing products
产品 Product | 林型 Forest type | 坡度 Slope (°) | 冠层覆盖度 Canopy cover (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
a | b | c | 0-10 | 10-20 | 20-30 | ≥30 | 0-30 | 30-60 | 60-80 | ≥80 | ||
GLCF TCC | R2 | 0.64 | 0.29 | 0.60 | 0.39 | 0.54 | 0.48 | 0.52 | 0.10 | 0.03 | 0.02 | 0.05 |
Bias (%) | 18.13 | 19.96 | 21.37 | 22.81 | 21.72 | 19.54 | 14.49 | -4.78 | 11.55 | 25.39 | 33.35 | |
RMSE (%) | 28.40 | 34.16 | 29.45 | 31.70 | 31.17 | 31.63 | 28.69 | 17.02 | 25.72 | 32.57 | 36.87 | |
像元数量 N | 15 584 | 37 167 | 51 969 | 39 301 | 23 792 | 23 441 | 18 186 | 21 231 | 16 446 | 23 837 | 43 206 | |
GLASS LAI | R2 | 0.73 | 0.15 | 0.36 | 0.29 | 0.38 | 0.28 | 0.34 | 0.17 | 0.3 | 0.04 | 0.11 |
Bias (m2·m-2) | -1.46 | -1.39 | -1.86 | -1.81 | -1.98 | -1.63 | -0.72 | -1.22 | -1.68 | -2.05 | -1.45 | |
RMSE (m2·m-2) | 1.76 | 2.01 | 2.23 | 2.16 | 2.30 | 2.11 | 1.62 | 1.44 | 2.12 | 2.35 | 2.03 | |
像元数量 N | 52 | 196 | 204 | 136 | 87 | 162 | 67 | 24 | 64 | 112 | 252 | |
GFCH | R2 | 0.35 | 0.40 | 0.34 | 0.45 | 0.37 | 0.31 | 0.37 | 0.09 | 0.14 | 0.27 | 0.25 |
Bias (m) | 0.64 | 2.87 | 1.23 | 1.67 | 0.79 | 2.09 | 3.22 | -1.73 | 0.20 | 1.36 | 2.72 | |
RMSE (m) | 3.91 | 6.29 | 4.22 | 4.10 | 4.40 | 5.84 | 6.72 | 5.16 | 4.83 | 4.40 | 5.61 | |
像元数量 N | 16 794 | 85 571 | 74 047 | 58 565 | 34 454 | 41 776 | 41 617 | 9 291 | 19 420 | 32 156 | 115 545 |
[1] |
Amarnath G, Babar S, Murthy MSR. (2017). Evaluating MODIS- vegetation continuous field products to assess tree cover change and forest fragmentation in India—A multi-scale satellite remote sensing approach. The Egyptian Journal of Remote Sensing and Space Science, 20, 157-168.
DOI URL |
[2] |
Baret F, Morissette JT, Fernandes RA, Champeaux JL, Myneni RB, Chen J, Plummer S, Weiss M, Bacour C, Garrigues S, Nickeson JE. (2006). Evaluation of the representativeness of networks of sites for the global validation and intercomparison of land biophysical products: proposition of the CEOS-BELMANIP. IEEE Transactions on Geoscience and Remote Sensing, 44, 1794-1803.
DOI URL |
[3] |
Cai SS, Zhang WM, Jin SN, Shao J, Li LY, Yu SS, Yan GJ. (2021). Improving the estimation of canopy cover from UAV-LiDAR data using a pit-free CHM-based method. International Journal of Digital Earth, 14, 1477-1492.
DOI URL |
[4] |
Chen C, Park T, Wang XH, Piao SL, Xu BD, Chaturvedi RK, Fuchs R, Brovkin V, Ciais P, Fensholt R, Tømmervik H, Bala G, Zhu ZC, Nemani RR, Myneni RB. (2019). China and India lead in greening of the world through land-use management. Nature Sustainability, 2, 122-129.
DOI PMID |
[5] | Fang HL. (2020). Development and validation of satellite leaf area index (LAI) products in China. Remote Sensing Technology and Application, 35, 990-1003. |
[方红亮 (2020). 我国叶面积指数卫星遥感产品生产及验证. 遥感技术与应用, 35, 990-1003.] | |
[6] |
Gao F, Masek JG, Wolfe RE, Huang CQ. (2010). Building a consistent medium resolution satellite data set using moderate resolution imaging spectroradiometer products as reference. Journal of Applied Remote Sensing, 4, 043526. DOI: 10.1117/1.3430002.
DOI |
[7] |
García-Haro FJ, Camacho F, Martínez B, Campos-Taberner M, Fuster B, Sánchez-Zapero J, Gilabert MA. (2019). Climate data records of vegetation variables from geostationary SEVIRI/MSG data: products, algorithms and applications. Remote Sensing, 11, 2103. DOI: 10.3390/rs11182103.
DOI |
[8] |
Gonsamo A, Chen JM. (2011). Evaluation of the GLC2000 and NALC2005 land cover products for LAI retrieval over Canada. Canadian Journal of Remote Sensing, 37, 302-313.
DOI URL |
[9] | Guo QH, Su YJ, Hu TY, Liu J. (2018). LiDAR Principles, Processing and Applications in Forest Ecology. Higher Education Press, Beijing. |
[郭庆华, 苏艳军, 胡天宇, 刘瑾 (2018). 激光雷达森林生态应用——理论、方法及实例. 高等教育出版社, 北京.] | |
[10] |
Hilker T, Wulder MA, Coops NC, Seitz N, White JC, Gao F, Masek JG, Stenhouse G. (2009). Generation of dense time series synthetic Landsat data through data blending with MODIS using a spatial and temporal adaptive reflectance fusion model. Remote Sensing of Environment, 113, 1988-1999.
DOI URL |
[11] |
Hu TY, Sun XL, Su YJ, Guan HC, Sun QH, Kelly M, Guo QH. (2020a). Development and performance evaluation of a very low-cost UAV-Lidar system for forestry applications. Remote Sensing, 13, 77. DOI: 10.3390/rs13010077.
DOI |
[12] |
Hu TY, Zhang YY, Su YJ, Zheng Y, Lin GH, Guo QH. (2020b). Mapping the global mangrove forest aboveground biomass using multisource remote sensing data. Remote Sensing, 12, 1690. DOI: 10.3390/rs12101690.
DOI |
[13] |
Jakubowski MK, Guo QH, Kelly M. (2013). Tradeoffs between lidar pulse density and forest measurement accuracy. Remote Sensing of Environment, 130, 245-253.
DOI URL |
[14] |
Jin HA, Li AN, Bian JH, Nan X, Zhao W, Zhang ZJ, Yin GF. (2017). Intercomparison and validation of MODIS and GLASS leaf area index (LAI) products over mountain areas: a case study in southwestern China. International Journal of Applied Earth Observation and Geoinformation, 55, 52-67.
DOI URL |
[15] | Li WJ, Zhao CY, Bie Q, Gao CC, Gao YF. (2015). Retrieval of the forest structural parameters using airborne LiDAR data. Remote Sensing Technology and Application, 30, 917-924. |
[李文娟, 赵传燕, 别强, 高婵婵, 高云飞 (2015). 基于机载激光雷达数据的森林结构参数反演. 遥感技术与应用, 30, 917-924.] | |
[16] |
Li XL, Lu H, Yu L, Yang K. (2018). Comparison of the spatial characteristics of four remotely sensed leaf area index products over China: direct validation and relative uncertainties. Remote Sensing, 10, 148. DOI: 10.3390/rs10010148.
DOI |
[17] | Li ZY, Liu QW, Pang Y. (2016). Review on forest parameters inversion using LiDAR. Journal of Remote Sensing, 20, 1138-1150. |
[李增元, 刘清旺, 庞勇 (2016). 激光雷达森林参数反演研究进展. 遥感学报, 20, 1138-1150.] | |
[18] | Lin XJ. (2021). Remote Sensing Diagnosis of Forest Canopy Height and Forest Aboveground Biomass Based on ICESat-2 and GEDI. Master degree dissertation, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing. |
[林晓娟 (2021). 基于ICESat-2和GEDI森林冠层高度和森林地上生物量遥感诊断. 硕士学位论文, 中国科学院空天信息创新研究所, 北京.] | |
[19] |
Liu XQ, Su YJ, Hu TY, Yang QL, Liu BB, Deng YF, Tang H, Tang ZY, Fang JY, Guo QH. (2022). Neural network guided interpolation for mapping canopy height of Chinaʼs forests by integrating GEDI and ICESat-2 data. Remote Sensing of Environment, 269, 112844. DOI: 10.1016/j.rse.2021.112844.
DOI |
[20] |
Ma Q, Su YJ, Guo QH. (2017). Comparison of canopy cover estimations from airborne LiDAR, aerial imagery, and satellite imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10, 4225-4236.
DOI URL |
[21] |
Montesano PM, Neigh CSR, Sexton J, Feng M, Channan S, Ranson KJ, Townshend JR. (2016). Calibration and validation of landsat tree cover in the Taiga-Tundra ecotone. Remote Sensing, 8, 551. DOI: 10.3390/rs8070551.
DOI |
[22] |
Pan YD, Birdsey RA, Fang JY, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao SL, et al. (2011). A large and persistent carbon sink in the world’s forests. Science, 333, 988-993.
DOI URL |
[23] |
Potapov P, Li X, Hernandez-Serna A, Tyukavina A, Hansen MC, Kommareddy A, Pickens A, Turubanova S, Tang H, Silva CE, Armston J, Dubayah R, Blair JB, Hofton M. (2021). Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sensing of Environment, 253, 112165. DOI: 10.1016/j.rse.2020.112165.
DOI |
[24] |
Richardson JJ, Moskal LM, Kim SH. (2009). Modeling approaches to estimate effective leaf area index from aerial discrete- return LiDAR. Agricultural and Forest Meteorology, 149, 1152-1160.
DOI URL |
[25] |
Roujean JL, Lacaze R. (2002). Global mapping of vegetation parameters from POLDER multiangular measurements for studies of surface-atmosphere interactions: a pragmatic method and its validation. Journal of Geophysical Research, 107, 4150. DOI: 10.1029/2001JD000751.
DOI |
[26] |
Schleppi P, Thimonier A, Walthert L. (2011). Estimating leaf area index of mature temperate forests using regressions on site and vegetation data. Forest Ecology and Management, 261, 601-610.
DOI URL |
[27] |
Sexton JO, Song XP, Feng M, Noojipady P, Anand A, Huang C, Kim DH, Collins KM, Channan S, DiMiceli C, Townshend JR. (2013). Global, 30-m resolution continuous fields of tree cover: landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error. International Journal of Digital Earth, 6, 427-448.
DOI URL |
[28] | Song HL, Zhang XN, Wang Y, Wang M. (2012). Comparison of relative uniformity between GLOBCOVER and MODIS land cover data sets. Transactions of the Chinese Society of Agricultural Engineering, 28(15), 118-124. |
[宋宏利, 张晓楠, 王雨, 王萌 (2012). 多尺度高分辨率全球土地覆被遥感产品相对一致性比较. 农业工程学报, 28(15), 118-124.] | |
[29] |
Su YJ, Ma Q, Guo QH. (2017). Fine-resolution forest tree height estimation across the Sierra Nevada through the integration of spaceborne LiDAR, airborne LiDAR, and optical imagery. International Journal of Digital Earth, 10, 307-323.
DOI URL |
[30] |
Tang H, Song XP, Zhao FA, Strahler AH, Schaaf CL, Goetz S, Huang CQ, Hansen MC, Dubayah R. (2019). Definition and measurement of tree cover: a comparative analysis of field-, lidar- and landsat-based tree cover estimations in the Sierra national forests, USA. Agricultural and Forest Meteorology, 268, 258-268.
DOI |
[31] |
Valderrama-Landeros LH, España-Boquera ML, Baret F. (2016). Deforestation in Michoacan, Mexico, from CYCLOPES- LAI time series (2000-2006). IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9, 5398-5405.
DOI URL |
[32] | Wu XD, Xiao Q, Wen JG, Liu Q, Peng JJ, Li XW. (2014). Advances in uncertainty analysis for the validation of remote sensing products: take leaf area index for example. Journal of Remote Sensing, 18, 1011-1023. |
[吴小丹, 肖青, 闻建光, 刘强, 彭菁菁, 李小文 (2014). 遥感数据产品真实性检验不确定性分析研究进展. 遥感学报, 18, 1011-1023.] | |
[33] | Xia WT, Wang Y, Feng QS, Liang TG. (2010). Accuracy assessment of MODIS land cover product of Gannan Prefecture. Pratacultural Science, 27(9), 11-18. |
[夏文韬, 王莺, 冯琦胜, 梁天刚 (2010). 甘南地区MODIS土地覆盖产品精度评价. 草业科学, 27(9), 11-18.] | |
[34] | Xiang Y, Xiao ZQ, Liang SL, Wang JD, Song JL. (2014). Validation of global land surface satellite (GLASS) leaf area index product. Journal of Remote Sensing, 18, 573-596. |
[向阳, 肖志强, 梁顺林, 王锦地, 宋金玲 (2014). GLASS叶面积指数产品验证. 遥感学报, 18, 573-596.] | |
[35] |
Xiao ZQ, Liang SL, Wang JD, Chen P, Yin XJ, Zhang LQ, Song JL. (2014). Use of general regression neural networks for generating the GLASS leaf area index product from time-series MODIS surface reflectance. IEEE Transactions on Geoscience and Remote Sensing, 52, 209-223.
DOI URL |
[36] | You HT, Xing YQ, Wang Z, Sun XT, Wang M. (2014). Estimation of the leaf area index of coniferous forests using LiDAR discrete point cloud. Journal of Northwest Forestry University, 29(3), 41-47. |
[尤号田, 邢艳秋, 王铮, 孙小添, 王萌 (2014). 利用LiDAR离散点云估测针叶林叶面积指数. 西北林学院学报, 29(3), 41-47.] | |
[37] |
Zhao XQ, Guo QH, Su YJ, Xue BL. (2016). Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas. ISPRS Journal of Photogrammetry and Remote Sensing, 117, 79-91.
DOI URL |
[1] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[2] | 刘超, 李平, 武运涛, 潘胜难, 贾舟, 刘玲莉. 一种基于数码相机图像和群落冠层结构调查的草地地上生物量估算方法[J]. 植物生态学报, 2022, 46(10): 1280-1288. |
[3] | 黄松宇, 贾昕, 郑甲佳, 杨睿智, 牟钰, 袁和第. 中国典型陆地生态系统波文比特征及影响因素[J]. 植物生态学报, 2021, 45(2): 119-130. |
[4] | 杨焕莹, 宋建达, 周焘, 金光泽, 姜峰, 刘志理. 林分、土壤及空间因子对谷地云冷杉林叶面积指数空间异质性的影响[J]. 植物生态学报, 2019, 43(4): 342-351. |
[5] | 刘泽彬, 王彦辉, 刘宇, 田奥, 王亚蕊, 左海军. 宁夏六盘山半湿润区华北落叶松林冠层叶面积指数的时空变化及坡面尺度效应[J]. 植物生态学报, 2017, 41(7): 749-760. |
[6] | 高林, 王晓菲, 顾行发, 田庆久, 焦俊男, 王培燕, 李丹. 植冠下土壤类型差异对遥感估算冬小麦叶面积指数的影响[J]. 植物生态学报, 2017, 41(12): 1273-1288. |
[7] | 周明, 刘志理, 金光泽. 利用3种校正方案提高间接法测定兴安落叶松人工林叶面积指数的精度[J]. 植物生态学报, 2016, 40(6): 574-584. |
[8] | 朱绪超, 袁国富, 邵明安, 易小波, 杜涛. 塔里木河下游河岸带植被的空间结构特征[J]. 植物生态学报, 2015, 39(11): 1053-1061. |
[9] | 刘志理, 金光泽, 周明. 利用直接法和间接法测定针阔混交林叶面积指数的季节动态[J]. 植物生态学报, 2014, 38(8): 843-856. |
[10] | 穆少杰, 周可新, 齐杨, 陈奕兆, 方颖, 朱超. 内蒙古植被降水利用效率的时空格局及其驱动因素[J]. 植物生态学报, 2014, 38(1): 1-16. |
[11] | 苏宏新, 白帆, 李广起. 3类典型温带山地森林的叶面积指数的季节动态: 多种监测方法比较[J]. 植物生态学报, 2012, 36(3): 231-242. |
[12] | 许皓, 李彦, 谢静霞, 程磊, 赵彦, 刘冉. 光合有效辐射与地下水位变化对柽柳属荒漠灌木群落碳平衡的影响[J]. 植物生态学报, 2010, 34(4): 375-386. |
[13] | 侯琼, 王英舜, 杨泽龙, 师桂花. 内蒙古典型草原作物系数的动态模拟与确定[J]. 植物生态学报, 2010, 34(12): 1414-1423. |
[14] | 刘建立, 王彦辉, 于澎涛, 程丽莉, 熊伟, 徐丽宏, 杜阿朋. 六盘山叠叠沟小流域典型坡面土壤水分的植被承载力[J]. 植物生态学报, 2009, 33(6): 1101-1111. |
[15] | 赵传燕, 沈卫华, 彭焕华. 祁连山区青海云杉林冠层叶面积指数的反演方法[J]. 植物生态学报, 2009, 33(5): 860-869. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19