植物生态学报 ›› 2009, Vol. 33 ›› Issue (1): 171-179.DOI: 10.3773/j.issn.1005-264x.2009.01.019
所属专题: 青藏高原植物生态学:种群生态学
王桔红1,2(), 杜国祯2,*(), 崔现亮2, 郑秀芳1, 齐威2
收稿日期:
2008-04-15
接受日期:
2008-08-12
出版日期:
2009-04-15
发布日期:
2009-01-30
通讯作者:
杜国祯
作者简介:
*E-mail: guozdu@lzu.edu.cn基金资助:
WANG Ju-Hong1,2(), DU Guo-Zhen2,*(), CUI Xian-Liang2, ZHENG Xiu-Fang1, QI Wei2
Received:
2008-04-15
Accepted:
2008-08-12
Online:
2009-04-15
Published:
2009-01-30
Contact:
DU Guo-Zhen
About author:
First author contact:E-mail of the first author: wjuh1918@yahoo.cn
摘要:
为了评价亚高山地带木本植物种子萌发对策及其与生活史关联, 该文对青藏高原东缘61种常见木本植物的种子萌发特征以及种子萌发与种子大小、扩散方式、海拔及生境的关系进行了调查分析。结果表明: 1) 61种植物的种子萌发率呈现偏斜、双峰分布。6种植物(9.8%)的种子萌发率大于80%, 13种(21.3%)的萌发率在60%~80%之间, 9种(14.8%)的萌发率在40%~60%之间, 8种(13.1%)的萌发率在20%~40%之间, 25种(41%)的萌发率小于20%, 其中8种植物的种子萌发率为零, 显示了该生境中木本植物的种子以休眠、低萌发率或连续稳定的萌发对策占优势, 以避免不利的环境因素。2)种子扩散方式是决定61种木本植物种间萌发率变异(R2 = 24.1%, p < 0.001) 和萌发开始时间变异(R 2= 21.3%, p < 0.01) 的主要因素; 种子大小、母体植株的海拔和生境对种子萌发率和萌发开始时间几乎没有影响(p > 0.05); 风扩散的种子比脊椎动物扩散和无助扩散的种子有更高的萌发率(F = 9.219, p < 0.001) 和较早的萌发开始时间(F = 6.772, p < 0.01)。说明植物生活史特征如种子萌发与扩散方式之间存在固有而紧密的联系, 扩散能力强的种子(如风扩散)由于能散布到较远而空旷的生境, 可能避免了各种有害因素或个体竞争, 因而种子以较强的萌发能力进行拓殖; 扩散能力弱的种子(如无助扩散)由于其散布距离较近, 种子以休眠或降低萌发的方式来避免个体或同胞竞争以及各种有害因素, 以获得最大的生态利益并确保物种延续。
王桔红, 杜国祯, 崔现亮, 郑秀芳, 齐威. 青藏高原东缘61种常见木本植物种子萌发特性及其与生活史的关联. 植物生态学报, 2009, 33(1): 171-179. DOI: 10.3773/j.issn.1005-264x.2009.01.019
WANG Ju-Hong, DU Guo-Zhen, CUI Xian-Liang, ZHENG Xiu-Fang, QI Wei. GERMINATION CHARACTERISTICS OF 61 COMMON WOODY SPECIES FROM THE EASTERN QINGHAI-TIBET PLATEAU OF CHINA AND THEIR LIFE HISTORY CORRELATES. Chinese Journal of Plant Ecology, 2009, 33(1): 171-179. DOI: 10.3773/j.issn.1005-264x.2009.01.019
物种 Species | 种子单粒重 Seed mass ± SE (mg) | 萌发率 Germination percentage± SE (% ) | 萌发开始时间 Initial germination time (d) | 扩散方式 Dispersal mode | 海拔 Altitude | 生境 Habitat |
---|---|---|---|---|---|---|
变色锦鸡儿Caragana versicolor | 9.107±0.121 | 93.3±6.5 | 4 | N | II | a |
弯耳鬼箭Caragana jubata var. recurva | 5.915±0.063 | 54.7±1 | 4 | N | III | a |
鬼箭锦鸡儿Caragana jubata var. jubata | 9.177±0.134 | 18.0±4 | 5 | N | III | b |
达乌里胡枝子Lespedeza daurica | 1.079±0.059 | 26.0±1.7 | 4 | N | I | a |
牛枝子Lespedeza potaninii | 3.051±0.060 | 8.0±2.2 | 8 | N | I | a |
华西箭竹Fargesia qinlingensis | 7.633±0.219 | 58.0±1.7 | 19 | N | II | b |
矮箭竹Fargesia demissa | 6.247±0.479 | 24.7±2.8 | 13 | N | I | b |
肋果沙棘Hippophae neurocarpa | 17.565±0.254 | 12.7±2.3 | 7 | V | III | a |
中国沙棘Hippophae rhamnoides | 9.473±0.206 | 76.0±0.8 | 6 | V | II | b |
西藏沙棘Hippophae thibetana | 13.474±0.430 | 26.0±7.1 | 9 | V | III | b |
尖叶茶藨子Ribes maximowiczianum | 2.489±0.007 | 0 | - | V | I | b |
长刺茶藨子Ribes alpestre | 3.062±0.145 | 20.7±2.1 | 42 | V | III | b |
冰川茶藨子Ribes glaciale | 3.084±0.214 | 56.7±3.7 | 22 | V | I | b |
山梅花Philadelphus incanus | 0.066±0.002 | 94.0±0 | 7 | W | II | b |
虎榛子Ostryopsis davidiana | 19.871±1.477 | 64.7±4.14 | 12 | V | I | b |
矮桦Betula potaninii | 0.254±0.005 | 2.67±0.74 | 13 | W | II | b |
坚桦Betula chinensis | 0.896±0.024 | 87.3±2.07 | 8 | W | III | b |
白桦Betula platyphylla | 0.222±0.024 | 2.0±0.8 | 11 | W | II | b |
臭椿Ailanthus altissima | 18.003±0.328 | 82.7±3.7 | 8 | W | I | a |
光果莸Caryopteris tangutica | 0.659±0.024 | 37.3±2.5 | 5 | W | II | a |
粗齿铁线莲Clematis grandidentata | 2.418±0.093 | 67.3±3.4 | 19 | W | I | b |
黄花铁线莲Clematis intricate | 1.422±0.059 | 54.0±1.3 | 9 | W | III | a |
短尾铁线莲Clematis brevicaudata | 1.255±0.028 | 65.3±2.0 | 4 | W | II | b |
紫丁香Syringa oblata | 8.759±0.107 | 58.0±2.2 | 13 | N | I | c |
暴马丁香Syringa reticulata | 10.226±0.156 | 67.3±1.6 | 13 | N | I | c |
尖叶白蜡树Fraxinus chinensis var. acuminata | 9.346±0.216 | 75.3±2.9 | 13 | W | I | c |
青麸杨Rhus potaninii | 9.725±0.100 | 1.3±1.4 | 58 | N | I | c |
漆树Toxicodendron vernicifluum | 21.519±0.699 | 10.7±2.9 | 42 | N | I | c |
毛山荆子Malus manshurica | 5.254±0.139 | 9.3±3.2 | 22 | V | II | b |
陇东海棠Malus kansuensis | 6.279±0.316 | 8.7±2.1 | 25 | V | II | b |
四川花楸Sorbus setschwanensis | 5.977±0.122 | 0 | - | V | II | b |
湖北花楸Sorbus hupehensis | 3.629±0.102 | 0 | - | V | I | b |
窄叶鲜卑花Sibiraea angustata | 0.115±0.016 | 99.3±3.6 | 4 | W | II | b |
高山绣线菊Spiraea alpina | 0.302±0.011 | 12.0±2.2 | 11 | W | III | d |
毛叶绣线菊Spiraea mollifolia | 0.103±0.001 | 76.0±2.6 | 7 | W | III | b |
南川绣线菊Spiraea rosthornii | 0.029±0.006 | 79.3±2.5 | 9 | W | III | b |
小叶蔷薇Rosa willottiae | 7.532±0.252 | 4.7±0.59 | 42 | V | II | b |
白毛金露梅Potentilla parvifolia var. hypoleuca | 0.657±0.047 | 81.3±6.3 | 6 | W | II | a |
小叶金露梅Potentilla parvifolia | 0.325±0.016 | 42.7±0.29 | 6 | W | II | b |
小叶忍冬Lonicera microphylla | 2.073±0.069 | 0.7±0.29 | 27 | V | III | a |
红花忍冬Lonicera rupicola var. syringantha | 0.734±0.004 | 2.0±0.8 | 25 | V | II | a |
物种 Species | 种子单粒重 Seed mass ± SE (mg) | 萌发率 Germination percentage± SE (% ) | 萌发开始时间 Initial germination time (d) | 扩散方式 Dispersal mode | 海拔 Altitude | 生境 Habitat |
刚毛忍冬Lonicera hispida | 1.895±0.090 | 0 | - | V | II | b |
华西忍冬Lonicera webbiana | 0.764±0.016 | 0 | - | V | II | b |
长叶毛花忍冬Lonicera trichsantha var. xerocalyx | 0.724±0.010 | 1.3±1.4 | 26 | V | II | a |
金花忍冬Lonicera chrysantha | 3.368±0.047 | 78.7±2.1 | 26 | V | II | b |
岩生忍冬Lonicera rupicola | 5.331±0.394 | 38.7±0.3 | 21 | V | III | b |
少毛鸡树条荚蒾Viburnum sargentii var. calvessens | 35.009±0.534 | 0 | - | V | I | b |
香荚蒾Viburnum farreri | 33.968±0.582 | 0 | - | V | I | b |
球花荚蒾Viburnum glomeratum | 22.119±0.495 | 0 | - | V | II | b |
黑桦树Rhamnus maximovicziana | 16.527±0.191 | 43.3±1.5 | 29 | V | I | b |
云杉Picea asperata | 4.749±0.231 | 74.0±1.7 | 9 | N | I | c |
青海云杉Picea crassifolia | 2.855±0.433 | 51.3±5.1 | 8 | N | III | b |
邹脉灰叶南蛇藤Celastyus galucophyllus var. rugosus | 9.677±0.264 | 2.7±0.6 | 38 | N | I | c |
锥花小檗Berberis aggregata | 2.911±0.033 | 28.7±2.0 | 13 | V | III | b |
匙叶小檗Berberis vernae | 4.153±0.109 | 76.7±5.0 | 11 | V | I | b |
甘肃小檗Berberis kansuensis | 9.616±0.232 | 4.7±1.1 | 17 | V | II | b |
鲜黄小檗Berberis diaphana | 8.659±0.146 | 75.3±1.6 | 11 | V | III | a |
置疑小檗Berberis dubia | 8.245±1.256 | 3.3±0.6 | 52 | V | II | a |
松潘小檗Berberis dictyoneura | 8.41±0.007 | 47.3±3.2 | 24 | V | II | b |
短柄小檗Berberis brachypoda | 7.909±0.07 | 21.3±1.0 | 28 | V | I | b |
山生柳Salix oritrepha | 0.143±0.004 | 70.7±6.8 | 6 | W | III | d |
表1 61种木本植物的种子大小、萌发率、萌发开始时间、扩散方式、母体植株的海拔及生境
Table 1 Seed mass, germination percentage, initial germination time, dispersal mode, maternal plant altitude and collection site
物种 Species | 种子单粒重 Seed mass ± SE (mg) | 萌发率 Germination percentage± SE (% ) | 萌发开始时间 Initial germination time (d) | 扩散方式 Dispersal mode | 海拔 Altitude | 生境 Habitat |
---|---|---|---|---|---|---|
变色锦鸡儿Caragana versicolor | 9.107±0.121 | 93.3±6.5 | 4 | N | II | a |
弯耳鬼箭Caragana jubata var. recurva | 5.915±0.063 | 54.7±1 | 4 | N | III | a |
鬼箭锦鸡儿Caragana jubata var. jubata | 9.177±0.134 | 18.0±4 | 5 | N | III | b |
达乌里胡枝子Lespedeza daurica | 1.079±0.059 | 26.0±1.7 | 4 | N | I | a |
牛枝子Lespedeza potaninii | 3.051±0.060 | 8.0±2.2 | 8 | N | I | a |
华西箭竹Fargesia qinlingensis | 7.633±0.219 | 58.0±1.7 | 19 | N | II | b |
矮箭竹Fargesia demissa | 6.247±0.479 | 24.7±2.8 | 13 | N | I | b |
肋果沙棘Hippophae neurocarpa | 17.565±0.254 | 12.7±2.3 | 7 | V | III | a |
中国沙棘Hippophae rhamnoides | 9.473±0.206 | 76.0±0.8 | 6 | V | II | b |
西藏沙棘Hippophae thibetana | 13.474±0.430 | 26.0±7.1 | 9 | V | III | b |
尖叶茶藨子Ribes maximowiczianum | 2.489±0.007 | 0 | - | V | I | b |
长刺茶藨子Ribes alpestre | 3.062±0.145 | 20.7±2.1 | 42 | V | III | b |
冰川茶藨子Ribes glaciale | 3.084±0.214 | 56.7±3.7 | 22 | V | I | b |
山梅花Philadelphus incanus | 0.066±0.002 | 94.0±0 | 7 | W | II | b |
虎榛子Ostryopsis davidiana | 19.871±1.477 | 64.7±4.14 | 12 | V | I | b |
矮桦Betula potaninii | 0.254±0.005 | 2.67±0.74 | 13 | W | II | b |
坚桦Betula chinensis | 0.896±0.024 | 87.3±2.07 | 8 | W | III | b |
白桦Betula platyphylla | 0.222±0.024 | 2.0±0.8 | 11 | W | II | b |
臭椿Ailanthus altissima | 18.003±0.328 | 82.7±3.7 | 8 | W | I | a |
光果莸Caryopteris tangutica | 0.659±0.024 | 37.3±2.5 | 5 | W | II | a |
粗齿铁线莲Clematis grandidentata | 2.418±0.093 | 67.3±3.4 | 19 | W | I | b |
黄花铁线莲Clematis intricate | 1.422±0.059 | 54.0±1.3 | 9 | W | III | a |
短尾铁线莲Clematis brevicaudata | 1.255±0.028 | 65.3±2.0 | 4 | W | II | b |
紫丁香Syringa oblata | 8.759±0.107 | 58.0±2.2 | 13 | N | I | c |
暴马丁香Syringa reticulata | 10.226±0.156 | 67.3±1.6 | 13 | N | I | c |
尖叶白蜡树Fraxinus chinensis var. acuminata | 9.346±0.216 | 75.3±2.9 | 13 | W | I | c |
青麸杨Rhus potaninii | 9.725±0.100 | 1.3±1.4 | 58 | N | I | c |
漆树Toxicodendron vernicifluum | 21.519±0.699 | 10.7±2.9 | 42 | N | I | c |
毛山荆子Malus manshurica | 5.254±0.139 | 9.3±3.2 | 22 | V | II | b |
陇东海棠Malus kansuensis | 6.279±0.316 | 8.7±2.1 | 25 | V | II | b |
四川花楸Sorbus setschwanensis | 5.977±0.122 | 0 | - | V | II | b |
湖北花楸Sorbus hupehensis | 3.629±0.102 | 0 | - | V | I | b |
窄叶鲜卑花Sibiraea angustata | 0.115±0.016 | 99.3±3.6 | 4 | W | II | b |
高山绣线菊Spiraea alpina | 0.302±0.011 | 12.0±2.2 | 11 | W | III | d |
毛叶绣线菊Spiraea mollifolia | 0.103±0.001 | 76.0±2.6 | 7 | W | III | b |
南川绣线菊Spiraea rosthornii | 0.029±0.006 | 79.3±2.5 | 9 | W | III | b |
小叶蔷薇Rosa willottiae | 7.532±0.252 | 4.7±0.59 | 42 | V | II | b |
白毛金露梅Potentilla parvifolia var. hypoleuca | 0.657±0.047 | 81.3±6.3 | 6 | W | II | a |
小叶金露梅Potentilla parvifolia | 0.325±0.016 | 42.7±0.29 | 6 | W | II | b |
小叶忍冬Lonicera microphylla | 2.073±0.069 | 0.7±0.29 | 27 | V | III | a |
红花忍冬Lonicera rupicola var. syringantha | 0.734±0.004 | 2.0±0.8 | 25 | V | II | a |
物种 Species | 种子单粒重 Seed mass ± SE (mg) | 萌发率 Germination percentage± SE (% ) | 萌发开始时间 Initial germination time (d) | 扩散方式 Dispersal mode | 海拔 Altitude | 生境 Habitat |
刚毛忍冬Lonicera hispida | 1.895±0.090 | 0 | - | V | II | b |
华西忍冬Lonicera webbiana | 0.764±0.016 | 0 | - | V | II | b |
长叶毛花忍冬Lonicera trichsantha var. xerocalyx | 0.724±0.010 | 1.3±1.4 | 26 | V | II | a |
金花忍冬Lonicera chrysantha | 3.368±0.047 | 78.7±2.1 | 26 | V | II | b |
岩生忍冬Lonicera rupicola | 5.331±0.394 | 38.7±0.3 | 21 | V | III | b |
少毛鸡树条荚蒾Viburnum sargentii var. calvessens | 35.009±0.534 | 0 | - | V | I | b |
香荚蒾Viburnum farreri | 33.968±0.582 | 0 | - | V | I | b |
球花荚蒾Viburnum glomeratum | 22.119±0.495 | 0 | - | V | II | b |
黑桦树Rhamnus maximovicziana | 16.527±0.191 | 43.3±1.5 | 29 | V | I | b |
云杉Picea asperata | 4.749±0.231 | 74.0±1.7 | 9 | N | I | c |
青海云杉Picea crassifolia | 2.855±0.433 | 51.3±5.1 | 8 | N | III | b |
邹脉灰叶南蛇藤Celastyus galucophyllus var. rugosus | 9.677±0.264 | 2.7±0.6 | 38 | N | I | c |
锥花小檗Berberis aggregata | 2.911±0.033 | 28.7±2.0 | 13 | V | III | b |
匙叶小檗Berberis vernae | 4.153±0.109 | 76.7±5.0 | 11 | V | I | b |
甘肃小檗Berberis kansuensis | 9.616±0.232 | 4.7±1.1 | 17 | V | II | b |
鲜黄小檗Berberis diaphana | 8.659±0.146 | 75.3±1.6 | 11 | V | III | a |
置疑小檗Berberis dubia | 8.245±1.256 | 3.3±0.6 | 52 | V | II | a |
松潘小檗Berberis dictyoneura | 8.41±0.007 | 47.3±3.2 | 24 | V | II | b |
短柄小檗Berberis brachypoda | 7.909±0.07 | 21.3±1.0 | 28 | V | I | b |
山生柳Salix oritrepha | 0.143±0.004 | 70.7±6.8 | 6 | W | III | d |
变量来源 Source of variation | 萌发率 Germination (%) | 萌发开始时间 Initial germination time (d) | ||||||
---|---|---|---|---|---|---|---|---|
df | F | Sig. | R2 | F | Sig. | R2 | ||
种子大小 Seed mass | 3 | 0.784 | ns | 0.040 | 2.340 | ns | 0.125 | |
扩散方式 Dispersal mode | 2 | 9.219 | *** | 0.241 | 6.772 | ** | 0.213 | |
海拔 Altitude | 2 | 0.269 | ns | 0.009 | 1.514 | ns | 0.057 | |
生境 Habitat | 3 | 0.034 | ns | 0.002 | 1.968 | ns | 0.108 |
表2 单因素方差分析显示种子大小、扩散方式、母体植株的海拔和生境对61种木本植物种子萌发率和萌发开始时间的影响
Table 2 Results of one-way ANOVAs showing effect of seed mass, dispersal mode, mother plant altitude and habitat on final germination percentage and initial germination time of 61 species
变量来源 Source of variation | 萌发率 Germination (%) | 萌发开始时间 Initial germination time (d) | ||||||
---|---|---|---|---|---|---|---|---|
df | F | Sig. | R2 | F | Sig. | R2 | ||
种子大小 Seed mass | 3 | 0.784 | ns | 0.040 | 2.340 | ns | 0.125 | |
扩散方式 Dispersal mode | 2 | 9.219 | *** | 0.241 | 6.772 | ** | 0.213 | |
海拔 Altitude | 2 | 0.269 | ns | 0.009 | 1.514 | ns | 0.057 | |
生境 Habitat | 3 | 0.034 | ns | 0.002 | 1.968 | ns | 0.108 |
图2 不同扩散方式的种子间平均萌发率(A)的差异以及萌发开始时间(B)的差异
Fig. 2 Difference in mean germination percentage (A) and mean initial germination time (B) between dispersal mode categories
[1] | Baskin CC, Baskin JM (1998). Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination. Academic Press, San Diego. |
[2] |
Bischoff A, Vonlanthen B, Steinger T, Müller-Schärer H (2005). Seed provenance matters—Effects on germination of four plant species used for ecological restoration. Basic and Applied Ecology, 7, 1-13.
DOI URL |
[3] | Bu HY (卜海燕), Ren QJ (任青吉), Xiu XL (徐秀丽), Liu K (刘坤), Jia P (贾鹏), Wen SJ (文淑均), Sun DS (孙大帅), Du GZ (杜国祯)(2006). Seed germination characteristics of 54 gramineous species in the Alpine Meadow on the Eastern Qinghai-Tibetan Plateau. Journal of Plant Ecology (Chinese Version) (植物生态学报), 30, 624-632. (in Chinese with English abstract) |
[4] |
Bu HY, Chen XL, Xu XL, Liu K, Wen SJ, Du GZ (2007). Community-wide germination strategies in an alpine meadow on the eastern Qinghai-Tibet Plateau: phylogenetic and life-history correlates. Plant Ecology, 191, 127-149.
DOI URL |
[5] |
Cavieres LA, Arroyo TK (2000). Seed germination response to cold stratification period and thermal regime in Phacelia secunda(Hydrophyllaceae). Plant Ecology, 149, 1-8.
DOI URL |
[6] | Chen ZH (陈章和), Peng JF (彭姣凤), Zhang DM (张德明), Zhao JG (赵建刚) (2002). Seed germination and storage of woody species in the lower subtropical forest. Acta Botanica Sinica (植物学报), 44, 1469-1476. (in Chinese with English abstract) |
[7] |
Cheplick GP (1993). Sibling competition is a consequence of restricted dispersal in an annual cleistogamous grass. Ecology, 74, 2161-2164.
DOI URL |
[8] |
Donohue K, Dorn L, Griffith C, Kim E, Aguilera A, Polisetty CR, Schmitt J (2005). The evolutionary ecology of seed germination of Arabidopsis thaliana: variable natural selection on germination timing. Evolution, 59, 758-770.
URL PMID |
[9] | Fan BL (樊宝丽), Meng JL (孟金柳), Zhao ZG (赵志刚), Du GZ (杜国祯) (2008). Influence of altitude on reproductive traits and resource allocation of species of Ranunculaceae at east Qinghai Tibetan Plateau. Acta Botanica Boreali-Occidentalia Sinica (西北植物学报), 28, 805-811. (in Chinese with English abstract) |
[10] | Fenner M, Thompson K (2005). The Ecology of Seeds. Cambridge University Press, Cambridge. |
[11] |
Figueroa JA (2003). Seed germination in temperate rain forest species of southern Chile: chilling and gap-dependency germination. Plant Ecology, 166, 227-240.
DOI URL |
[12] |
Foster SA, Janson CH (1985). The relationship between seed mass and establishment conditions in tropical woody plants. Ecology, 66, 773-780.
DOI URL |
[13] |
Garwood NC (1983). Seed germination in a seasonal tropical forest in panama: a community study. Ecological Monographs, 53, 159-181.
DOI URL |
[14] |
Greenberg CH, Smith LM, Levey DJ (2001). Fruit fate, seed germination and growth of an invasive vine—An experimental test of ‘sit and wait’ strategy. Biological Invasions, 3, 363-372.
DOI URL |
[15] |
Gross KL, Smith AD (1991). Seed mass and emergence time effects on performance of Panicum dichotomiflorum Michx. across environments. Oecologia, 87, 270-278.
DOI URL PMID |
[16] |
Guo QF, Brown JH, Valone TJ, Kachman SD (2000). Constraints of seed mass on plans distribution and abundance. Ecology, 81, 2149-2155.
DOI URL |
[17] |
Gutterman Y (2000). Environmental factors and survival strategies of annual plant species in the Negev desert, Israel. Plant Species Biology, 15, 113-125.
DOI URL |
[18] | Huang ZY (黄振英), Gutterman Y, Hu ZH (胡正海) (2000). Seed dispersal and germination in desert plant. In: Li CS (李承森) ed. Progress of Plant Science (植物科学进展). Higher Education Press, Beijing, 169-178. (in Chinese) |
[19] | Liu ZM (刘志民), Li XH (李雪华), Li RP (李荣平), Jiang DM (蒋德明), Cao CY (曹成有), Chang XL (常学礼) (2004). A comparative study of seed germination for 31 annual species of the Horqin Steppe. Acta Ecologica Sinica (生态学报), 24, 648-653. (in Chinese with English abstract) |
[20] |
Janzen DH (1970). Herbivores and the number of tree species in tropical forests. The American Naturalist, 104, 501-528.
DOI URL |
[21] |
Leishman MR (2001). Does the seed mass/number trade-off model determine plant community structure? An assessment of model mechanisms and their generality. Oikos, 93, 294-302.
DOI URL |
[22] |
Leishman MR, Westoby M, Jurado E (1995). Correlates of seed mass variation: a comparison among five temperate floras. Journal of Ecology, 83, 517-529.
DOI URL |
[23] |
Lord JM, Westoby M, Leishman M (1995). Seed size and phylogeny in six temperature floras: constrains, niche conservatism, and adaptation. The American Naturalist, 146, 349-364.
DOI URL |
[24] | LuoSang LZDJ (洛桑·灵智多杰) (2004). Study of Gannan Ecological-Economy Demonstration District of Tibetan Plateau (青藏高原甘南生态经济示范区研究). Gansu Science and Technology Press, Lanzhou, 8-13. (in Chinese) |
[25] |
Mariko S, Koizumi H, Suzuki J, Furukawal A (1993). Altitudinal variations in germination and growth responses of Reynoutria japonica populations on Mt. Fuji to a controlled thermal environment. Ecological Research, 8, 27-34.
DOI URL |
[26] |
Meyer SE, Monsen SB (1991). Habitat-correlated variation in mountain big sagebrush ( Artemisia tridentata ssp. vaseyana) seed germination patterns. Ecology, 72, 739-742.
DOI URL |
[27] |
Meyer SE, Kitchen SG (1994). Habitat-correlated variation in seed germination response to chilling in Penstemon Section Glabri(Scrophulariaceae). American Midland Naturalist, 132, 349-365.
DOI URL |
[28] |
Miller T (1987). Effects of emergence time on survival and growth in an early old-field plant community. Oecologia, 72, 272-278.
DOI URL PMID |
[29] |
Paz H, Susan JM, Martinez-Ramos M (1999). Seed mass, seedling emergence, and environmental factors in seven rain forest Psychotria(Rubiaceae). Ecology, 80, 1594-1606.
DOI URL |
[30] |
Sautu A, Baskin JM, Baskin CC, Condit R (2006). Studies on the seed biology of 100 native species of trees in a seasonal moist tropical forest, Panama, Central America. Forest Ecology and Management, 234, 245-263.
DOI URL |
[31] |
Shipley B, Parent M (1991). Germination responses of 64 wetland species in relation to seed mass, minimum time to reproduction and seedling relative growth rate. Functional Ecology, 5, 111-118.
DOI URL |
[32] | Thompson PA (1975). Characterization of the germination responses of Silene dioica(L.) Clairv. populations from Europe. Annual of Botany, 39, 1-19. |
[33] |
Venable DL (1985). The evolutionary ecology of seed heteromorphism. The American Naturalist, 126, 577-595.
DOI URL |
[34] | Wang JH (王桔红), Cui XL (崔现亮), Chen XL (陈学林), Du GZ (杜国祯)(2007). Comparative study of seed germination, seed size and their relationships in Mesad and Siccocolous. Journal of Plant Ecology (Chinese Version) (植物生态学报), 31, 1037-1045. (in Chinese with English abstract) |
[35] | Wang ZL (王宗灵), Xu YQ (徐雨清), Wang G (王刚) (1998). Germination strategies of annual sandy plants under limited precipitation. Journal of Lanzhou University (Natural Sciences Edition) (兰州大学学报(自然科学版)), 34, 98-103. (in Chinese with English abstract) |
[36] | Willson MF, Traveset A (2000). The ecology of seed dispersal. In: Fenner M ed. Seed—The Ecology of Regeneration in Plant Community 2nd edn. CABI Publishing, New York, 26-103. |
[1] | 李文博 孙龙 娄虎 于澄 韩宇 胡同欣. 火干扰对兴安落叶松种子萌发的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 袁涵 钟爱文 刘送平 徐磊 彭焱松. 水毛花种子萌发特性的差异及休眠解除方法[J]. 植物生态学报, 2024, 48(5): 638-650. |
[3] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[4] | 师生波, 周党卫, 李天才, 德科加, 杲秀珍, 马家麟, 孙涛, 王方琳. 青藏高原高山嵩草光合功能对模拟夜间低温的响应[J]. 植物生态学报, 2023, 47(3): 361-373. |
[5] | 师生波, 师瑞, 周党卫, 张雯. 低温对高山嵩草叶片光化学和非光化学能量耗散特征的影响[J]. 植物生态学报, 2023, 47(10): 1441-1452. |
[6] | 林马震, 黄勇, 李洋, 孙建. 高寒草地植物生存策略地理分布特征及其影响因素[J]. 植物生态学报, 2023, 47(1): 41-50. |
[7] | 朱玉英, 张华敏, 丁明军, 余紫萍. 青藏高原植被绿度变化及其对干湿变化的响应[J]. 植物生态学报, 2023, 47(1): 51-64. |
[8] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[9] | 董全民, 赵新全, 刘玉祯, 冯斌, 俞旸, 杨晓霞, 张春平, 曹铨, 刘文亭. 放牧方式影响高寒草地矮生嵩草种子大小与数量的关系[J]. 植物生态学报, 2022, 46(9): 1018-1026. |
[10] | 金伊丽, 王皓言, 魏临风, 侯颖, 胡景, 吴铠, 夏昊钧, 夏洁, 周伯睿, 李凯, 倪健. 青藏高原植物群落样方数据集[J]. 植物生态学报, 2022, 46(7): 846-854. |
[11] | 卢晶, 马宗祺, 高鹏斐, 樊宝丽, 孙坤. 祁连山区演替先锋物种西藏沙棘的种群结构及动态对海拔梯度的响应[J]. 植物生态学报, 2022, 46(5): 569-579. |
[12] | 胡潇飞, 魏临风, 程琦, 吴星麒, 倪健. 青藏高原地区气候图解数据集[J]. 植物生态学报, 2022, 46(4): 484-492. |
[13] | 吴赞, 彭云峰, 杨贵彪, 李秦鲁, 刘洋, 马黎华, 杨元合, 蒋先军. 青藏高原高寒草地退化对土壤及微生物化学计量特征的影响[J]. 植物生态学报, 2022, 46(4): 461-472. |
[14] | 马艳泽, 杨熙来, 徐彦森, 冯兆忠. 四种常见树木叶片光合模型关键参数对臭氧浓度升高的响应[J]. 植物生态学报, 2022, 46(3): 321-329. |
[15] | 熊映杰, 于果, 魏凯璐, 彭娟, 耿鸿儒, 杨冬梅, 彭国全. 天童山阔叶木本植物叶片大小与叶脉密度及单位叶脉长度细胞壁干质量的关系[J]. 植物生态学报, 2022, 46(2): 136-147. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19