植物生态学报 ›› 2007, Vol. 31 ›› Issue (6): 998-1006.DOI: 10.17521/cjpe.2007.0127
杜彦君1,2, 彭闪江3, 徐国良1, 黄忠良1,*(), 黄玉佳1
收稿日期:
2006-11-08
接受日期:
2007-04-03
出版日期:
2007-11-08
发布日期:
2007-11-30
通讯作者:
黄忠良
作者简介:
* E-mail: huangzl@scbg.ac.cn基金资助:
DU Yan-Jun1,2, PENG Shan-Jiang3, XU Guo-Liang1, HUANG Zhong-Liang1,*(), HUANG Yu-Jia1
Received:
2006-11-08
Accepted:
2007-04-03
Online:
2007-11-08
Published:
2007-11-30
Contact:
HUANG Zhong-Liang
摘要:
Janzen-Connell 距离制约假说认为:扩散到远离母树地点的种子,更容易逃避种子捕食者和病原体侵染。验证锥栗(Castanopsis chinensis)种子是否支持该假说,可以预测锥栗种群分布格局,解释锥栗种群更新不良的原因。在鼎湖山针阔混交林内,选择离成年母树3、10和15 m处,进行种子放置实验,以及种子消毒和未消毒埋土实验。在无覆盖实验中,10 m处大种子的消失数始终最大,种子离母树距离和种子大小两个因素对种子消失数均没有显著性影响。在排除哺乳动物实验中,种子放置第一周,种子消失数均很少。整个试验期,种子离母树距离和种子大小两个因素对种子消失数也没有显著性影响。在病原体实验中,埋土前两个月,经过消毒的种子袋中种子均保存完好,没有病原体侵染。埋土的种子从第三个月到第六个月,不同距离处的种子,以及消毒和未消毒处理的种子,被侵染数之间均有显著性差异;被侵染的种子数到第六个月趋于稳定。因此,锥栗种子被脊椎动物取食,不呈现距离制约(Distance-dependent)格局;而被病原体侵染的种子命运则支持距离制约假说。
杜彦君, 彭闪江, 徐国良, 黄忠良, 黄玉佳. 鼎湖山针阔混交林锥栗种子距离制约研究. 植物生态学报, 2007, 31(6): 998-1006. DOI: 10.17521/cjpe.2007.0127
DU Yan-Jun, PENG Shan-Jiang, XU Guo-Liang, HUANG Zhong-Liang, HUANG Yu-Jia. STUDY OF DISTANCE-DEPENDENCE ON CASTANOPSIS CHINENSIS SEED IN CONIFEROUS AND BROAD-LEAVED MIXED FOREST OF DINGHUSHAN, CHINA. Chinese Journal of Plant Ecology, 2007, 31(6): 998-1006. DOI: 10.17521/cjpe.2007.0127
图1 无覆盖实验不同类型种子不同时期被取食累计数 图中S、M、L分别代表小种子、中种子、大种子。3、10、15分别代表离母树3、10和15 m (下同)
Fig.1 The accumulative total of seed predation of different seed types in OP (open treatment) experiment in different periods of time S, M, and L represent small seed, medium seed and large seed, respectively. 3, 10, and 15 represent the distance (m) of seed from focal tree, respectively
变异源 Sources of variation | df | F (p) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3月8日Mar. 8 | 3月15日Mar.15 | 3月22日Mar. 22 | ||||||||||||
距离 Distance 种子大小Seed size 距离×种子大小Distance×seed size | 2 2 4 | 2.255 (0.109) 2.477 (0.088) 0.129 (0.971) | 3.075 (0.050) 2.621 (0.077) 0.320 (0.864) | 1.709 (0.185) 1.063 (0.349) 0.309 (0.871) |
表1 无覆盖实验距离和种子大小对种子被取食数影响的二因素方差分析
Table 1 Two-way ANOVA of the effects of distance and seed size on seed predation in OP (open treatment) experiment
变异源 Sources of variation | df | F (p) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3月8日Mar. 8 | 3月15日Mar.15 | 3月22日Mar. 22 | ||||||||||||
距离 Distance 种子大小Seed size 距离×种子大小Distance×seed size | 2 2 4 | 2.255 (0.109) 2.477 (0.088) 0.129 (0.971) | 3.075 (0.050) 2.621 (0.077) 0.320 (0.864) | 1.709 (0.185) 1.063 (0.349) 0.309 (0.871) |
图2 排除哺乳动物实验不同类型种子不同时期被取食累计数 图注见图1
Fig.2 The accumulative total of seed predation of different seed types in EM experiments (exclusion small mammal experiments) in different periods of time Notes see Fig. 1
变异源 Sources of variation | df | F (p) | ||||
---|---|---|---|---|---|---|
3月8日Mar.8 | 3月15日Mar.15 | 3月22日Mar.22 | 3月29日Mar.29 | 4月5日Apr.5 | ||
距离 Distance 种子大小 Seed size 距离×种子大小Distance×seed size | 2 2 4 | 0.649 (0.524) 1.281 (0.281) 1.018 (0.401) | 0.387 (0.680) 1.409 (0.248) 0.062 (0.993) | 1.163 (0.316) 1.526 (0.221) 0.509 (0.729) | 2.174 (0.118) 0.457 (0.634) 0.133 (0.970) | 2.227 (0.112) 1.616 (0.203) 0.331 (0.857) |
表2 排除哺乳动物实验距离和种子大小对种子被取食数影响的二因素方差分析
Table 2 Two-way ANOVA of the effects of distance and seed size on seed predation in EM experiments (exclusion small mammal experiments)
变异源 Sources of variation | df | F (p) | ||||
---|---|---|---|---|---|---|
3月8日Mar.8 | 3月15日Mar.15 | 3月22日Mar.22 | 3月29日Mar.29 | 4月5日Apr.5 | ||
距离 Distance 种子大小 Seed size 距离×种子大小Distance×seed size | 2 2 4 | 0.649 (0.524) 1.281 (0.281) 1.018 (0.401) | 0.387 (0.680) 1.409 (0.248) 0.062 (0.993) | 1.163 (0.316) 1.526 (0.221) 0.509 (0.729) | 2.174 (0.118) 0.457 (0.634) 0.133 (0.970) | 2.227 (0.112) 1.616 (0.203) 0.331 (0.857) |
变异源 Sources of variation | df | F | p |
---|---|---|---|
4月 April | |||
距离Distance | 2 | 5.487 | 0.008 |
5月 May | |||
距离Distance | 2 | 23.673 | 0.000 |
6月 June | |||
距离Distance | 2 | 36.792 | 0.000 |
消毒处理 Disinfection treatment | 1 | 1.88.609 | 0.000 |
距离×处理 Distance×treatment | 2 | 1.042 | 0.357 |
7月 July | |||
距离Distance | 2 | 65.679 | 0.000 |
消毒处理 Disinfection treatment | 1 | 3503.886 | 0.000 |
距离×处理 Distance×treatment | 2 | 20.059 | 0.000 |
8月August | |||
距离Distance | 2 | 36.792 | 0.000 |
消毒处理 Disinfection treatment | 1 | 1088.609 | 0.000 |
距离×处理 Distance×treatment | 2 | 1.042 | 0.357 |
9月 September | |||
距离Distance | 2 | 30.524 | 0.000 |
消毒处理 Disinfection treatment | 1 | 4568.495 | 0.000 |
距离×处理 Distance×treatment | 2 | 3.482 | 0.035 |
10月October | |||
距离Distance | 2 | 40.977 | 0.000 |
消毒处理 Disinfection treatment | 1 | 4391.647 | 0.000 |
距离×处理 Distance×treatment | 2 | 6.155 | 0.003 |
表3 距离和消毒处理对种子被病原体侵染影响的二因素方差分析
Table 3 Two-way ANOVA of the effects of distance and disinfecting treatment on seed predation
变异源 Sources of variation | df | F | p |
---|---|---|---|
4月 April | |||
距离Distance | 2 | 5.487 | 0.008 |
5月 May | |||
距离Distance | 2 | 23.673 | 0.000 |
6月 June | |||
距离Distance | 2 | 36.792 | 0.000 |
消毒处理 Disinfection treatment | 1 | 1.88.609 | 0.000 |
距离×处理 Distance×treatment | 2 | 1.042 | 0.357 |
7月 July | |||
距离Distance | 2 | 65.679 | 0.000 |
消毒处理 Disinfection treatment | 1 | 3503.886 | 0.000 |
距离×处理 Distance×treatment | 2 | 20.059 | 0.000 |
8月August | |||
距离Distance | 2 | 36.792 | 0.000 |
消毒处理 Disinfection treatment | 1 | 1088.609 | 0.000 |
距离×处理 Distance×treatment | 2 | 1.042 | 0.357 |
9月 September | |||
距离Distance | 2 | 30.524 | 0.000 |
消毒处理 Disinfection treatment | 1 | 4568.495 | 0.000 |
距离×处理 Distance×treatment | 2 | 3.482 | 0.035 |
10月October | |||
距离Distance | 2 | 40.977 | 0.000 |
消毒处理 Disinfection treatment | 1 | 4391.647 | 0.000 |
距离×处理 Distance×treatment | 2 | 6.155 | 0.003 |
[1] | Adler FR, Muller-Landau HC (2005). When do localized natural enemies increase species richness? Ecology Letters, 8,438-447. |
[2] | Augspurger CK (1984). Seedling survival of tropical tree species: interactions of dispersal distance, light-gaps, and pathogens. Ecology, 65,1705-1712. |
[3] | Bekker RM, Bakker JP, Grandin U, Kalamees R, Milberg P, Poschold P, Thompson K, Willems JH (1998). Seed size, shape and vertical distribution in the soil: indicators of seed longevity. Functional Ecology, 12,834-842. |
[4] | Bell T, Freckleton RP, Lewis OT (2006). Plant pathogens drive density-dependent seedling mortality in a tropical tree. Ecology Letters, 9,569-574. |
[5] | Blate GM, Peart DR, Leighton M (1998). Post-dispersal predation on isolated seeds: a comparative study of 40 tree species in a southeast Asian rainforest. Oikos, 82,522-538. |
[6] | Brewer SW, Webb MAH (2001). Ignorant seed predators and factors affecting the seed survival of a tropical palm. Oikos, 93,32-41. |
[7] | Brown JS, Venable DL (1991). Life-history evolution of seed bank annuals in response to seed predation. Evolutionary Ecology, 5,12-29. |
[8] | Cheng JR (程瑾瑞), Zhang ZB (张知彬) (2005). Seed dispersal by rodents. Chinese Bulletin of Biology (生物学通报), 40,11-13. (in Chinese with English abstract) |
[9] | Clark DA, Clark DB (1981). Effects of seed dispersal by animals on the regeneration of Bursera graveolens (Burseraceae) on Santa Fe Island, Galapagos. Oecologia, 49,73-75. |
[10] | Clark DA, Clark DB (1984). Spacing dynamics of a tropical rain forest tree: evaluation of the Janzen-Connell model. American Naturalist, 124,769-788. |
[11] | Condit R, Hubbell SP, Foster SB (1992). Recruitment near conspecific adults and the maintenance of tree and shrub diversity in a neotropical forest. American Naturalist, 140,261-286. |
[12] | Connell JH (1971). On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In: den Boer PJ, Gradwell GReds. Dynamics of Populations. PUDOC, Wageningen,298-312. |
[13] | Crawley MJ (1992). Seed predators and plant population dynamics. In: Fenner Med. Seeds: the Ecology of Regeneration in Plant Communities. CAB International, London, UK,157-191. |
[14] | de Steven D, Putz FE (1984). Impact of mammals on early recruitment of a tropical canopy tree, Dipteryx panamensis, in Panama. Oikos, 43,207-216. |
[15] | Du YJ (杜彦君), Peng SJ (彭闪江), Xu GL (徐国良), Huang ZL (黄忠良) (2006). Analysis of seed death of Castanopsis chinensis in the dispersal process in Dinghushan Biosphere Reserve. Ecology and Environment (生态环境), 15,1284-1288. (in Chinese with English abstract) |
[16] | Feeny P (1976). Plant apparency and chemical defense. Recent Advances in Phytochemistry, 10,1-40. |
[17] | Fenner M (1983). Relationships between seed weight, ash content and seedling growth in twenty-four species of Compositae. New Phytologist, 95,697-706. |
[18] | Fisher RA, Corbet AS, Williams CB (1943). The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology, 12,42-58. |
[19] |
Forget P (1993). Post-dispersal predation and scatter hoarding of Dipteryx panamensis (Papilionaceae) seeds by rodents in Panama. Oecologia, 94,255-261.
DOI URL PMID |
[20] | Geritz SAH (1998). Co-evolution of seed size and seed predation. Evolutionary Ecology, 12,891-911. |
[21] | Grubb PJ, Metcalfe D, Grubb EA, Jones GD (1998). Nitrogen richness and protection of seeds in Australian tropical rainforest: a test of plant defense. Oikos, 82,467-482. |
[22] | Hammond DS, Brown VK (1998). Disturbance, Phenology, and Life-history Characteristics: Factors Influencing Distant/Density-dependent Attack on Tropical Seeds and Seedlings. Blackwell Science, Cambridge. |
[23] | Harper JL, Lovell PH, Moore KG (1970). The shapes and sizes of seeds. Annual Review of Ecology and Systematics, 1,327-356. |
[24] | Hoffmann LA, Redente EF, McEwen LC (1995). Effects of selective seed predation by rodents on shortgrass establishment. Ecological Applications, 5,200-208. |
[25] |
Howe HF (1989). Scatter- and clump-dispersal and seedling demography: hypothesis and implications. Oecologia, 79,417-426.
URL PMID |
[26] | Howe HF (1993). Aspects of variation in a neotropical seed dispersal system. Vegetatio, 108,149-162. |
[27] | Howe HF, Primack RB (1975). Differential seed dispersal by birds of the tree Casearia nitida (Flacourtiaceae). Biotropica, 7,278-283. |
[28] | Howe HF, Smallwood J (1982). Ecology of seed dispersal. Annual Review of Ecology and Systematics, 13,201-228. |
[29] | Hubbell SP (2001). The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press , New Jersey. |
[30] | Hulme PE (1993). Post-dispersal seed predation by small mammals. Symposium of the Zoological Society of London, 65,269-287. |
[31] | Hulme PE (1998). Post-dispersal seed predation: consequences for plant demography and evolution. Perspectives in Plant Ecology, Evolution and Systematics, 1,32-46. |
[32] | Huang ZL (黄忠良), Kong GH (孔国辉), Ye WH (叶万辉), Zhang QM (张倩媚), (1998). Long-term monitoring of the lower subtropical evergreen broad-leaved forest in Dinghushan Biosphere Reserve (II): population spatio-temporal pattern and its dynamic significance of Castanopsis chinensis, Cryptocarya concinna community. In: Dinghushan Forest Ecosystem Research Station, Chinese Academy of Sciences 中国科学院鼎湖山森林生态系统研究站 eds. Tropical and Subtropical Forest Ecosystem (热带亚热带森林生态系统研究). China Meteorological Press, Beijing,7-17. (in Chinese with English abstract) |
[33] |
Janzen DH (1969). Seed-eaters versus seed size, number, toxicity and dispersal. Evolution, 23,1-27.
DOI URL PMID |
[34] | Janzen DH (1970). Herbivores and the number of tree species in tropical forests. American Naturalist, 104,501-528. |
[35] | Janzen DH (1971). Escape of juvenile Dioclea megacarpa (Leguminosae) vines from predators in a deciduous tropical forest. American Naturalist, 105,97-112. |
[36] | Janzen DH (1976). Reduction of Mucuna andreana (Leguminosae) seedling fitness by artificial seed damage. Ecology, 57,826-828. |
[37] | Janzen DH (1981). Digestive seed predation by a Costa Rican bird's tapir. Reproductive Botany, 13,59-63. |
[38] | Kollmann J, Coomes DA, White SM (1998). Consistencies in post-dispersal seed predation of temperate flesh-fruited species among seasons, years and sites. Functional Ecology, 12,683-690. |
[39] | Lambert TD, Malcolm JR, Zimmerman BL (2005). Effects of mahogany (Swietenia macrophylla) logging on small mammal communities, habitat structure, and seed predation in the southeastern Amazon Basin. Forest Ecology and Management, 206,381-398. |
[40] | Laura AH, Rosenberg MS, Howard TG, Bole G, Fang W, Anastasia J, Brown K, Grella R, Hinman K, Kurdziel JP, Gurevitch J (2003). The distance dependence prediction of the Janzen-Connell hypothesis: a meta-analysis. Journal of Ecology, 103,590-602. |
[41] | Leigh Jr EG, Davidar P, Dick CW, Puyravaud JP, Terborgh J, Steege HT, Wright SJ (2004). Why do some tropical forests have so many species of trees? Biotropica, 36,447-473. |
[42] | Lima SL, Dill LM (1990). Behavioral decision made under the risk of predation: a review and prospect. Canadian Journal of Zoology, 68,619-640. |
[43] | Louda SM (1989). Predation in the dynamics of seed regeneration. In: Leck MA, Parker VT, Simpson RLeds. Ecology of Soil Seed Banks. Academic Press, London,25-51. |
[44] | Lu JQ (路纪琪), Zhang ZB (张知彬) (2004). Predation risk and its impact on animal foraging behavior. Chinese Journal of Ecology (生态学杂志), 23,66-72. (in Chinese with English abstract) |
[45] | Moles AT, Warton DI, Westoby M (2003). Do small-seeded species have higher survival through seed predation than large-seeded species? Ecology, 84,3148-3161. |
[46] | Morley RJ (2000). Origin and Evolution of Tropical Rain Forests. Wiley , New York. |
[47] |
Norghauer JM, Malcolm JR, Zimmerman BL, Felfili JM (2006). An experimental test of density- and distant-dependent recruitment of mahogany (Swietinia macrophylla) in Southeastern Amazonia. Oecologia, 148,437-446.
DOI URL PMID |
[48] |
O'Hanlon-Manners DL, Kotanen PM (2004). Evidence that fungal pathogens inhibit recruitment of a shade-intolerant tree, white birch (Betula papyrifera), in understory habitats. Oecologia, 140,650-653.
DOI URL PMID |
[49] | Peng SJ (彭闪江), Xu GL (徐国良) (2005). Seed traits of Castanopsis chinensis and its effects on seed predation patterns in Dinghushan Biosphere Reserve. Ecology and Environment (生态环境), 14,493-497. (in Chinese with English abstract) |
[50] | Peng SL, Wang BS (1995). Forest succession at Dinghushan, Guangdong, China. Chinese Journal of Botany, 7,75-80. |
[51] | Preston FW (1948). The commonness and rarity of species. Ecology, 29,254-283. |
[52] |
Salmonson MG (1978). Adaptations for animal dispersal of one-seed juniper seeds. Oecologia, 32,333-339.
URL PMID |
[53] | Schwantes B, Casper BB (1995). Differential post-dispersal seed predation in disturbed and intact temperature forest. American Midland Naturalist, 134,107-116. |
[54] | Silman MR, Terborgh JW, Kiltie RA (2003). Population regulation of a dominant rain forest tree by a major seed predator. Ecology, 84,431-438. |
[55] | Sun RY (孙儒泳) (2001). Principles of Animal Ecology (动物生态学原理) 3rd edn. Beijing Normal University Press, Beijing. (in Chinese) |
[56] | Terborgh J, Wright SJ (1994). Effects of mammalian herbivores on plant recruitment in two neotropical forests. Ecology, 75,1829-1833. |
[57] | Thompson K (1987). Seeds and seed banks. New Phytologist, 106,23-34. |
[58] |
Volkov I, Banavar JR, Hubbell SP, Maritan A (2003). Neutral theory and relative species abundance in ecology. Nature, 424,1035-1037.
DOI URL PMID |
[59] |
Volkov I, Banavar JR, He FL, Hubbell SP, Maritan A (2005). Density dependence explains tree species abundance and diversity in tropical forests. Nature, 438,658-661.
DOI URL PMID |
[60] | Wang W (王巍), Ma KP (马克平) (1999). Predation and dispersal of Quercus liaotungensis acorns by Chinese rock squirrel and Eurasian Jay. Acta Botanica Sinica (植物学报), 41,1142-1144. (in Chinese with English abstract) |
[61] | Wang ZH (王铸豪), He DQ (何道泉), Song SD (宋绍敦), Chen SP (陈树培), Chen DR (陈定如), Tu MZ (屠梦照) (1982). The vegetation of Dinghushan Biosphere Reserve. Tropical and Subtropical Forest Ecosystem Research (热带亚热带森林生态系统研究), 1,77-141. (in Chinese with English abstract) |
[62] | Wenny DG (2000). Seed dispersal, seed predation, and seedling recruitment of a neotropical montane tree. Ecological Monographs, 70,331-351. |
[63] |
Westoby M, Jurado E, Leishman M (1992). Comparative evolutionary ecology of seed size. Trends in Ecology and Evolution, 7,368-372.
DOI URL PMID |
[64] | Wilson DJ, Elaine F, Wright EF, Canham CD, Ruscoe WA (2007). Neighborhood analyses of tree seed predation by introduced rodents in a New Zealand temperate rainforest. Ecography, 30,105-119. |
[65] |
Wyatt JL, Silman MR (2004). Distance-dependence in two Amazonian Palms: effects of spatial and temporal variation in seed predator communities. Oecologia, 140,26-35.
DOI URL PMID |
[66] | Yang QH (杨期和), Ye WH (叶万辉), Zhang Y (张云), Liao FL (廖富林) (2005). Eco-physiological characteristics of germination and storage of Castanopsis chinensis seeds. Journal of Beijing Forestry University (北京林业大学学报), 27,92-95. (in Chinese with English abstract) |
[67] | Yin GC (尹光彩), Zhou GY (周国逸), Zhang DQ (张德强), Wang X (王旭), Chu GW (褚国伟), Liu Y (刘艳) (2005). Dynamics of total organic carbon (TOC) in hydrological processes in coniferous and broad-leaved mixed forest of Dinghushan. Chinese Journal of Applied Ecology (应用生态学报), 16,1655-1660. (in Chinese with English abstract) |
[1] | 张雪, 韩凤朋, 肖波, 沈思铭. 黄土高原生物结皮对地表粗糙度和灌草植物种子二次扩散的影响[J]. 植物生态学报, 2023, 47(12): 1668-1683. |
[2] | 董全民, 赵新全, 刘玉祯, 冯斌, 俞旸, 杨晓霞, 张春平, 曹铨, 刘文亭. 放牧方式影响高寒草地矮生嵩草种子大小与数量的关系[J]. 植物生态学报, 2022, 46(9): 1018-1026. |
[3] | 秦江环, 张春雨, 赵秀海. 基于温带针阔混交林植物-土壤反馈的Janzen- Connell假说检验[J]. 植物生态学报, 2022, 46(6): 624-631. |
[4] | 张敏, 朱教君, 闫巧玲. 光对种子萌发的影响机理研究进展[J]. 植物生态学报, 2012, 36(8): 899-908. |
[5] | 刘会良, 张永宽, 张道远, 尹林克, 张元明. 不同居群准噶尔无叶豆果实和种子特性及种子萌发差异[J]. 植物生态学报, 2012, 36(8): 802-811. |
[6] | 陈延松, 周守标, 欧祖兰, 徐忠东, 洪欣. 安徽万佛山自然保护区常见植物种子大小变异[J]. 植物生态学报, 2012, 36(8): 739-746. |
[7] | 刘文, 刘坤, 张春辉, 杜国祯. 种子萌发的积温效应——以青藏高原东缘的12种 菊科植物为例[J]. 植物生态学报, 2011, 35(7): 751-758. |
[8] | 王桔红, 杜国祯, 崔现亮, 郑秀芳, 齐威. 青藏高原东缘61种常见木本植物种子萌发特性及其与生活史的关联[J]. 植物生态学报, 2009, 33(1): 171-179. |
[9] | 王桔红, 崔现亮, 陈学林, 杜国祯. 中、旱生植物萌发特性及其与种子大小关系的比较[J]. 植物生态学报, 2007, 31(6): 1037-1045. |
[10] | 朱雅娟, 董鸣, 黄振英. 沙埋和种子大小对固沙禾草沙鞭的种子萌发与幼苗出土的影响[J]. 植物生态学报, 2005, 29(5): 730-739. |
[11] | 韩有志, 王政权. 天然次生林中水曲柳种子的扩散格局[J]. 植物生态学报, 2002, 26(1): 51-57. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19