植物生态学报 ›› 2022, Vol. 46 ›› Issue (10): 1289-1304.DOI: 10.17521/cjpe.2022.0226
收稿日期:
2022-06-02
接受日期:
2022-09-12
出版日期:
2022-10-20
发布日期:
2022-09-21
通讯作者:
*吕肖良(luxiaoliang@nwafu.edu.cn)
基金资助:
Received:
2022-06-02
Accepted:
2022-09-12
Online:
2022-10-20
Published:
2022-09-21
Contact:
*Lü Xiao-Liang(luxiaoliang@nwafu.edu.cn)
Supported by:
摘要:
基于日光诱导叶绿素荧光(SIF)揭示黄土高原大面积实施生态工程后植被恢复区域的植被生产力效益。通过分析遥感观测的地表绿度特征变化和土地利用动态, 该研究首先识别了近20年来黄土高原植被恢复区域和原有植被的空间分布范围, 在此基础上, 使用SIF和气象数据, 根据改进机理光响应模型(rMLR)计算了植被总初级生产力(GPP), 对比分析了植被恢复区域绿度特征变化下GPP的差异。结果显示: 空间上, 由于生态工程的广泛实施, 黄土高原整体绿化情况得到了明显改善。在2001-2020年间, 黄土高原上林地恢复面积约3.5万km2, 占区域总面积的7.42%; 草地恢复面积11万km2, 约占区域总面积的25.25%。整体上, 林地恢复区域的光合能力和生产力水平均低于原有林地, 而草地恢复区域较原有草地高; 恢复林地的GPP相当于原有林地GPP的83.86%, 恢复草地的GPP相当于原有草地的121.10%。在相同的叶面积指数(LAI)等级下, 植被恢复区域与原有植被的生产力呈现不同的差异性, 当LAI较大时植被恢复区域与原有植被的GPP差距较大。由裸地转变而来的植被恢复区域生产力效益最差, 而林地生长区域和退耕还草的植被恢复区域分别是林地恢复和草地恢复中的最优模式。植被恢复区域的LAI增长速率和恢复年限也影响了生产力, LAI增长速率越大的区域生产力效益越高, 林地恢复年限越久越利于生产力的提升, 草地恢复年限较短的区域有较高的生产力。总体上, 由于生态工程的实施, 虽然黄土高原上的植被覆盖面积和生物量得到了显著提高, 但植被生产力(尤其是林地)并没有获得同等程度的恢复, 影响了生态工程的生态效益。
薛金儒, 吕肖良. 黄土高原生态工程实施下基于日光诱导叶绿素荧光的植被恢复生产力效益评价. 植物生态学报, 2022, 46(10): 1289-1304. DOI: 10.17521/cjpe.2022.0226
XUE Jin-Ru, LÜ Xiao-Liang. Assessment of vegetation productivity under the implementation of ecological programs in the Loess Plateau based on solar-induced chlorophyll fluorescence. Chinese Journal of Plant Ecology, 2022, 46(10): 1289-1304. DOI: 10.17521/cjpe.2022.0226
名称 Name | 经度 Longitude | 纬度 Latitude | 海拔 Altitude (m) | 生态系统类型 Ecosystem type |
---|---|---|---|---|
CA-Cbo | 79.93° W | 44.32° N | 120 | 落叶阔叶林 Deciduous broadleaf forests |
US-MMS | 86.41° W | 39.32° N | 275 | 落叶阔叶林 Deciduous broadleaf forests |
US-MOz | 92.20° W | 38.74° N | 219 | 落叶阔叶林 Deciduous broadleaf forests |
US-Ha1 | 72.17° W | 42.54° N | 340 | 混交林 Mixed forests |
表1 4个AmeriFlux通量站点的详细信息
Table 1 Details of the four AmeriFlux eddy flux sites
名称 Name | 经度 Longitude | 纬度 Latitude | 海拔 Altitude (m) | 生态系统类型 Ecosystem type |
---|---|---|---|---|
CA-Cbo | 79.93° W | 44.32° N | 120 | 落叶阔叶林 Deciduous broadleaf forests |
US-MMS | 86.41° W | 39.32° N | 275 | 落叶阔叶林 Deciduous broadleaf forests |
US-MOz | 92.20° W | 38.74° N | 219 | 落叶阔叶林 Deciduous broadleaf forests |
US-Ha1 | 72.17° W | 42.54° N | 340 | 混交林 Mixed forests |
图2 黄土高原植被恢复区域和原有植被区域空间分布。A, 林地恢复区域。B, 草地恢复区域。C, 原有林地区域。D, 原有草地区域。
Fig. 2 Spatial distribution of revegetation and existing vegetation of the Loess Plateau. A, Revegetated forest area. B, Revegetated grassland area. C, Existing forest area. D, Existing grassland area.
图3 2020年黄土高原植被恢复区域和原有植被年平均总初级生产力(GPP)空间分布。A, 恢复林地GPP。B, 恢复草地GPP。C, 原有林地GPP。D, 原有草地GPP。
Fig. 3 Spatial distribution of annual average gross primary production (GPP) in the revegetation and existing vegetation areas of the Loess Plateau in 2020. A, GPP of revegetated forest. B, GPP of revegetated grassland. C, GPP of existing forest. D, GPP of existing grassland.
图4 基于TROPOspheric Monitoring Instrument (TROPOMI)日光诱导叶绿素荧光(SIF)计算的总初级生产力(GPP)与实测GPP的比较结果。A, CA-Cbo。B, US-MMS。C, US-MOz。D, US-Ha1。R2, 决定系数; RMSE, 均方根误差; rRMSE, 相对均方根误差。
Fig. 4 Comparison of gross primary production (GPP) calculated based on TROPOspheric Monitoring Instrument (TROPOMI) solar-induced chlorophyll fluorescence (SIF) and observed GPP. A, CA-Cbo. B, US-MMS. C, US-MOz. D, US-Ha1. R2, determinate coefficient; RMSE, root mean square error; rRMSE, relative root mean square error.
图5 黄土高原2020年植被恢复区域与原有植被区域平均冠层顶部日光诱导叶绿素荧光(SIFTOC)、总初级生产力(GPP)对比。A, 林地恢复区域与原有林地区域平均SIFTOC对比。B, 草地恢复区域与原有草地区域平均SIFTOC对比。C, 林地恢复区域与原有林地区域平均GPP对比。D, 草地恢复区域与原有草地区域平均GPP对比。
Fig. 5 Comparison of mean top-of-canopy solar-induced chlorophyll fluorescence (SIFTOC) and gross primary production (GPP) between revegetation and existing vegetation area in the Loess Plateau in 2020. A, Mean SIFTOC comparison between revegetated forest and existing forest. B, Mean SIFTOC comparison between revegetated grassland and existing grassland. C, mean GPP comparison between revegetated forest and existing forest. D, Mean GPP comparison between revegetated grassland and existing grassland.
图6 黄土高原2020年不同叶面积指数(LAI)等级下植被恢复区域和原有植被区域的总初级生产力差异(GPPD)。A, 不同LAI等级下的林地恢复GPPD。B, 不同LAI等级下的草地恢复GPPD。
Fig. 6 Gross primary production difference (GPPD) between revegetation and existing vegetation area under different leaf area index (LAI) level in the Loess Plateau in 2020. A, GPPD of revegetated forest under different LAI levels. B, GPPD of revegetated grassland under different LAI levels.
图7 黄土高原2020年不同条件下植被恢复区域和原有植被区域的总初级生产力差异(GPPD)。A, 不同土地利用类型转变方式下的林地恢复GPPD。B, 不同土地利用类型转变方式下的草地恢复GPPD。C, 不同Sen斜率等级下的林地恢复GPPD。D, 不同Sen斜率等级下的草地恢复GPPD。
Fig. 7 Gross primary production difference (GPPD) between revegetation and existing vegetation area under different conditions in the Loess Plateau in 2020. A, GPPD of revegetated forest under different land use/cover change types. B, GPPD of revegetated grassland under different land use/cover change types. C, GPPD of revegetated forest under different Sen slope levels. D, GPPD of revegetated grassland under different Sen slope levels.
图8 黄土高原2020年不同植被恢复时间的植被恢复区域和原有植被区域的总初级生产力差异(GPPD)。A, 不同恢复时间下的林地GPPD。B, 不同恢复时间下的草地GPPD。
Fig. 8 Gross primary production difference (GPPD) between revegetation and existing vegetation area under different restoration time in the Loess Plateau in 2020. A, GPPD of revegetated forest under different restoration time. B, GPPD of revegetated grassland under different restoration time.
图9 黄土高原2020年不同气候条件下植被恢复区域和原有植被区域的总初级生产力差异(GPPD)。A, 不同温度等级下的林地恢复GPPD。B, 不同温度等级下的草地恢复GPPD。C, 不同土壤湿度等级下的林地恢复GPPD。D, 不同土壤湿度等级下的草地恢复GPPD。
Fig. 9 Gross primary production difference (GPPD) between revegetation and existing vegetation area under different climate conditions in the Loess Plateau in 2020. A, GPPD of revegetated forest under different temperature levels. B, GPPD of revegetated grassland under different temperature levels. C, GPPD of revegetated forest under different soil moisture levels. D, GPPD of revegetated grassland under different soil moisture levels.
[1] | An WM, Liang HB, Wang C, Wang S, Li ZS, Lü YH, Liu GH, Fu BJ. (2017). Dynamic characteristic of soil water with an increase in restoration years on the shady and sunny slope aspects of the Loess Plateau. Acta Ecologica Sinica, 37, 6120-6127. |
[安文明, 梁海斌, 王聪, 王帅, 李宗善, 吕一河, 刘国华, 傅伯杰 (2017). 黄土高原阴/阳坡向林草土壤水分随退耕年限的变化特征. 生态学报, 37, 6120-6127.] | |
[2] |
Bacour C, Maignan F, MacBean N, Porcar-Castell A, Flexas J, Frankenberg C, Peylin P, Chevallier F, Vuichard N, Bastrikov V. (2019). Improving estimates of gross primary productivity by assimilating solar-induced fluorescence satellite retrievals in a terrestrial biosphere model using a process-based SIF model. Journal of Geophysical Research: Biogeosciences, 124, 3281-3306.
DOI URL |
[3] |
Badgley G, Field CB, Berry JA. (2017). Canopy near-infrared reflectance and terrestrial photosynthesis. Science Advances, 3, e1602244. DOI: 10.1126/sciadv.1602244.
DOI |
[4] |
Bilger W, Björkman O. (1990). Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynthesis Research, 25, 173-185.
DOI PMID |
[5] |
Chen C, Park T, Wang XH, Piao SL, Xu BD, Chaturvedi RK, Fuchs R, Brovkin V, Ciais P, Fensholt R, Tømmervik H, Bala G, Zhu ZC, Nemani RR, Myneni RB. (2019). China and India lead in greening of the world through land-use management. Nature Sustainability, 2, 122-129.
DOI PMID |
[6] | Chen YM, Liang YM, Cheng JM. (2002). The zonal character of vegetation construction on Loess Plateau. Acta Phytoecologica Sinica, 26, 339-345. |
[陈云明, 梁一民, 程积民 (2002). 黄土高原林草植被建设的地带性特征. 植物生态学报, 26, 339-345.] | |
[7] |
Cui GY, Chen YM, Cao Y, An CC. (2015). Analysis on carbon stock distribution patterns of forest ecosystems in Shaanxi Province. Chinese Journal of Plant Ecology, 39, 333-342.
DOI URL |
[崔高阳, 陈云明, 曹扬, 安淳淳 (2015). 陕西省森林生态系统碳储量分布格局分析. 植物生态学报, 39, 333-342.]
DOI |
|
[8] |
Doughty R, Köhler P, Frankenberg C, Magney TS, Xiao XM, Qin YW, Wu XC, Moore B. (2019). TROPOMI reveals dry-season increase of solar-induced chlorophyll fluorescence in the Amazon forest. Proceedings of the National Academy of Sciences of the United States of America, 116, 22393-22398.
DOI PMID |
[9] |
Frankenberg C, Fisher JB, Worden J, Badgley G, Saatchi SS, Lee JE, Toon GC, Butz A, Jung M, Kuze A, Yokota T. (2011). New global observations of the terrestrial carbon cycle from GOSAT: patterns of plant fluorescence with gross primary productivity. Geophysical Research Letters, 38, L17706. DOI: 10.1029/2011GL048738.
DOI |
[10] | Gao ZL. (2012). Analysis of land desertification of Loess Plateau sand and desert areas-causes and remedial measures. Journal of Sediment Rsearch, (6), 1-10. |
[高照良 (2012). 黄土高原沙地和沙漠区的土地沙漠化研究. 泥沙研究, (6), 1-10.] | |
[11] | Gao JJ, Mu XM, Sun WY. (2016). Spatial-temporal change of vegetation coverage in the Loess Plateau from 1981 to 2012. Soil and Water Conservation in China, 7, 52-56. |
[高健健, 穆兴民, 孙文义 (2016). 1981-2012年黄土高原植被覆盖度时空变化特征. 中国水土保持, 7, 52-56.] | |
[12] |
Gu LH, Han JM, Wood JD, Chang CYY, Sun Y. (2019). Sun-induced Chl fluorescence and its importance for biophysical modeling of photosynthesis based on light reactions. New Phytologist, 223, 1179-1191.
DOI PMID |
[13] | Guanter L, Zhang Y, Jung M, Joiner J, Voigt M, Berry JA, Frankenberg C, Huete AR, Zarco-Tejada P, Lee JE, Moran MS, Ponce-Campos G, Beer C, Camps-Valls G, Buchmann N, et al. (2014). Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proceedings of the National Academy of Sciences of the United States of America, 111, E1327-E1333. |
[14] | Guo YQ, Wang NJ, Chu XS, Li C, Luo XQ, Feng H. (2019). Analyzing vegetation coverage changes and its reasons on the Loess Plateau based on Google Earth Engine. China Environmental Science, 39, 4804-4811. |
[郭永强, 王乃江, 褚晓升, 李成, 罗晓琦, 冯浩 (2019). 基于Google Earth Engine分析黄土高原植被覆盖变化及原因. 中国环境科学, 39, 4804-4811.] | |
[15] |
Han JM, Chang CYY, Gu LH, Zhang YJ, Meeker EW, Magney TS, Walker AP, Wen JM, Kira O, McNaull S, Sun Y. (2022). The physiological basis for estimating photosynthesis from Chla fluorescence. New Phytologist, 234, 1206-1219.
DOI URL |
[16] | Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83, 195-213. |
[17] |
Jeong SJ, Schimel D, Frankenberg C, Drewry DT, Fisher JB, Verma M, Berry JA, Lee JE, Joiner J. (2017). Application of satellite solar-induced chlorophyll fluorescence to understanding large-scale variations in vegetation phenology and function over northern high latitude forests. Remote Sensing of Environment, 190, 178-187.
DOI URL |
[18] |
Jian SQ, Zhao CY, Fang SM, Yu K, Ma WY. (2013). Water storage capacity of the canopy dominated by Caragana korshinskii and Hippophae rhamnoides in hilly and gully region on the Loess Plateau of Northwest China. Chinese Journal of Plant Ecology, 37, 45-51.
DOI URL |
[荐圣淇, 赵传燕, 方书敏, 余凯, 马文瑛 (2013). 黄土高原丘陵沟壑区柠条与沙棘冠层的持水能力. 植物生态学报, 37, 45-51.]
DOI |
|
[19] |
Kendall MG. (1948). Rank correlation methods. Biometrika, 44, 298.
DOI URL |
[20] | Köhler P, Frankenberg C, Magney TS, Guanter L, Joiner J, Landgraf J. (2018). Global retrievals of solar induced chlorophyll fluorescence with TROPOMI: first results and inter-sensor comparison to OCO-2. Geophysical Research Letters, 45, 10456-10463. |
[21] |
Lee J, Frankenberg C, van der Tol C, Berry J, Guanter L, Boyce CK, Fisher J, Morrow E, Worden J, Asefi S, Badgley G, Saatchi S. (2013). Forest productivity and water stress in Amazonia: observations from GOSAT chlorophyll fluorescence. Proceedings of the Royal Society B: Biological Sciences, 280, 20130171. DOI: 10.1098/rspb.2013.0171.
DOI |
[22] |
Li J, Chen B, Li XF, Zhao YJ, Ci RYJ, Jiang B, Hu W, Cheng JM, Shao MA. (2008). Effects of deep soil desiccation on artificial forestlands in different vegetation zones on the Loess Plateau of China. Acta Ecologica Sinica, 28, 1429-1445.
DOI URL |
[李军, 陈兵, 李小芳, 赵玉娟, 次仁央金, 蒋斌, 胡伟, 程积民, 邵明安 (2008). 黄土高原不同植被类型区人工林地深层土壤干燥化效应. 生态学报, 28, 1429-1445.] | |
[23] | Li J, Wang XC, Shao MA, Zhao YJ, Li XF. (2010). Simulation of biomass and soil desiccation of Robinia pseudoacacia forestlands on semi-arid and semi-humid regions of China’s Loess Plateau. Chinese Journal of Plant Ecology, 34, 330-339. |
[李军, 王学春, 邵明安, 赵玉娟, 李小芳 (2010). 黄土高原半干旱和半湿润地区刺槐林地生物量与土壤干燥化效应的模拟. 植物生态学报, 34, 330-339.]
DOI |
|
[24] |
Liu JY, Ning J, Kuang WH, Xu XL, Zhang SW, Yan CZ, Li RD, Wu SX, Hu YF, Du GM, Chi WF, Pan T, Ning J. (2018). Spatio-temporal patterns and characteristics of land-use change in China during 2010-2015. Acta Geographica Sinica, 73, 789-802.
DOI |
[刘纪远, 宁佳, 匡文慧, 徐新良, 张树文, 颜长珍, 李仁东, 吴世新, 胡云锋, 杜国明, 迟文峰, 潘涛, 宁静 (2018). 2010-2015年中国土地利用变化的时空格局与新特征. 地理学报, 73, 789-802.]
DOI |
|
[25] | Liu JY, Zhang ZX, Zhuang DF, Wang YM, Zhou WC, Zhang SW, Li RD, Jiang N, Wu SX. (2003). A study on the spatial-temporal dynamic changes of land-use and driving forces analyses of China in the 1990s. Geographical Research, 22, 1-12. |
[刘纪远, 张增祥, 庄大方, 王一谋, 周万村, 张树文, 李仁东, 江南, 吴世新 (2003). 20世纪90年代中国土地利用变化时空特征及其成因分析. 地理研究, 22, 1-12.] | |
[26] |
Liu YY, Wang Q, Yang Y, Gang CC, Zhang ZY, Tong LJ, Li JL. (2019). Spatial-temporal dynamics of grassland NPP and its driving factors in the Loess Plateau, China. Chinese Journal of Applied Ecology, 30, 2309-2319.
DOI |
[刘洋洋, 王倩, 杨悦, 刚成诚, 章钊颖, 同琳静, 李建龙 (2019). 黄土高原草地净初级生产力时空动态及其影响因素. 应用生态学报, 30, 2309-2319.]
DOI |
|
[27] |
Liu ZQ, Zhao F, Liu XJ, Yu Q, Wang YF, Peng XB, Cai HJ, Lu XL. (2022). Direct estimation of photosynthetic CO2 assimilation from solar-induced chlorophyll fluorescence (SIF). Remote Sensing of Environment, 271, 112893. DOI: 10.1016/j.rse.2022.112893.
DOI |
[28] | Liu ZY, Wang B, Zhao YS, Niu X. (2018). Monitoring and evaluation of the effects of Grain for Green Project in the upper and middle reaches of China’s Yangtze River. Chinese Journal of Applied Ecology, 29, 2463-2469. |
[刘祖英, 王兵, 赵雨森, 牛香 (2018). 长江中上游地区退耕还林成效监测与评价. 应用生态学报, 29, 2463-2469.]
DOI |
|
[29] | Mann HB. (1945). Nonparametric tests against trend. Econometrica, 245-259. |
[30] |
Meroni M, Rossini M, Guanter L, Alonso L, Rascher U, Colombo R, Moreno J. (2009). Remote sensing of solar-induced chlorophyll fluorescence: review of methods and applications. Remote Sensing of Environment, 113, 2037-2051.
DOI URL |
[31] | Myneni R, Knyazikhin Y, Park T. (2015). MOD15A2H MODIS/Terra+Aqua Leaf Area Index/FPAR 8-day L4 Global 500m SIN Grid V006 Data Set. NASA EOSDIS Land Processes DAAC. 2022-03-10.10.5067/MODIS/MOD15A2H.006. |
[32] |
Running SW, Nemani RR, Heinsch FA, Zhao MS, Reeves M, Hashimoto H. (2004). A continuous satellite-derived measure of global terrestrial primary production. BioScience, 54, 547-560.
DOI URL |
[33] |
Savitzky A, Golay MJE. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36, 1627-1639.
DOI URL |
[34] |
Su CH, Fu BJ. (2013). Evolution of ecosystem services in the Chinese Loess Plateau under climatic and land use changes. Global and Planetary Change, 101, 119-128.
DOI URL |
[35] |
Tan CW, Samanta A, Jin XL, Tong L, Ma C, Guo WS, Knyazikhin Y, Myneni RB. (2013). Using hyperspectral vegetation indices to estimate the fraction of photosynthetically active radiation absorbed by corn canopies. International Journal of Remote Sensing, 34, 8789-8802.
DOI URL |
[36] |
Tong XW, Brandt M, Yue YM, Horion S, Wang KL, Keersmaecker WD, Tian F, Schurgers G, Xiao XM, Luo YQ, Chen C, Myneni R, Shi Z, Chen HS, Fensholt R. (2018). Increased vegetation growth and carbon stock in China karst via ecological engineering. Nature Sustainability, 1, 44-50.
DOI URL |
[37] |
Tucker CJ. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8, 127-150.
DOI URL |
[38] |
van der Tol C, Berry JA, Campbell PKE, Rascher U. (2014). Models of fluorescence and photosynthesis for interpreting measurements of solar-induced chlorophyll fluorescence. Journal of Geophysical Research: Biogeosciences, 119, 2312-2327.
PMID |
[39] |
van der Tol C, Verhoef W, Rosema A. (2009). A model for chlorophyll fluorescence and photosynthesis at leaf scale. Agricultural and Forest Meteorology, 149, 96-105.
DOI URL |
[40] | Vermote EF, Kotchenova S, Ray J. (2011). Modis Surface Reflectance User’s Guide. MODIS Land Surface Reflectance Science Computing Facility: Greenbelt. 2022-03-25. https://lpdaac.usgs.gov/products/mod09a1v006/. |
[41] | Wang CS, Meng FD, Li XE, Jiang LL, Wang SP. (2014). Factors affecting plant primary productivity of grasslands: a review. Acta Ecologica Sinica, 34, 4125-4132. |
[王常顺, 孟凡栋, 李新娥, 姜丽丽, 汪诗平 (2014). 草地植物生产力主要影响因素研究综述. 生态学报, 34, 4125-4132.] | |
[42] |
Wang Z, Xiao XM, Yan XD. (2010). Modeling gross primary production of maize cropland and degraded grassland in northeastern China. Agricultural and Forest Meteorology, 150, 1160-1167.
DOI URL |
[43] | Xiao X, Yan H, Kalfas J, Zhang Q. (2011). Satellite-based Modeling of Gross Primary Production of Terrestrial Ecosystems. Advances in Environmental Remote Sensing: Sensors, Algorithms, and Application. Taylor & Francis Group, Boca Raton. 367-397. |
[44] |
Yin X, Struik PC. (2009). C3 and C4 photosynthesis models: an overview from the perspective of crop modelling. NJAS - Wageningen Journal of Life Sciences, 57, 27-38.
DOI URL |
[45] | You NS, Dong JW, Xiao T, Liu JY, Xiao XM. (2020). The effects of the “grain for green” project on gross primary productivity in the Loess Plateau. Scientia Geographica Sinica, 40, 315-323. |
[尤南山, 董金玮, 肖桐, 刘纪远, Xiao Xiangming (2020). 退耕还林还草工程对黄土高原植被总初级生产力的影响. 地理科学, 40, 315-323.]
DOI |
|
[46] |
Zarco-Tejada PJ, Morales A, Testi L, Villalobos FJ. (2013). Spatio-temporal patterns of chlorophyll fluorescence and physiological and structural indices acquired from hyperspectral imagery as compared with carbon fluxes measured with eddy covariance. Remote Sensing of Environment, 133, 102-115.
DOI URL |
[47] | Zhang JZ, Li CG, Wang T. (2022). Dynamic changes of vegetation coverage on the Loess Plateau and its factors. Research of Soil and Water Conservation, 29, 224-230. |
[张家政, 李崇贵, 王涛 (2022). 黄土高原植被覆盖时空变化及原因. 水土保持研究, 29, 224-230.] | |
[48] | Zhang ZY, Wang SH, Qiu B, Song L, Zhang YG. (2019). Retrieval of sun-induced chlorophyll fluorescence and advancements in carbon cycle application. Journal of Remote Sensing, 23, 37-52. |
[章钊颖, 王松寒, 邱博, 宋练, 张永光 (2019). 日光诱导叶绿素荧光遥感反演及碳循环应用进展. 遥感学报, 23, 37-52.] | |
[49] |
Zhao AZ, Zhang AB, Lu CY, Wang DL, Wang HF, Liu HX. (2017). Spatiotemporal variation of vegetation coverage before and after implementation of Grain for Green Program in Loess Plateau, China. Ecological Engineering, 104, 13-22.
DOI URL |
[50] |
Zhu ZC, Piao SL, Myneni RB, Huang MT, Zeng ZZ, Canadell JG, Ciais P, Sitch S, Friedlingstein P, Arneth A, Cao CX, Cheng L, Kato E, Koven C, Li Y, et al. (2016). Greening of the Earth and its drivers. Nature Climate Change, 6, 791-795.
DOI |
[1] | 陈雪萍, 赵学勇, 张晶, 王瑞雄, 卢建男. 基于地理探测器的科尔沁沙地植被NDVI时空变化特征及其驱动因素[J]. 植物生态学报, 2023, 47(8): 1082-1093. |
[2] | 罗娜娜, 盛茂银, 王霖娇, 石庆龙, 何宇. 长期植被恢复对中国西南喀斯特石漠化土壤活性有机碳组分含量和酶活性的影响[J]. 植物生态学报, 2023, 47(6): 867-881. |
[3] | 贺洁, 何亮, 吕渡, 程卓, 薛帆, 刘宝元, 张晓萍. 2001-2020年黄土高原光合植被时空变化及其驱动机制[J]. 植物生态学报, 2023, 47(3): 306-318. |
[4] | 张雪, 韩凤朋, 肖波, 沈思铭. 黄土高原生物结皮对地表粗糙度和灌草植物种子二次扩散的影响[J]. 植物生态学报, 2023, 47(12): 1668-1683. |
[5] | 崔光帅, 罗天祥, 梁尔源, 张林. 干旱半干旱区灌丛对草本植物的促进作用研究进展[J]. 植物生态学报, 2022, 46(11): 1321-1333. |
[6] | 杨克彤, 常海龙, 陈国鹏, 俞筱押, 鲜骏仁. 兰州市主要绿化植物气孔性状特征[J]. 植物生态学报, 2021, 45(2): 187-196. |
[7] | 乔鲜果, 郭柯, 赵利清, 王孜, 刘长成. 中国长芒草群系的群落特征[J]. 植物生态学报, 2020, 44(9): 986-994. |
[8] | 邓梦达, 游健荣, 李家湘, 李雄, 杨静, 邓创发, 刘昂, 刘文剑, 丁聪, 谢勇, 周国辉, 喻勋林. 长株潭城市群生态绿心地区主要植被类型的群落特征[J]. 植物生态学报, 2020, 44(12): 1296-1304. |
[9] | 陈婵, 张仕吉, 李雷达, 刘兆丹, 陈金磊, 辜翔, 王留芳, 方晰. 中亚热带植被恢复阶段植物叶片、凋落物、土壤碳氮磷化学计量特征[J]. 植物生态学报, 2019, 43(8): 658-671. |
[10] | 王明明,刘新平,何玉惠,张铜会,魏静,车力木格,孙姗姗. 科尔沁沙地封育恢复过程中植物群落特征变化及影响因素[J]. 植物生态学报, 2019, 43(8): 672-684. |
[11] | 俞筱押, 李玉辉, 杨光荣. 石林地质公园不同群落类型植物果实组成与种子散布特征[J]. 植物生态学报, 2018, 42(6): 663-671. |
[12] | 辜翔, 张仕吉, 刘兆丹, 李雷达, 陈金磊, 王留芳, 方晰. 中亚热带植被恢复对土壤有机碳含量、碳密度的影响[J]. 植物生态学报, 2018, 42(5): 595-608. |
[13] | 辜翔, 张仕吉, 刘兆丹, 李雷达, 陈金磊, 王留芳, 方晰. 湖南东部植被恢复对土壤有机碳矿化的影响[J]. 植物生态学报, 2018, 42(12): 1211-1224. |
[14] | 张浩, 吕茂奎, 谢锦升. 红壤侵蚀区芒萁对土壤可溶性有机质光谱特征的影响[J]. 植物生态学报, 2017, 41(8): 862-871. |
[15] | 李单凤, 于顺利, 王国勋, 方伟伟. 黄土高原优势灌丛营养器官化学计量特征的环境分异和机制[J]. 植物生态学报, 2015, 39(5): 453-465. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19