植物生态学报 ›› 2023, Vol. 47 ›› Issue (12): 1668-1683.DOI: 10.17521/cjpe.2023.0072
张雪1,2,3(), 韩凤朋1,2,*(), 肖波2,4,*(), 沈思铭4
收稿日期:
2023-03-13
接受日期:
2023-06-15
出版日期:
2023-12-20
发布日期:
2023-06-15
通讯作者:
*(Han FP, hanxiangzi007@163.com; Xiao B, xiaobo@cau.edu.cn)
作者简介:
张雪,ORCID:0009-0003-3173-0786
基金资助:
ZHANG Xue1,2,3(), HAN Feng-Peng1,2,*(), XIAO Bo2,4,*(), SHEN Si-Ming4
Received:
2023-03-13
Accepted:
2023-06-15
Online:
2023-12-20
Published:
2023-06-15
Contact:
*(Han FP, hanxiangzi007@163.com; Xiao B, xiaobo@cau.edu.cn)
Supported by:
摘要:
生物结皮是黄土高原常见的地表覆被物, 在灌草群落下方及植被间空地上广泛发育, 深刻影响着灌草植物种子的二次扩散和定居, 但目前针对生物结皮对种子二次扩散影响的研究较少, 且种子二次扩散的主导因素尚不明确。该研究以风沙土和黄绵土上的生物结皮(藻结皮和藓结皮)为对象, 以无结皮为对照, 利用倾斜摄影测量法测定了地表粗糙度, 并通过风力扩散实验测定地表粗糙度对6种不同形态灌草植物种子的移位率、损失率和扩散距离的影响, 继而结合Spearman相关性分析, 研究灌草种子在生物结皮表面扩散的主导因素。研究结果表明: (1)与无结皮相比, 风沙土藻结皮和藓结皮的地表粗糙度分别增加了6.69倍和6.13倍, 黄绵土上分别增加了2.52倍和1.45倍。(2)风沙土上, 干燥条件下的地表粗糙度比湿润条件下增加了26.56%, 而在黄绵土上则降低了9.42%。(3)在干燥条件下, 风沙土生物结皮的地表粗糙度比黄绵土上增加了16.84%, 湿润条件下则降低了16.38%。(4)风沙土上, 种子在生物结皮表面的移位率、损失率和扩散距离分别比无结皮降低了77.1%、95.4%和72.2%, 在黄绵土上则分别降低了76.5%、93.8%和66.8%。土壤类型和干湿条件对生物结皮上种子扩散特征的影响不显著。(5)种子移位率、损失率和扩散距离与地表粗糙度极显著负相关, 种子移位率和损失率与土壤含水量显著负相关, 种子损失率和扩散距离均与种子密度显著负相关。综上, 黄土高原生物结皮主要通过增加地表粗糙度阻碍种子扩散, 增强种子聚集, 进而影响黄土高原灌草植被的空间分布特征与群落动态。
张雪, 韩凤朋, 肖波, 沈思铭. 黄土高原生物结皮对地表粗糙度和灌草植物种子二次扩散的影响. 植物生态学报, 2023, 47(12): 1668-1683. DOI: 10.17521/cjpe.2023.0072
ZHANG Xue, HAN Feng-Peng, XIAO Bo, SHEN Si-Ming. Effects of biocrusts on surface roughness and seed secondary dispersal of shrubs and grasses on the Loess Plateau, China. Chinese Journal of Plant Ecology, 2023, 47(12): 1668-1683. DOI: 10.17521/cjpe.2023.0072
测定指标 Measurement | 风沙土 Aeolian sand soil | 黄绵土 Loess soil | ||||
---|---|---|---|---|---|---|
无结皮 Bare soil | 藻结皮 Cyano crusts | 藓结皮 Moss crusts | 无结皮 Bare soil | 藻结皮 Cyano crusts | 藓结皮 Moss crusts | |
结皮盖度 Biocrust coverage (%) | - | 77.33 ± 5.83 | 78.13 ± 4.55 | - | 66.08 ± 9.49 | 86.55 ± 1.78 |
结皮厚度 Biocrust thickness (mm) | - | 8.79 ± 0.74 | 12.41 ± 0.96 | - | 11.09 ± 1.75 | 11.45 ± 1.49 |
密度 Density (g·cm-3) | 1.57 ± 0.05 | 1.59 ± 0.02 | 1.42 ± 0.01 | 1.44 ± 0.03 | 1.28 ± 0.01 | 1.28 ± 0.06 |
黏粒(<2 μm)含量 Clay (<2 μm) content (%) | 1.64 ± 0.06 | 1.88 ± 0.03 | 4.47 ± 0.07 | 11.51 ± 0.53 | 14.24 ± 0.60 | 14.86 ± 1.22 |
粉粒(2-50 μm)含量 Silt (2-50 μm) content (%) | 3.58 ± 0.42 | 9.37 ± 0.35 | 16.65 ± 0.28 | 4.15 ± 1.14 | 7.22 ± 0.62 | 3.55 ± 1.15 |
砂粒(50-2 000 μm)含量 Sand (50-2 000 μm) content (%) | 94.89 ± 0.61 | 88.75 ± 0.38 | 78.88 ± 0.35 | 84.34 ± 1.76 | 78.54 ± 0.64 | 81.59 ± 1.08 |
表1 黄土高原生物结皮和无结皮土壤的基本特征(平均值±标准差)
Table 1 General characteristics of biocrusts and bare soil on Loess Plateau (mean ± SD)
测定指标 Measurement | 风沙土 Aeolian sand soil | 黄绵土 Loess soil | ||||
---|---|---|---|---|---|---|
无结皮 Bare soil | 藻结皮 Cyano crusts | 藓结皮 Moss crusts | 无结皮 Bare soil | 藻结皮 Cyano crusts | 藓结皮 Moss crusts | |
结皮盖度 Biocrust coverage (%) | - | 77.33 ± 5.83 | 78.13 ± 4.55 | - | 66.08 ± 9.49 | 86.55 ± 1.78 |
结皮厚度 Biocrust thickness (mm) | - | 8.79 ± 0.74 | 12.41 ± 0.96 | - | 11.09 ± 1.75 | 11.45 ± 1.49 |
密度 Density (g·cm-3) | 1.57 ± 0.05 | 1.59 ± 0.02 | 1.42 ± 0.01 | 1.44 ± 0.03 | 1.28 ± 0.01 | 1.28 ± 0.06 |
黏粒(<2 μm)含量 Clay (<2 μm) content (%) | 1.64 ± 0.06 | 1.88 ± 0.03 | 4.47 ± 0.07 | 11.51 ± 0.53 | 14.24 ± 0.60 | 14.86 ± 1.22 |
粉粒(2-50 μm)含量 Silt (2-50 μm) content (%) | 3.58 ± 0.42 | 9.37 ± 0.35 | 16.65 ± 0.28 | 4.15 ± 1.14 | 7.22 ± 0.62 | 3.55 ± 1.15 |
砂粒(50-2 000 μm)含量 Sand (50-2 000 μm) content (%) | 94.89 ± 0.61 | 88.75 ± 0.38 | 78.88 ± 0.35 | 84.34 ± 1.76 | 78.54 ± 0.64 | 81.59 ± 1.08 |
物种 Species | 质量 Mass (mg·seed-1) | 长 Length (mm) | 宽 Width (mm) | 高 Height (mm) | 表面积 Area (mm2) | 体积 Volume (mm3) | 密度 Density (mg·mm-3) | 平面度 Flatness | 附属物及黏液 Appendix or mucilage |
---|---|---|---|---|---|---|---|---|---|
柠条锦鸡儿 Caragana korshinskii | 50.77 ± 13.87b | 6.20 ± 0.85b | 3.79 ± 0.38b | 3.01 ± 0.42b | 23.66 ± 4.68b | 71.80 ± 20.10b | 0.71 ± 0.08a | 1.69 ± 0.28c | 无 None |
细枝岩黄耆 Hedysarum scoparium | 20.51 ± 8.74c | 5.50 ± 0.54b | 3.88 ± 0.41b | 3.30 ± 0.48b | 21.43 ± 3.55b | 71.69 ± 20.01b | 0.28 ± 0.07c | 1.44 ± 0.18d | 表面有白色密毡毛 White dense hairs on surface |
黑沙蒿 Artemisia ordosica | 0.76 ± 0.11d | 2.16 ± 0.25c | 1.09 ± 0.13d | 0.77 ± 0.10d | 2.36 ± 0.17d | 1.81 ± 0.10b | 0.42 ± 0.05b | 2.12 ± 0.19b | 分泌黏液 Mucilage secretion |
狗尾草 Setaria viridis | 1.18 ± 0.17d | 2.50 ± 0.26c | 1.59 ± 0.17c | 1.21 ± 0.16c | 3.96 ± 0.20d | 4.78 ± 0.51b | 0.25 ± 0.05cd | 1.69 ± 0.09c | 无 None |
苍耳 Xanthium sibiricum | 127.93 ± 43.36a | 15.00 ± 1.71a | 7.13 ± 0.75a | 6.61 ± 0.69a | 108.21 ± 19.66a | 724.67 ± 192.76a | 0.19 ± 0.11d | 1.69 ± 0.15c | 具钩状硬刺 Hooked spine |
鬼针草 Bidens pilosa | 5.29 ± 0.38cd | 14.37 ± 2.37a | 0.96 ± 0.10d | 0.85 ± 0.09d | 13.73 ± 1.57c | 11.64 ± 1.78b | 0.45 ± 0.08b | 9.04 ± 0.59a | 顶端具倒刺 Barbed spine on head |
表2 黄土高原灌草种子的形态特征(平均值±标准差)
Table 2 Seed morphology characteristics of the shrubs and grasses on Loess Plateau (mean ± SD)
物种 Species | 质量 Mass (mg·seed-1) | 长 Length (mm) | 宽 Width (mm) | 高 Height (mm) | 表面积 Area (mm2) | 体积 Volume (mm3) | 密度 Density (mg·mm-3) | 平面度 Flatness | 附属物及黏液 Appendix or mucilage |
---|---|---|---|---|---|---|---|---|---|
柠条锦鸡儿 Caragana korshinskii | 50.77 ± 13.87b | 6.20 ± 0.85b | 3.79 ± 0.38b | 3.01 ± 0.42b | 23.66 ± 4.68b | 71.80 ± 20.10b | 0.71 ± 0.08a | 1.69 ± 0.28c | 无 None |
细枝岩黄耆 Hedysarum scoparium | 20.51 ± 8.74c | 5.50 ± 0.54b | 3.88 ± 0.41b | 3.30 ± 0.48b | 21.43 ± 3.55b | 71.69 ± 20.01b | 0.28 ± 0.07c | 1.44 ± 0.18d | 表面有白色密毡毛 White dense hairs on surface |
黑沙蒿 Artemisia ordosica | 0.76 ± 0.11d | 2.16 ± 0.25c | 1.09 ± 0.13d | 0.77 ± 0.10d | 2.36 ± 0.17d | 1.81 ± 0.10b | 0.42 ± 0.05b | 2.12 ± 0.19b | 分泌黏液 Mucilage secretion |
狗尾草 Setaria viridis | 1.18 ± 0.17d | 2.50 ± 0.26c | 1.59 ± 0.17c | 1.21 ± 0.16c | 3.96 ± 0.20d | 4.78 ± 0.51b | 0.25 ± 0.05cd | 1.69 ± 0.09c | 无 None |
苍耳 Xanthium sibiricum | 127.93 ± 43.36a | 15.00 ± 1.71a | 7.13 ± 0.75a | 6.61 ± 0.69a | 108.21 ± 19.66a | 724.67 ± 192.76a | 0.19 ± 0.11d | 1.69 ± 0.15c | 具钩状硬刺 Hooked spine |
鬼针草 Bidens pilosa | 5.29 ± 0.38cd | 14.37 ± 2.37a | 0.96 ± 0.10d | 0.85 ± 0.09d | 13.73 ± 1.57c | 11.64 ± 1.78b | 0.45 ± 0.08b | 9.04 ± 0.59a | 顶端具倒刺 Barbed spine on head |
图1 黄土高原生物结皮与无结皮的三维重建实景模型及其地表起伏曲线。A, 风沙土无结皮。B, 风沙土藻结皮。C, 风沙土藓结皮。D, 黄绵土无结皮。E, 黄绵土藻结皮。F, 黄绵土藓结皮。
Fig. 1 Real scene 3D reconstruction models and soil surface fluctuation curves of biocrusts and bare soil on Loess Plateau. A, Bare aeolian sand. B, Cyano crusts on aeolian sand soil. C, Moss crusts on aeolian sand soil. D, Bare loess soil. E, Cyano crusts on loess soil. F, Moss crusts on loess soil.
图2 黄土高原生物结皮和无结皮处理以及风力扩散实验装置。A, 风力扩散实验装置。B, 实验样地。C, 风沙土无结皮。D, 风沙土藻结皮。E, 风沙土藓结皮。F, 黄绵土无结皮。G, 黄绵土藻结皮。H, 黄绵土藓结皮。
Fig. 2 Experimental instruments and different treatments on Loess Plateau. A, Wind-driven instruments. B, Experimental plot. C, Bare aeolian sand soil. D, Cyano crusts on aeolian sand soil. E, Moss crusts on aeolian sand soil. F, Bare loess soil. G, Cyano crusts on loess soil. H, Moss crusts on loess soil.
因素 Factor | Type III 平方和 Type III sum of squares | df | 均方 Mean square | F | p |
---|---|---|---|---|---|
土壤类型 Soil type (ST) | 20.722 | 1 | 20.722 | 2.826 | 0.095 |
结皮类型 Biocrust type (BT) | 3 172.827 | 2 | 1 586.414 | 216.336 | <0.001 |
水分条件 Soil water condition (SWC) | 2.783 | 1 | 2.783 | 0.380 | 0.539 |
ST × BT | 132.760 | 2 | 66.380 | 9.052 | <0.001 |
ST × SWC | 70.176 | 1 | 70.176 | 9.570 | 0.002 |
BT × SWC | 36.991 | 2 | 18.496 | 2.522 | 0.084 |
ST × BT × SWC | 22.225 | 2 | 11.112 | 1.515 | 0.223 |
表3 土壤类型、结皮类型和水分条件及其交互作用对黄土高原地表粗糙度的影响
Table 3 Effects of soil types, biocrust types, soil water conditions and their interactions on surface roughness on the Loess Plateau
因素 Factor | Type III 平方和 Type III sum of squares | df | 均方 Mean square | F | p |
---|---|---|---|---|---|
土壤类型 Soil type (ST) | 20.722 | 1 | 20.722 | 2.826 | 0.095 |
结皮类型 Biocrust type (BT) | 3 172.827 | 2 | 1 586.414 | 216.336 | <0.001 |
水分条件 Soil water condition (SWC) | 2.783 | 1 | 2.783 | 0.380 | 0.539 |
ST × BT | 132.760 | 2 | 66.380 | 9.052 | <0.001 |
ST × SWC | 70.176 | 1 | 70.176 | 9.570 | 0.002 |
BT × SWC | 36.991 | 2 | 18.496 | 2.522 | 0.084 |
ST × BT × SWC | 22.225 | 2 | 11.112 | 1.515 | 0.223 |
图3 黄土高原不同干湿条件下生物结皮和无结皮的地表粗糙度。A, 风沙土。B, 黄绵土。不同小写字母表示土壤类型和水分条件相同时, 不同结皮类型间差异显著(p < 0.05); 不同大写字母表示土壤类型和结皮类型相同时, 不同水分条件下差异显著(p < 0.05)。
Fig. 3 Surface roughness of biocrusts and bare soil under dry and wet conditions on Loess Plateau. A, Aeolian sand soil. B, Loess soil. Different lowercase letters indicate significant differences among different biocrust types under the same soil types and soil water conditions (p < 0.05), different uppercase letters indicate significant differences between dry and wet conditions under the same soil types and biocrust types (p < 0.05).
图4 黄土高原不同土壤类型上生物结皮和无结皮的地表粗糙度。A, 干燥。B, 湿润。不同小写字母表示相同土壤类型和干湿条件下, 不同结皮类型间差异显著(p < 0.05); 不同大写字母表示干湿条件和结皮类型相同时, 风沙土和黄绵土间差异显著(p < 0.05)。
Fig. 4 Surface roughness of biocrusts and uncrusts on different soil types on Loess Plateau. A, Dry. B, Wet. Different lowercase letters indicate significant differences among different biocrust types under the same soil types and soil water conditions (p < 0.05), different uppercase letters indicate significant differences between aeolian sand and loess soil for the same soil water condition and biocrust types (p < 0.05).
因素 Factor | 柠条锦鸡儿 Caragana korshinskii | 细枝岩黄耆 Hedysarum scoparium | 黑沙蒿 Artemisia ordosica | 狗尾草 Setaria viridis | 苍耳 Xanthium sibiricum | 鬼针草 Bidens pilosa |
---|---|---|---|---|---|---|
土壤类型 Soil type (ST) | 18.500** | 4.457* | 42.843** | 13.481** | 0.411 | 9.630** |
结皮类型 Biocrust type (BT) | 95.716** | 76.847** | 171.471** | 89.321** | 30.763** | 127.516** |
水分条件 Soil water condition (SWC) | 0.054 | 0.903 | 11.934** | 1.679 | 1.931 | 0.130 |
ST × BT | 8.608** | 0.279 | 36.099** | 2.487 | 1.106 | 2.661 |
ST × SWC | 0.216 | 0.546 | 2.678 | 0.187 | 4.571* | 0.047 |
BT × SWC | 0.095 | 0.033 | 16.099** | 0.796 | 0.500 | 2.505 |
ST × BT × SWC | 0.257 | 0.145 | 2.777 | 1.402 | 0.260 | 0.109 |
表4 黄土高原土壤类型、结皮类型、水分条件及其交互作用对种子移位率的影响(F值)
Table 4 Effects of soil types, biocrust types, soil water conditions and their interaction on displacement ratio of shrub and grass seeds on Loess Plateau (F value)
因素 Factor | 柠条锦鸡儿 Caragana korshinskii | 细枝岩黄耆 Hedysarum scoparium | 黑沙蒿 Artemisia ordosica | 狗尾草 Setaria viridis | 苍耳 Xanthium sibiricum | 鬼针草 Bidens pilosa |
---|---|---|---|---|---|---|
土壤类型 Soil type (ST) | 18.500** | 4.457* | 42.843** | 13.481** | 0.411 | 9.630** |
结皮类型 Biocrust type (BT) | 95.716** | 76.847** | 171.471** | 89.321** | 30.763** | 127.516** |
水分条件 Soil water condition (SWC) | 0.054 | 0.903 | 11.934** | 1.679 | 1.931 | 0.130 |
ST × BT | 8.608** | 0.279 | 36.099** | 2.487 | 1.106 | 2.661 |
ST × SWC | 0.216 | 0.546 | 2.678 | 0.187 | 4.571* | 0.047 |
BT × SWC | 0.095 | 0.033 | 16.099** | 0.796 | 0.500 | 2.505 |
ST × BT × SWC | 0.257 | 0.145 | 2.777 | 1.402 | 0.260 | 0.109 |
水分条件 Soil water condition | 土壤类型 Soil type | 结皮类型 Biocrust type | 柠条锦鸡儿 Caragana korshinskii | 细枝岩黄耆 Hedysarum scoparium | 黑沙蒿 Artemisia ordosica | 狗尾草 Setaria viridis | 苍耳 Xanthium sibiricum | 鬼针草 Bidens pilosa | 总体 Total |
---|---|---|---|---|---|---|---|---|---|
干燥 Dry | 风沙土 Aeolian sand soil | 无结皮 Bare soil | 100.0Aa | 100.0Aa | 100.0Aa | 100.0Aa | 100.0Aa | 96.7 ± 2.9Aa | 99.4 ± 0.5Aa |
藻结皮 Cyano crusts | 6.7 ± 7.6Ab | 38.3 ± 10.4Ab | 1.7 ± 2.9Ab | 11.7 ± 10.4Ab | 63.3 ± 16.1Ab | 16.7 ± 2.9Ab | 23.1 ± 1.9Ab | ||
藓结皮 Moss crusts | 1.7 ± 2.9Ab | 25.0 ± 21.8Ab | 1.7 ± 2.9Ab | 25.0 ± 30.4Ab | 43.3 ± 14.4Ab | 20.0 ± 17.3Ab | 19.4 ± 13.6Ab | ||
黄绵土 Loess soil | 无结皮 Bare soil | 50.0 ± 42.7Aa | 91.7 ± 14.4Aa | 58.3 ± 27.5Aa | 76.7 ± 36.2Aa | 98.3 ± 2.9Aa | 70.0 ± 26.5Aa | 74.2 ± 23.5Ba | |
藻结皮 Cyano crusts | 3.3 ± 5.8Ab | 26.7 ± 12.6Ab | 0Ab | 6.7 ± 2.9Ab | 66.7 ± 27.5Aa | 10.0 ± 5.0Ab | 18.9 ± 7.3Ab | ||
藓结皮 Moss crusts | 0Ab | 23.3 ± 20.2Ab | 0Ab | 3.3 ± 2.9Ab | 65.0 ± 17.3Aa | 15.0 ± 10.0Ab | 17.8 ± 3.8Ab | ||
湿润 Wet | 风沙土 Aeolian sand soil | 无结皮 Bare soil | 96.7 ± 5.8Aa | 96.7 ± 2.9Aa | 80.0 ± 5.0Aa | 100.0Aa | 100.0Aa | 91.7 ± 7.6Aa | 94.2 ± 1.7Aa |
藻结皮 Cyano crusts | 16.7 ± 12.6Ab | 38.3 ± 34.0Ab | 6.7 ± 11.5Ab | 18.3 ± 12.6Ab | 75.0 ± 8.7Ab | 31.7 ± 7.6Ab | 31.1 ± 10.4Ab | ||
藓结皮 Moss crusts | 5.0 ± 5.0Ab | 25.0 ± 15.0Ab | 0Ab | 5.0 ± 5.0Ab | 43.3 ± 16.1Ac | 11.7 ± 5.8Ac | 15.0 ± 6.3Ab | ||
黄绵土 Loess soil | 无结皮 Bare soil | 50.0 ± 18.0Ba | 88.3 ± 10.4Aa | 8.3 ± 7.6Ba | 53.3 ± 17.6Ba | 86.7 ± 2.9Ba | 70.0 ± 8.7Ba | 59.4 ± 8.3Ba | |
藻结皮 Cyano crusts | 0Ab | 16.7 ± 5.8Ab | 1.7 ± 2.9Aa | 5.0 ± 0.0Ab | 51.7 ± 28.4Aab | 21.7 ± 12.6Ab | 16.1 ± 8.0Ab | ||
藓结皮 Moss crusts | 0Ab | 10.0 ± 10.0Ab | 1.7 ± 2.9Aa | 1.7 ± 2.9Ab | 36.7 ± 15.3Ab | 10.0 ± 8.7Ab | 10.0 ± 4.6Ab |
表5 黄土高原不同土壤类型和水分条件下生物结皮与无结皮上灌草种子的移位率(%) (平均值±标准差)
Table 5 Displacement ratio of shrub and grass seeds on biocrusts and bare soil under different soil water conditions and soil types on Loess Plateau (%) (mean ± SD)
水分条件 Soil water condition | 土壤类型 Soil type | 结皮类型 Biocrust type | 柠条锦鸡儿 Caragana korshinskii | 细枝岩黄耆 Hedysarum scoparium | 黑沙蒿 Artemisia ordosica | 狗尾草 Setaria viridis | 苍耳 Xanthium sibiricum | 鬼针草 Bidens pilosa | 总体 Total |
---|---|---|---|---|---|---|---|---|---|
干燥 Dry | 风沙土 Aeolian sand soil | 无结皮 Bare soil | 100.0Aa | 100.0Aa | 100.0Aa | 100.0Aa | 100.0Aa | 96.7 ± 2.9Aa | 99.4 ± 0.5Aa |
藻结皮 Cyano crusts | 6.7 ± 7.6Ab | 38.3 ± 10.4Ab | 1.7 ± 2.9Ab | 11.7 ± 10.4Ab | 63.3 ± 16.1Ab | 16.7 ± 2.9Ab | 23.1 ± 1.9Ab | ||
藓结皮 Moss crusts | 1.7 ± 2.9Ab | 25.0 ± 21.8Ab | 1.7 ± 2.9Ab | 25.0 ± 30.4Ab | 43.3 ± 14.4Ab | 20.0 ± 17.3Ab | 19.4 ± 13.6Ab | ||
黄绵土 Loess soil | 无结皮 Bare soil | 50.0 ± 42.7Aa | 91.7 ± 14.4Aa | 58.3 ± 27.5Aa | 76.7 ± 36.2Aa | 98.3 ± 2.9Aa | 70.0 ± 26.5Aa | 74.2 ± 23.5Ba | |
藻结皮 Cyano crusts | 3.3 ± 5.8Ab | 26.7 ± 12.6Ab | 0Ab | 6.7 ± 2.9Ab | 66.7 ± 27.5Aa | 10.0 ± 5.0Ab | 18.9 ± 7.3Ab | ||
藓结皮 Moss crusts | 0Ab | 23.3 ± 20.2Ab | 0Ab | 3.3 ± 2.9Ab | 65.0 ± 17.3Aa | 15.0 ± 10.0Ab | 17.8 ± 3.8Ab | ||
湿润 Wet | 风沙土 Aeolian sand soil | 无结皮 Bare soil | 96.7 ± 5.8Aa | 96.7 ± 2.9Aa | 80.0 ± 5.0Aa | 100.0Aa | 100.0Aa | 91.7 ± 7.6Aa | 94.2 ± 1.7Aa |
藻结皮 Cyano crusts | 16.7 ± 12.6Ab | 38.3 ± 34.0Ab | 6.7 ± 11.5Ab | 18.3 ± 12.6Ab | 75.0 ± 8.7Ab | 31.7 ± 7.6Ab | 31.1 ± 10.4Ab | ||
藓结皮 Moss crusts | 5.0 ± 5.0Ab | 25.0 ± 15.0Ab | 0Ab | 5.0 ± 5.0Ab | 43.3 ± 16.1Ac | 11.7 ± 5.8Ac | 15.0 ± 6.3Ab | ||
黄绵土 Loess soil | 无结皮 Bare soil | 50.0 ± 18.0Ba | 88.3 ± 10.4Aa | 8.3 ± 7.6Ba | 53.3 ± 17.6Ba | 86.7 ± 2.9Ba | 70.0 ± 8.7Ba | 59.4 ± 8.3Ba | |
藻结皮 Cyano crusts | 0Ab | 16.7 ± 5.8Ab | 1.7 ± 2.9Aa | 5.0 ± 0.0Ab | 51.7 ± 28.4Aab | 21.7 ± 12.6Ab | 16.1 ± 8.0Ab | ||
藓结皮 Moss crusts | 0Ab | 10.0 ± 10.0Ab | 1.7 ± 2.9Aa | 1.7 ± 2.9Ab | 36.7 ± 15.3Ab | 10.0 ± 8.7Ab | 10.0 ± 4.6Ab |
因素 Factor | 柠条锦鸡儿 Caragana korshinskii | 细枝岩黄耆 Hedysarum scoparium | 黑沙蒿 Artemisia ordosica | 狗尾草 Setaria viridis | 苍耳 Xanthium sibiricum | 鬼针草 Bidens pilosa |
---|---|---|---|---|---|---|
土壤类型 Soil type (ST) | 1.000 | 19.973** | 26.694** | 69.015** | 29.070** | 13.255** |
结皮类型 Biocrust type (BT) | 1.000 | 29.836** | 51.361** | 147.776** | 19.086** | 18.618** |
水分条件 Soil water condition (SWC) | 1.000 | 0.247 | 2.250 | 0.537 | 0.070 | 1.473 |
ST × BT | 1.000 | 17.836** | 26.694** | 49.358** | 18.102** | 13.309** |
ST × SWC | 1.000 | 0.110 | 0.028 | 0.239 | 0.195 | 0.018 |
BT × SWC | 1.000 | 0.082 | 2.250 | 0.313 | 0.445 | 0.655 |
ST × BT × SWC | 1.000 | 0.110 | 0.028 | 0.104 | 1.367 | 0.073 |
表6 黄土高原土壤类型、结皮类型、水分条件及其交互作用对种子损失率的影响(F值)
Table 6 Effects of soil types, biocrust types, soil water conditions and their interaction on loss ratio of shrub and grass seeds on Loess Plateau (F value)
因素 Factor | 柠条锦鸡儿 Caragana korshinskii | 细枝岩黄耆 Hedysarum scoparium | 黑沙蒿 Artemisia ordosica | 狗尾草 Setaria viridis | 苍耳 Xanthium sibiricum | 鬼针草 Bidens pilosa |
---|---|---|---|---|---|---|
土壤类型 Soil type (ST) | 1.000 | 19.973** | 26.694** | 69.015** | 29.070** | 13.255** |
结皮类型 Biocrust type (BT) | 1.000 | 29.836** | 51.361** | 147.776** | 19.086** | 18.618** |
水分条件 Soil water condition (SWC) | 1.000 | 0.247 | 2.250 | 0.537 | 0.070 | 1.473 |
ST × BT | 1.000 | 17.836** | 26.694** | 49.358** | 18.102** | 13.309** |
ST × SWC | 1.000 | 0.110 | 0.028 | 0.239 | 0.195 | 0.018 |
BT × SWC | 1.000 | 0.082 | 2.250 | 0.313 | 0.445 | 0.655 |
ST × BT × SWC | 1.000 | 0.110 | 0.028 | 0.104 | 1.367 | 0.073 |
水分条件 Soil water condition | 土壤类型 Soil type | 结皮类型 Biocrust type | 柠条锦鸡儿 Caragana korshinskii | 细枝岩黄耆 Hedysarum scoparium | 黑沙蒿 Artemisia ordosica | 狗尾草 Setaria viridis | 苍耳 Xanthium sibiricum | 鬼针草 Bidens pilosa | 总体 Total |
---|---|---|---|---|---|---|---|---|---|
干燥 Dry | 风沙土 Aeolian sand soil | 无结皮 Bare soil | 0Aa | 50.0 ± 18.0Aa | 35.0 ± 13.2Aa | 65.0 ± 13.2Aa | 51.7 ± 22.5Aa | 21.7 ± 11.5Aa | 37.2 ± 4.6Aa |
藻结皮 Cyano crusts | 0Aa | 1.7 ± 2.9Ab | 0Ab | 3.3 ± 5.8Ab | 6.7 ± 7.6Ab | 0Ab | 1.9 ± 2.7Ab | ||
藓结皮 Moss crusts | 0Aa | 0Ab | 0Ab | 1.7 ± 2.9Ab | 0Ab | 0Ab | 0.3 ± 0.5Ab | ||
黄绵土 Loess soil | 无结皮 Bare soil | 0Aa | 3.3 ± 2.9Ba | 8.3 ± 7.6Ba | 16.7 ± 10.4Ba | 0Ba | 0Ba | 4.7 ± 3.5Ba | |
藻结皮 Cyano crusts | 0Aa | 0Aa | 0Aa | 0Ab | 3.3 ± 5.8Aa | 0Aa | 0.6 ± 1.0Aa | ||
藓结皮 Moss crusts | 0Aa | 0Aa | 0Aa | 0Ab | 0Aa | 0Aa | 0Aa | ||
湿润 Wet | 风沙土 Aeolian sand | 无结皮 Bare soil | 0Aa | 50.0 ± 27.8Aa | 26.7 ± 7.6Aa | 71.7 ± 5.8Aa | 38.3 ± 17.6Aa | 28.3 ± 15.3Aa | 35.8 ± 5.8Aa |
藻结皮 Cyano crusts | 0Aa | 1.7 ± 2.9Ab | 0Ab | 3.3 ± 5.8Ab | 11.7 ± 10.4Ab | 0Ab | 2.8 ± 1.0Ab | ||
藓结皮 Moss crusts | 1.7 ± 2.9Aa | 1.7 ± 2.9Ab | 0Ab | 3.3 ± 2.9Ab | 1.7 ± 2.9Ab | 1.7 ± 2.9Ab | 1.7 ± 2.2Ab | ||
黄绵土 Loess soil | 无结皮 Bare soil | 0Aa | 10.0 ± 8.7Aa | 1.7 ± 2.9Ba | 18.3 ± 12.6Ba | 3.3 ± 5.8Ba | 5.0 ± 8.7Aa | 6.4 ± 5.3Ba | |
藻结皮 Cyano crusts | 0Aa | 0Aa | 0Aa | 0Ab | 0Aa | 1.7 ± 2.9Aa | 0.3 ± 0.5Ab | ||
藓结皮 Moss crusts | 0Aa | 1.7 ± 2.9Aa | 0Aa | 0Ab | 1.7 ± 2.9Aa | 0Aa | 0.6 ± 1.0Ab |
表7 黄土高原不同土壤类型和水分条件下生物结皮与无结皮上灌草种子的损失率(%) (平均值±标准差)
Table 7 Loss ratio of shrub and grass seeds on biocrusts and bare soil under different soil water conditions and soil types on Loess Plateau (%) (mean ± SD)
水分条件 Soil water condition | 土壤类型 Soil type | 结皮类型 Biocrust type | 柠条锦鸡儿 Caragana korshinskii | 细枝岩黄耆 Hedysarum scoparium | 黑沙蒿 Artemisia ordosica | 狗尾草 Setaria viridis | 苍耳 Xanthium sibiricum | 鬼针草 Bidens pilosa | 总体 Total |
---|---|---|---|---|---|---|---|---|---|
干燥 Dry | 风沙土 Aeolian sand soil | 无结皮 Bare soil | 0Aa | 50.0 ± 18.0Aa | 35.0 ± 13.2Aa | 65.0 ± 13.2Aa | 51.7 ± 22.5Aa | 21.7 ± 11.5Aa | 37.2 ± 4.6Aa |
藻结皮 Cyano crusts | 0Aa | 1.7 ± 2.9Ab | 0Ab | 3.3 ± 5.8Ab | 6.7 ± 7.6Ab | 0Ab | 1.9 ± 2.7Ab | ||
藓结皮 Moss crusts | 0Aa | 0Ab | 0Ab | 1.7 ± 2.9Ab | 0Ab | 0Ab | 0.3 ± 0.5Ab | ||
黄绵土 Loess soil | 无结皮 Bare soil | 0Aa | 3.3 ± 2.9Ba | 8.3 ± 7.6Ba | 16.7 ± 10.4Ba | 0Ba | 0Ba | 4.7 ± 3.5Ba | |
藻结皮 Cyano crusts | 0Aa | 0Aa | 0Aa | 0Ab | 3.3 ± 5.8Aa | 0Aa | 0.6 ± 1.0Aa | ||
藓结皮 Moss crusts | 0Aa | 0Aa | 0Aa | 0Ab | 0Aa | 0Aa | 0Aa | ||
湿润 Wet | 风沙土 Aeolian sand | 无结皮 Bare soil | 0Aa | 50.0 ± 27.8Aa | 26.7 ± 7.6Aa | 71.7 ± 5.8Aa | 38.3 ± 17.6Aa | 28.3 ± 15.3Aa | 35.8 ± 5.8Aa |
藻结皮 Cyano crusts | 0Aa | 1.7 ± 2.9Ab | 0Ab | 3.3 ± 5.8Ab | 11.7 ± 10.4Ab | 0Ab | 2.8 ± 1.0Ab | ||
藓结皮 Moss crusts | 1.7 ± 2.9Aa | 1.7 ± 2.9Ab | 0Ab | 3.3 ± 2.9Ab | 1.7 ± 2.9Ab | 1.7 ± 2.9Ab | 1.7 ± 2.2Ab | ||
黄绵土 Loess soil | 无结皮 Bare soil | 0Aa | 10.0 ± 8.7Aa | 1.7 ± 2.9Ba | 18.3 ± 12.6Ba | 3.3 ± 5.8Ba | 5.0 ± 8.7Aa | 6.4 ± 5.3Ba | |
藻结皮 Cyano crusts | 0Aa | 0Aa | 0Aa | 0Ab | 0Aa | 1.7 ± 2.9Aa | 0.3 ± 0.5Ab | ||
藓结皮 Moss crusts | 0Aa | 1.7 ± 2.9Aa | 0Aa | 0Ab | 1.7 ± 2.9Aa | 0Aa | 0.6 ± 1.0Ab |
因素 Factor | 柠条锦鸡儿 Caragana korshinskii | 细枝岩黄耆 Hedysarum scoparium | 黑沙蒿 Artemisia ordosica | 狗尾草 Setaria viridis | 苍耳 Xanthium sibiricum | 鬼针草 Bidens pilosa |
---|---|---|---|---|---|---|
土壤类型 Soil type (ST) | 5.605* | 2.770 | 8.282** | 4.780** | 10.118** | 10.118** |
结皮类型 Biocrust type (BT) | 2.984 | 13.812** | 39.594** | 11.290** | 25.995** | 25.995** |
水分条件 Soil water condition (SWC) | 0.699 | 0.073 | 0.053 | 0.454 | 0.021 | 0.021 |
ST × BT | 1.228 | 1.743 | 7.767** | 0.986 | 7.737** | 7.737** |
ST × SWC | 0.867 | 0.429 | 0.009 | 3.985 | 1.565 | 1.565 |
BT × SWC | 1.082 | 0.093 | 0.096 | 0.204 | 0.752 | 0.752 |
ST × BT × SWC | 0.971 | 1.318 | 0.011 | 2.704 | 0.979 | 0.979 |
表8 黄土高原土壤类型、结皮类型、水分条件及其交互作用对种子扩散距离的影响(F值)
Table 8 Effects of soil types, biocrust types, soil water conditions and their interaction on displacement distance of shrub and grass seeds on Loess Plateau (F value)
因素 Factor | 柠条锦鸡儿 Caragana korshinskii | 细枝岩黄耆 Hedysarum scoparium | 黑沙蒿 Artemisia ordosica | 狗尾草 Setaria viridis | 苍耳 Xanthium sibiricum | 鬼针草 Bidens pilosa |
---|---|---|---|---|---|---|
土壤类型 Soil type (ST) | 5.605* | 2.770 | 8.282** | 4.780** | 10.118** | 10.118** |
结皮类型 Biocrust type (BT) | 2.984 | 13.812** | 39.594** | 11.290** | 25.995** | 25.995** |
水分条件 Soil water condition (SWC) | 0.699 | 0.073 | 0.053 | 0.454 | 0.021 | 0.021 |
ST × BT | 1.228 | 1.743 | 7.767** | 0.986 | 7.737** | 7.737** |
ST × SWC | 0.867 | 0.429 | 0.009 | 3.985 | 1.565 | 1.565 |
BT × SWC | 1.082 | 0.093 | 0.096 | 0.204 | 0.752 | 0.752 |
ST × BT × SWC | 0.971 | 1.318 | 0.011 | 2.704 | 0.979 | 0.979 |
图5 黄土高原灌草种子在风沙土和黄绵土生物结皮上的扩散距离(平均值±标准差)。A, 干燥。B, 湿润。不同小写字母表示相同土壤类型和干湿条件下, 不同结皮类型间差异显著(p < 0.05); 不同大写字母表示干湿条件和结皮类型相同时, 风沙土和黄绵土间差异显著(p < 0.05)。
Fig. 5 Displacement distance of shrub and grass seeds on biocrusts of aeolian sand soil and loess soil on the Loess Plateau (mean ± SD). A, Dry. B, Wet. Different lowercase letters indicate significant differences among different biocrust types under the same soil types and soil water conditions (p < 0.05), different uppercase letters indicate significant differences between aeolian sand and loess soil for the same soil water condition and biocrust types (p < 0.05).
种子扩散特征 Seed dispersal characteristic | 地表粗糙度 Surface roughness (%) | 土壤含水量 Soil moisture (%) | 质量 Mass (mg) | 长 Length (mm) | 宽 Width (mm) | 高 Height (mm) | 表面积 Area (mm2) | 体积 Volume (mm3) | 密度 Density (mg·mm-3) | 平面度 Flatness |
---|---|---|---|---|---|---|---|---|---|---|
种子移位率 SDR (%) | -0.689** | -0.422* | 0.657 | 0.714 | 0.600 | 0.771 | 0.657 | 0.657 | -0.600 | -0.395 |
种子损失率 SLR (%) | -0.643** | -0.395* | -0.200 | -0.314 | 0.314 | 0.257 | -0.200 | -0.200 | -0.829* | -0.516 |
种子扩散距离 SDD (cm) | -0.699** | -0.283 | 0.029 | 0.086 | 0.314 | 0.371 | 0.029 | 0.029 | -0.886* | -0.334 |
表9 黄土高原种子扩散特征与地表粗糙度、土壤含水量和种子形态特征之间的相关性
Table 9 Correlations between seed dispersal characteristics and surface roughness, soil moisture, and seed morphology characteristics on Loess Plateau
种子扩散特征 Seed dispersal characteristic | 地表粗糙度 Surface roughness (%) | 土壤含水量 Soil moisture (%) | 质量 Mass (mg) | 长 Length (mm) | 宽 Width (mm) | 高 Height (mm) | 表面积 Area (mm2) | 体积 Volume (mm3) | 密度 Density (mg·mm-3) | 平面度 Flatness |
---|---|---|---|---|---|---|---|---|---|---|
种子移位率 SDR (%) | -0.689** | -0.422* | 0.657 | 0.714 | 0.600 | 0.771 | 0.657 | 0.657 | -0.600 | -0.395 |
种子损失率 SLR (%) | -0.643** | -0.395* | -0.200 | -0.314 | 0.314 | 0.257 | -0.200 | -0.200 | -0.829* | -0.516 |
种子扩散距离 SDD (cm) | -0.699** | -0.283 | 0.029 | 0.086 | 0.314 | 0.371 | 0.029 | 0.029 | -0.886* | -0.334 |
[1] | Bao TL, Zhao YG, Gao LQ, Yang QY, Yang K (2019). Moss-dominated biocrusts improve the structural diversity of underlying soil microbial communities by increasing soil stability and fertility in the Loess Plateau region of China. European Journal of Soil Biology, 95, 103120. DOI: 10.1016/j.ejsobi.2019.103120. |
[2] | Bu CF, Zhang P, Ye J, Meng J (2014). Spatial characteristics of moss-dominated soil crust and its impact factors in small watershed in wind-water erosion crisscross region, northern Shaanxi Province, China. Journal of Natural Resources, 29, 490-499. |
[ 卜崇峰, 张朋, 叶菁, 孟杰 (2014). 陕北水蚀风蚀交错区小流域苔藓结皮的空间特征及其影响因子. 自然资源学报, 29, 490-499.]
DOI |
|
[3] |
Chambers JC, MacMahon JA (1994). A day in the life of a seed: movements and fates of seeds and their implications for natural and managed systems. Annual Review of Ecology and Systematics, 25, 263-292.
DOI URL |
[4] |
Chamizo S, Rodríguez-Caballero E, Román JR, Cantón Y (2017). Effects of biocrust on soil erosion and organic carbon losses under natural rainfall. Catena, 148, 117- 125.
DOI URL |
[5] | Chen MC, Zhang JG, Feng L, Teng JL (2017). The composition and vertical distribution characteristics of soil seed banks in soil coverage with biocrusts in the Shapotou Region. Acta Ecologica Sinica, 37, 7614-7623. |
[ 陈孟晨, 张景光, 冯丽, 滕嘉玲 (2017). 沙坡头地区生物结皮覆盖区土壤种子库组成及垂直分布特征. 生态学报, 37, 7614-7623.] | |
[6] |
Chen N, Wang XP, Zhang YF, Yu KL, Zhao CM (2018). Ecohydrological effects of biological soil crust on the vegetation dynamics of restoration in a dryland ecosystem. Journal of Hydrology, 563, 1068-1077.
DOI URL |
[7] | Dou WQ, Xiao B, Yao XM, Kidron GJ (2023). Asymmetric responses of biocrust respiration to precipitation manipulation under a changing semiarid climate. Geoderma, 430, 116318. DOI: 10.1016/j.geoderma.2022.116318. |
[8] | Fu DL, Liu MY, Liu L, Zhang K, Zuo JX (2014). Organic carbon density and storage in different soils on the Loess Plateau. Arid Zone Research, 31, 44-50. |
[ 付东磊, 刘梦云, 刘林, 张琨, 左进香 (2014). 黄土高原不同土壤类型有机碳密度与储量特征. 干旱区研究, 31, 44-50.] | |
[9] | Guzzetti L, Galimberti A, Bruni I, Magoni C, Ferri M, Tassoni A, Sangiovanni E, Dell’Agli M, Labra M (2017). Publisher Correction: Bioprospecting on invasive plant species to prevent seed dispersal. Scientific Reports, 8, 11128. DOI: 10.1038/s41598-017-14183-5. |
[10] | Hamerlynck EP, Tuba Z, Csintalan Z, Nagy Z, Henebry G, Goodin D (2000). Diurnal variation in photochemical dynamics and surface reflectance of the desiccation- tolerant moss, Tortula ruralis. Plant Ecology, 151, 55-63. |
[11] |
Han DY, Zhang W, Yiliyasi N, Yang YF (2021). Recruitment limitation of plant population regeneration. Chinese Journal of Plant Ecology, 45, 1-12.
DOI URL |
[ 韩大勇, 张维, 努尔买买提·依力亚斯, 杨允菲(2021). 植物种群更新的补充限制. 植物生态学报, 45, 1-12.] | |
[12] | He FL, Zhao HR, Wang ZW, Wang YY, Li XJ, Jin HX (2023). Effect of biological soil crusts on seed settlement of Reaumuria soongorica and its mechanism in arid desert area. Acta Ecologica Sinica, 43, 304-312. |
[ 何芳兰, 赵赫然, 王忠文, 汪媛艳, 李雪娇, 金红喜 (2023). 干旱沙区生物土壤结皮对红砂种子定居的影响及作用机制. 生态学报, 43, 304-312.] | |
[13] | Li DL, Li CL, Jiang SX (2020). Effects of soil crusts on the population distribution pattern of Limonium aureum in degraded Haloxylon ammodendron forests. Pratacultural Science, 37, 2223-2233. |
[ 李得禄, 李昌龙, 姜生秀 (2020). 梭梭林下土壤结皮对黄花补血草种群分布格局影响. 草业科学, 37, 2223-2233.] | |
[14] | Li RH, Qiang S (2007). Progresses and prospects in research of weed seed dispersal research. Acta Ecologica Sinica, 27, 5361-5370. |
[ 李儒海, 强胜 (2007). 杂草种子传播研究进展. 生态学报, 27, 5361-5370.] | |
[15] | Liu J, Zhang YQ, Qin SG, Feng W, Sun YF, Wang L, Bai YX (2016). Sand fixation experiment of Artemisia sphaerocephala Krasch. gum with different concentrations. Transactions of the Chinese Society of Agricultural Engineering, 32, 149-155. |
[ 刘军, 张宇清, 秦树高, 冯薇, 孙延菲, 王莉, 白宇轩 (2016). 不同喷洒浓度沙蒿胶固沙效果试验. 农业工程学报, 32, 149-155.] | |
[16] | Qin FW, Kang BY, Jiang FY, Liu XL, Xu HK, Wei XT, Shao XQ (2019). Effects of biological soil crust succession on vegetation structure and soil nutrients in alpine steppe. Ecology and Environmental Sciences, 28, 1100-1107. |
[ 秦福雯, 康濒月, 姜凤岩, 刘晓丽, 徐恒康, 位晓婷, 邵新庆 (2019). 生物土壤结皮演替对高寒草原植被结构和土壤养分的影响. 生态环境学报, 28, 1100-1107.]
DOI |
|
[17] | Qin NQ, Zhao YG (2011). Responses of biological soil crust to and its relief effect on raindrop kinetic energy. Chinese Journal of Applied Ecology, 22, 2259-2264. |
[ 秦宁强, 赵允格 (2011). 生物土壤结皮对雨滴动能的响应及削减作用. 应用生态学报, 22, 2259-2264.] | |
[18] | Ribeiro RC, Figueiredo MLN, Picorelli A, Silveira FAO (2023). Limited seed dispersal distance in endemic species from tropical mountaintop grasslands may restrict upward migration in response to climate change. Flora, 298, 152203. DOI: 10.1016/j.flora.2022.152203. |
[19] |
Rodríguez-Caballero E, Aguilar MÁ, Castilla YC, Chamizo S, Aguilar FJ (2015). Swelling of biocrusts upon wetting induces changes in surface micro-topography. Soil Biology & Biochemistry, 82, 107-111.
DOI URL |
[20] |
Steggles EK, Facelli JM, Ainsley PJ, Pound LM (2019). Biological soil crust and vascular plant interactions in Western Myall (Acacia papyrocarpa) open woodland in South Australia. Journal of Vegetation Science, 30, 756- 764.
DOI |
[21] | Su YG, Li XR, Jia RL, Pan YX (2007). Effects of moss crust on soil seed bank at southeast edge of Tengger Desert. Chinese Journal of Applied Ecology, 18, 504-508. |
[ 苏延桂, 李新荣, 贾荣亮, 潘颜霞 (2007). 腾格里沙漠东南缘苔藓结皮对荒漠土壤种子库的影响. 应用生态学报, 18, 504-508.] | |
[22] |
Vander Wall SB, Kuhn KM, Beck MJ (2005). Seed removal, seed predation, and secondary dispersal. Ecology, 86, 801-806.
DOI URL |
[23] |
Wang DL, Jiao JY, Lei D, Wang N, Du H, Jia YF (2013). Effects of seed morphology on seed removal and plant distribution in the Chinese hill-gully Loess Plateau region. Catena, 104, 144-152.
DOI URL |
[24] | Wang GP, Xiao B, Li SL, Sun FH, Yao XM (2019). Surface roughness of biological soil crusts and its influencing factors in the water-wind erosion crisscross region on the Loess Plateau of China. Chinese Journal of Ecology, 38, 3050-3056. |
[ 王国鹏, 肖波, 李胜龙, 孙福海, 姚小萌 (2019). 黄土高原水蚀风蚀交错区生物结皮的地表粗糙度特征及其影响因素. 生态学杂志, 38, 3050-3056.] | |
[25] |
Wang GP, Xiao B, Li SL, Yao XM, Sun FH (2020). Effects of moss-dominated biocrusts on the swelling characteristics of aeolian and loessal soil in the Chinese Loess Plateau. Journal of Desert Research, 40, 97-104.
DOI |
[ 王国鹏, 肖波, 李胜龙, 姚小萌, 孙福海 (2020). 生物土壤结皮对风沙土和黄绵土膨胀特性的影响. 中国沙漠, 40, 97-104.]
DOI |
|
[26] |
Wang LJ, Zhang GH, Zhu LJ, Wang H (2017). Biocrust wetting induced change in soil surface roughness as influenced by biocrust type, coverage and wetting patterns. Geoderma, 306, 1-9.
DOI URL |
[27] | Wang XQ, Zhang YM, Zhang WM, Yang DL (2011). The aerodynamic roughness length of biological soil crusts: a case study of Gurbantunggut Desert. Acta Ecologica Sinica, 31, 4153-4160. |
[ 王雪芹, 张元明, 张伟民, 杨东亮 (2011). 生物结皮粗糙特征——以古尔班通古特沙漠为例. 生态学报, 31, 4153-4160.] | |
[28] | Wang YF, Xiao B, Wang WF, Yu XX, Zhang X (2022). Bryophyte diversity and microhabitat characteristics of bryophyte-dominated biological soil crusts development in water-wind erosion crisscross region of the northern Loess Plateau, China. Chinese Journal of Applied Ecology, 33, 1729-1737. |
[ 王彦峰, 肖波, 汪万福, 余星兴, 张雪 (2022). 黄土高原北部水蚀风蚀交错区苔藓多样性及苔藓结皮发育的微生境特征. 应用生态学报, 33, 1729-1737.]
DOI |
|
[29] | Wang ZQ, Bai JL, Zhang M (2020). Application of digital photogrammetry and 3D modeling in teaching of rock discontinuity surface roughness. Experimental Technology and Management, 37, 45-47. |
[ 王章琼, 白俊龙, 张明 (2020). 数码摄影测量及三维建模在岩体结构面粗糙度教学中的应用. 实验技术与管理, 37, 45-47.] | |
[30] |
Weber B, Belnap J, Büdel B, Antoninka AJ, Barger NN, Chaudhary VB, Darrouzet-Nardi A, Eldridge DJ, Faist AM, Ferrenberg S, Havrilla CA, Huber-Sannwald E, Issa OM, Maestre FT, Reed SC, et al. (2022). What is a biocrust? A refined, contemporary definition for a broadening research community. Biological Reviews, 97, 1768-1785.
DOI URL |
[31] |
Williams AJ, Buck BJ, Beyene MA (2012). Biological soil crusts in the Mojave Desert, USA: micromorphology and pedogenesis. Soil Science Society of America Journal, 76, 1685-1695.
DOI URL |
[32] |
Xiao B, Ma S, Hu KL (2019a). Moss biocrusts regulate surface soil thermal properties and generate buffering effects on soil temperature dynamics in dryland ecosystem. Geoderma, 351, 9-24.
DOI URL |
[33] |
Xiao B, Sun FH, Hu KL, Kidron GJ (2019b). Biocrusts reduce surface soil infiltrability and impede soil water infiltration under tension and ponding conditions in dryland ecosystem. Journal of Hydrology, 568, 792-802.
DOI URL |
[34] | Xiao B, Veste M (2017). Moss-dominated biocrusts increase soil microbial abundance and community diversity and improve soil fertility in semi-arid climates on the Loess Plateau of China. Applied Soil Ecology, 117- 118, 165-177. |
[35] | Xiao LM, Zhang W, Wang CY, Hu PL, Chen YK, Wang KL (2022). Functional traits of bryophytes and their response and adaptation to soil factors in different vegetation restoration methods in a typical karst area. Acta Ecologica Sinica, 42, 9769-9779. |
[ 肖露梅, 张伟, 王彩艳, 胡培雷, 陈元凯, 王克林 (2022). 典型喀斯特区不同植被恢复方式苔藓功能性状及其对土壤因子的响应. 生态学报, 42, 9769-9779.] | |
[36] | Xing XM, Ma XD, Zhang YM (2016). Effects of biological soil crusts on soil seed bank diversity and distribution characteristics in Gurbantunggut Desert. Chinese Journal of Ecology, 35, 612-620. |
[ 邢旭明, 马晓东, 张元明 (2016). 古尔班通古特沙漠生物土壤结皮对土壤种子库多样性与分布特征的影响. 生态学杂志, 35, 612-620.] | |
[37] | Yan QL, Wang J, Chen QD, Li R, Yu Y, Li ST, Gao T, Zhang T, Yuan JF (2022). Rodent-mediated seed dispersal of Korean pine in forest gaps: the importance of fine-scale spatial heterogeneity of understory vegetation. Ecological Indicators, 145, 109721. DOI: 10.1016/j.ecolind.2022.109721. |
[38] | Yang GD, Wang MS (2016). The tilt photographic measuration technique and expectation. Geomatics & Spatial Information Technology, 39(1), 13-15. |
[ 杨国东, 王民水 (2016). 倾斜摄影测量技术应用及展望. 测绘与空间地理信息, 39(1), 13-15.] | |
[39] |
Yang LN, Zhao YG, Ming J, Wang AG (2013). Cyanobacteria diversity in biological soil crusts from different erosion regions on the Loess Plateau: a preliminary result. Acta Ecologica Sinica, 33, 4416-4424.
DOI URL |
[ 杨丽娜, 赵允格, 明姣, 王爱国 (2013). 黄土高原不同侵蚀类型区生物结皮中蓝藻的多样性. 生态学报, 33, 4416-4424.] | |
[40] |
Zhang SQ, Zhang KL, Cao ZH, Zhu T, Wei MY (2021). Developmental characteristics of biological soil crusts and their effects on soil water infiltration on karst slope. Chinese Journal of Applied Ecology, 32, 2875-2885.
DOI |
[ 张思琪, 张科利, 曹梓豪, 朱彤, 魏梦瑶 (2021). 喀斯特坡面生物结皮发育特征及其对土壤水分入渗的影响. 应用生态学报, 32, 2875-2885.]
DOI |
|
[41] | Zhang YM (2005). Microstructure and early development characteristics of crusts in desert surface biological soil. Chinese Science Bulletin, 50, 42-47. |
[ 张元明 (2005). 荒漠地表生物土壤结皮的微结构及其早期发育特征. 科学通报, 50, 42-47.] | |
[42] |
Zhang YM, Nie HL (2011). Effects of biological soil crusts on seedling growth and element uptake in five desert plants in Junggar Basin, western China. Chinese Journal of Plant Ecology, 35, 380-388.
DOI URL |
[ 张元明, 聂华丽 (2011). 生物土壤结皮对准噶尔盆地5种荒漠植物幼苗生长与元素吸收的影. 植物生态学报, 35, 380-388.]
DOI |
|
[43] |
Zhou QL, Liu ZM, Xin ZM, Daryanto S, Wang LX, Li XH, Wang YC, Liang W, Qin XP, Zhao YM, Li XL, Cui X, Liu MH (2020). Responses of secondary wind dispersal to environmental characteristics and diaspore morphology of seven Calligonum species. Land Degradation & Development, 31, 842-850.
DOI URL |
[44] |
Zhu JL, Liu MH, Xin ZM, Liu ZM, Schurr FM (2019). A trade-off between primary and secondary seed dispersal by wind. Plant Ecology, 220, 541-552.
DOI |
[45] | Zhu JL, Liu ZM (2012). Major terminologies and concepts in seed dispersal biology. Chinese Journal of Ecology, 31, 2397-2403. |
[ 朱金雷, 刘志民 (2012). 种子传播生物学主要术语和概念. 生态学杂志, 31, 2397-2403.] | |
[46] | Zhu LJ, Zhang GH (2013). Review of measurement and quantification of surface microtopography. Science of Soil and Water Conservation, 11, 114-122. |
[ 朱良君, 张光辉 (2013). 地表微地形测量及定量化方法研究综述. 中国水土保持科学, 11, 114-122.] |
[1] | 贺洁, 何亮, 吕渡, 程卓, 薛帆, 刘宝元, 张晓萍. 2001-2020年黄土高原光合植被时空变化及其驱动机制[J]. 植物生态学报, 2023, 47(3): 306-318. |
[2] | 薛金儒, 吕肖良. 黄土高原生态工程实施下基于日光诱导叶绿素荧光的植被恢复生产力效益评价[J]. 植物生态学报, 2022, 46(10): 1289-1304. |
[3] | 杨克彤, 常海龙, 陈国鹏, 俞筱押, 鲜骏仁. 兰州市主要绿化植物气孔性状特征[J]. 植物生态学报, 2021, 45(2): 187-196. |
[4] | 乔鲜果, 郭柯, 赵利清, 王孜, 刘长成. 中国长芒草群系的群落特征[J]. 植物生态学报, 2020, 44(9): 986-994. |
[5] | 李单凤, 于顺利, 王国勋, 方伟伟. 黄土高原优势灌丛营养器官化学计量特征的环境分异和机制[J]. 植物生态学报, 2015, 39(5): 453-465. |
[6] | 荐圣淇, 赵传燕, 方书敏, 余凯, 马文瑛. 黄土高原丘陵沟壑区柠条与沙棘冠层的持水能力[J]. 植物生态学报, 2013, 37(1): 45-51. |
[7] | 安卓, 牛得草, 文海燕, 杨益, 张洪荣, 傅华. 氮素添加对黄土高原典型草原长芒草氮磷重吸收率及C:N:P化学计量特征的影响[J]. 植物生态学报, 2011, 35(8): 801-807. |
[8] | 单长卷, 韩蕊莲, 梁宗锁. 黄土高原冰草叶片抗坏血酸和谷胱甘肽合成及循环代谢对干旱胁迫的生理响应[J]. 植物生态学报, 2011, 35(6): 653-662. |
[9] | 魏丽萍, 王孝安, 王世雄, 朱志红, 郭华, 孙嘉男, 郝江勃. 黄土高原马栏林区基于不同植被组织尺度的群落物种多样性[J]. 植物生态学报, 2011, 35(1): 17-26. |
[10] | 唐丽霞, 张志强, 王新杰, 王盛萍, 查同刚. 晋西黄土高原丘陵沟壑区清水河流域径流对土地利用与气候变化的响应[J]. 植物生态学报, 2010, 34(7): 800-810. |
[11] | 王迪海, 赵忠, 李剑. 土壤水分对黄土高原主要造林树种细根表面积 季节动态的影响[J]. 植物生态学报, 2010, 34(7): 819-826. |
[12] | 吴芳, 陈云明, 于占辉. 黄土高原半干旱区刺槐生长盛期树干液流动态[J]. 植物生态学报, 2010, 34(4): 469-476. |
[13] | 李军, 王学春, 邵明安, 赵玉娟, 李小芳. 黄土高原半干旱和半湿润地区刺槐林地生物量与土壤干燥化效应的模拟[J]. 植物生态学报, 2010, 34(3): 330-339. |
[14] | 杜彦君, 彭闪江, 徐国良, 黄忠良, 黄玉佳. 鼎湖山针阔混交林锥栗种子距离制约研究[J]. 植物生态学报, 2007, 31(6): 998-1006. |
[15] | 郑淑霞, 上官周平. 近70年来黄土高原典型植物δ13C值变化研究[J]. 植物生态学报, 2005, 29(2): 289-295. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19