植物生态学报 ›› 2024, Vol. 48 ›› Issue (5): 638-650.DOI: 10.17521/cjpe.2022.0523 cstr: 32100.14.cjpe.2022.0523
袁涵1,2, 钟爱文1,2,*(), 刘送平1, 彭焱松1, 徐磊1
收稿日期:
2022-12-31
接受日期:
2023-10-07
出版日期:
2024-05-20
发布日期:
2024-01-22
通讯作者:
(基金资助:
YUAN Han1,2, ZHONG Ai-Wen1,2,*(), LIU Song-Ping1, PENG Yan-Song1, XU Lei1
Received:
2022-12-31
Accepted:
2023-10-07
Online:
2024-05-20
Published:
2024-01-22
Contact:
(Supported by:
摘要:
水毛花(Schoenoplectiella triangulata)是一种广泛应用于湿地植被恢复中的挺水植物, 探究不同地区水毛花种群种子的萌发特性与休眠特性对其种质收集和科学利用至关重要。该研究测定了水毛花种子形态特性、萌发特性的种群间差异, 并对其休眠机制进行探索, 结果显示: (1)水毛花的种子存在生理休眠, 其形态、千粒质量和吸水特性在种群间存在显著差异。(2)光照和变温条件有助于水毛花种子的萌发。(3)低温沙藏、低温水藏和常温沙藏有助于水毛花种子休眠的解除; 氟啶酮和赤霉素处理均有助于打破水毛花种子的休眠, 但在不同地区水毛花种群间存在差异。(4)不同地区水毛花种群间种子形态特性、萌发特性以及休眠特性的差异与采集地的环境因子相关。该研究结果表明水毛花种子应用于湿地生态修复时应考虑种源的问题, 在播种前对其进行适当处理可以提高发芽率和生态修复成效。
袁涵, 钟爱文, 刘送平, 彭焱松, 徐磊. 水毛花种子萌发特性的差异及休眠解除方法. 植物生态学报, 2024, 48(5): 638-650. DOI: 10.17521/cjpe.2022.0523
YUAN Han, ZHONG Ai-Wen, LIU Song-Ping, PENG Yan-Song, XU Lei. Differences in the germination characteristics of Schoenoplectiella triangulata seeds and methods for breaking seed dormancy. Chinese Journal of Plant Ecology, 2024, 48(5): 638-650. DOI: 10.17521/cjpe.2022.0523
原生地 Site of collection | 种群编号 Population ID | 位置 Location | 经纬度 Latitude and longitude | 年平均气温 Mean annual air temperature (℃) | 年降水量 Annual precipitation (mm) |
---|---|---|---|---|---|
海南 Hainan | HN1 | 海口昌旺 Changwang, Haikou | 19.80° N, 110.25° E | 25.4 | 1 639 |
HN2 | 海口羊山 Yangshan, Haikou | 19.94° N, 110.31° E | 25.4 | 1 639 | |
贵州 Guizhou | GZ1 | 草海 Caohai | 26.89° N, 104.23° E | 10.5 | 950 |
GZ2 | 草海 Caohai | 26.99° N, 104.24° E | 10.5 | 950 | |
江西 Jiangxi | JX | 上饶余干 Yugan, Shangrao | 28.91° N, 116.49° E | 19.0 | 1 700 |
表1 水毛花种源地信息
Table 1 Provenance site information of Schoenoplectiella triangulata
原生地 Site of collection | 种群编号 Population ID | 位置 Location | 经纬度 Latitude and longitude | 年平均气温 Mean annual air temperature (℃) | 年降水量 Annual precipitation (mm) |
---|---|---|---|---|---|
海南 Hainan | HN1 | 海口昌旺 Changwang, Haikou | 19.80° N, 110.25° E | 25.4 | 1 639 |
HN2 | 海口羊山 Yangshan, Haikou | 19.94° N, 110.31° E | 25.4 | 1 639 | |
贵州 Guizhou | GZ1 | 草海 Caohai | 26.89° N, 104.23° E | 10.5 | 950 |
GZ2 | 草海 Caohai | 26.99° N, 104.24° E | 10.5 | 950 | |
江西 Jiangxi | JX | 上饶余干 Yugan, Shangrao | 28.91° N, 116.49° E | 19.0 | 1 700 |
种群编号 Population ID | 长 Length (mm) | 宽 Width (mm) | 高 Height (mm) | 千粒质量 Thousand grain mass (g) |
---|---|---|---|---|
HN1 | 2.12 ± 0.12a | 1.57 ± 0.11a | 0.81 ± 0.08b | 1.24 ± 0.03a |
HN2 | 1.94 ± 0.11b | 1.47 ± 0.09b | 0.71 ± 0.07d | 0.85 ± 0.02d |
GZ1 | 1.89 ± 0.16c | 1.44 ± 0.09c | 0.75 ± 0.06c | 1.04 ± 0.06bc |
GZ2 | 1.86 ± 0.11c | 1.23 ± 0.14d | 0.63 ± 0.09e | 0.99 ± 0.03c |
JX | 1.84 ± 0.24c | 1.48 ± 0.10b | 0.86 ± 0.09a | 1.04 ± 0.03b |
表2 水毛花种子形态和千粒质量的种群间差异 (平均值±标准误)
Table 2 Differences in the morphology and 1 000-grain mass of Schoenoplectiella triangulata seeds among populations (mean ± SE)
种群编号 Population ID | 长 Length (mm) | 宽 Width (mm) | 高 Height (mm) | 千粒质量 Thousand grain mass (g) |
---|---|---|---|---|
HN1 | 2.12 ± 0.12a | 1.57 ± 0.11a | 0.81 ± 0.08b | 1.24 ± 0.03a |
HN2 | 1.94 ± 0.11b | 1.47 ± 0.09b | 0.71 ± 0.07d | 0.85 ± 0.02d |
GZ1 | 1.89 ± 0.16c | 1.44 ± 0.09c | 0.75 ± 0.06c | 1.04 ± 0.06bc |
GZ2 | 1.86 ± 0.11c | 1.23 ± 0.14d | 0.63 ± 0.09e | 0.99 ± 0.03c |
JX | 1.84 ± 0.24c | 1.48 ± 0.10b | 0.86 ± 0.09a | 1.04 ± 0.03b |
图2 不同地区种群水毛花种子吸水率和吸水速率变化(平均值±标准误)。不同小写字母表示差异显著(p < 0.05)。HN1, 海口昌旺种群; HN2, 海口羊山种群; GZ1、GZ2, 贵州草海不同种群; JX, 上饶余干种群。
Fig. 2 Water uptake percentage and water uptake rate of Schoenoplectiella triangulata seeds from different populations (mean ± SE). Different lowercase letters indicate significant differences (p < 0.05). HN1, Changwang population in Haikou; HN2, Yangshan population in Haikou; GZ1 and GZ2, different populations in Caohai, Guizhou; JX, Yugan population in Shangrao.
温度 Temperature (℃) | 光照条件 Light condition | 发芽率 Germination percentage (%) | ||||
---|---|---|---|---|---|---|
HN1 | HN2 | JX | GZ1 | GZ2 | ||
15/10 | 光照 Light | 8.50 ± 1.50Ba | 9.50 ± 2.50Ca | 0 ± 0Ba | 0 ± 0Ba | 0 ± 0Aa |
黑暗 Dark | 0 ± 0Ab | 0 ± 0Ab | 0 ± 0Aa | 0 ± 0Aa | 0 ± 0Aa | |
20/15 | 光照 Light | 32.50 ± 5.50Aa | 53.00 ± 8.50Aa | 6.00 ± 5.00Aa | 1.50 ± 0.50Ba | 0 ± 0Aa |
黑暗 Dark | 0 ± 0Ab | 1.00 ± 0.50Ab | 0 ± 0Ab | 0 ± 0Aa | 0 ± 0Aa | |
25/20 | 光照 Light | 7.75 ± 3.25Ba | 22.00 ± 4.00Ba | 10.0 ± 8.00Aa | 9.00 ± 1.00Aa | 0 ± 0Aa |
黑暗 Dark | 0 ± 0Ab | 0 ± 0Ab | 0.50 ± 0.25Ab | 0 ± 0Ab | 0 ± 0Aa | |
30/25 | 光照 Light | 3.50 ± 2.50Ca | 3.50 ± 4.50Da | 2.00 ± 1.50Ba | 7.50 ± 4.50Aa | 0 ± 0Aa |
黑暗 Dark | 0 ± 0Ab | 0 ± 0Aa | 0.50 ± 0.50Aa | 0.50 ± 0.50Ab | 0 ± 0Aa | |
35/30 | 光照 Light | 0 ± 0Ca | 3.50 ± 2.50Da | 0.75 ± 0.50Ba | 1.00 ± 0.50Ba | 0.75 ± 0.50Aa |
黑暗 Dark | 0 ± 0Aa | 0 ± 0Aa | 0 ± 0Aa | 0 ± 0Aa | 0 ± 0Aa | |
15 | 光照 Light | 0 ± 0Ca | 1.50 ± 1.25Da | 0 ± 0Ba | 0 ± 0Ba | 0 ± 0Aa |
黑暗 Dark | 0 ± 0Aa | 0 ± 0Aa | 0 ± 0Aa | 0 ± 0Aa | 0 ± 0Aa | |
20 | 光照 Light | 1.75 ± 0.75Ca | 2.75 ± 1.25Da | 0.75 ± 0.50Ba | 0.50 ± 0.50Ba | 0 ± 0Aa |
黑暗 Dark | 0 ± 0Aa | 0 ± 0Aa | 0 ± 0Aa | 0 ± 0Aa | 0 ± 0Aa | |
25 | 光照 Light | 2.50 ± 1.00Ca | 0.50 ± 1.00Da | 0.50 ± 1.00Ba | 0.25 ± 0.50Ba | 0 ± 0Aa |
黑暗 Dark | 0 ± 0Aa | 0 ± 0Aa | 0 ± 0Aa | 0 ± 0Aa | 0 ± 0Aa | |
30 | 光照 Light | 0 ± 0Ca | 0 ± 0Da | 0 ± 0Ba | 0 ± 0Ba | 0.25 ± 0.50Aa |
黑暗 Dark | 0 ± 0Aa | 0 ± 0Aa | 0 ± 0Aa | 0 ± 0Aa | 0 ± 0Aa |
表3 不同温度及光照条件对水毛花种子萌发的影响 (平均值±标准误)
Table 3 Effects of different light and temperature conditions on the germination of Schoenoplectiella triangulate seeds (mean ± SE)
温度 Temperature (℃) | 光照条件 Light condition | 发芽率 Germination percentage (%) | ||||
---|---|---|---|---|---|---|
HN1 | HN2 | JX | GZ1 | GZ2 | ||
15/10 | 光照 Light | 8.50 ± 1.50Ba | 9.50 ± 2.50Ca | 0 ± 0Ba | 0 ± 0Ba | 0 ± 0Aa |
黑暗 Dark | 0 ± 0Ab | 0 ± 0Ab | 0 ± 0Aa | 0 ± 0Aa | 0 ± 0Aa | |
20/15 | 光照 Light | 32.50 ± 5.50Aa | 53.00 ± 8.50Aa | 6.00 ± 5.00Aa | 1.50 ± 0.50Ba | 0 ± 0Aa |
黑暗 Dark | 0 ± 0Ab | 1.00 ± 0.50Ab | 0 ± 0Ab | 0 ± 0Aa | 0 ± 0Aa | |
25/20 | 光照 Light | 7.75 ± 3.25Ba | 22.00 ± 4.00Ba | 10.0 ± 8.00Aa | 9.00 ± 1.00Aa | 0 ± 0Aa |
黑暗 Dark | 0 ± 0Ab | 0 ± 0Ab | 0.50 ± 0.25Ab | 0 ± 0Ab | 0 ± 0Aa | |
30/25 | 光照 Light | 3.50 ± 2.50Ca | 3.50 ± 4.50Da | 2.00 ± 1.50Ba | 7.50 ± 4.50Aa | 0 ± 0Aa |
黑暗 Dark | 0 ± 0Ab | 0 ± 0Aa | 0.50 ± 0.50Aa | 0.50 ± 0.50Ab | 0 ± 0Aa | |
35/30 | 光照 Light | 0 ± 0Ca | 3.50 ± 2.50Da | 0.75 ± 0.50Ba | 1.00 ± 0.50Ba | 0.75 ± 0.50Aa |
黑暗 Dark | 0 ± 0Aa | 0 ± 0Aa | 0 ± 0Aa | 0 ± 0Aa | 0 ± 0Aa | |
15 | 光照 Light | 0 ± 0Ca | 1.50 ± 1.25Da | 0 ± 0Ba | 0 ± 0Ba | 0 ± 0Aa |
黑暗 Dark | 0 ± 0Aa | 0 ± 0Aa | 0 ± 0Aa | 0 ± 0Aa | 0 ± 0Aa | |
20 | 光照 Light | 1.75 ± 0.75Ca | 2.75 ± 1.25Da | 0.75 ± 0.50Ba | 0.50 ± 0.50Ba | 0 ± 0Aa |
黑暗 Dark | 0 ± 0Aa | 0 ± 0Aa | 0 ± 0Aa | 0 ± 0Aa | 0 ± 0Aa | |
25 | 光照 Light | 2.50 ± 1.00Ca | 0.50 ± 1.00Da | 0.50 ± 1.00Ba | 0.25 ± 0.50Ba | 0 ± 0Aa |
黑暗 Dark | 0 ± 0Aa | 0 ± 0Aa | 0 ± 0Aa | 0 ± 0Aa | 0 ± 0Aa | |
30 | 光照 Light | 0 ± 0Ca | 0 ± 0Da | 0 ± 0Ba | 0 ± 0Ba | 0.25 ± 0.50Aa |
黑暗 Dark | 0 ± 0Aa | 0 ± 0Aa | 0 ± 0Aa | 0 ± 0Aa | 0 ± 0Aa |
图3 不同温度条件下水毛花种子萌发动态(平均值±标准误)。不同小写字母表示不同种群间差异显著(p < 0.05)。HN1, 海口昌旺种群; HN2, 海口羊山种群; GZ1、GZ2, 贵州草海不同种群; JX, 上饶余干种群。
Fig. 3 Germination dynamics of Schoenoplectiella triangulate seeds under different temperature conditions (mean ± SE). Different lowercase letters indicate significant differences among different populations (p < 0.05). HN1, Changwang population in Haikou; HN2, Yangshan population in Haikou; GZ1 and GZ2, different populations in Caohai, Guizhou; JX, Yugan population in Shangrao.
因子 Factor | Wald’s χ2 | df | p | 因子 Factor | Wald’s χ2 | df | p |
---|---|---|---|---|---|---|---|
种群 Population (P) | 664.030 | 4 | <0.001 | M × Te | 88.044 | 2 | <0.001 |
存储方式 Storage manner (M) | 190.189 | 2 | <0.001 | M × Ti | 170.335 | 6 | <0.001 |
存储温度 Storage temperature (Te) | 142.543 | 1 | <0.001 | Ti × Te | 58.457 | 3 | <0.001 |
存储时间 Storage time (Ti) | 515.916 | 3 | <0.001 | P × M × Te | 107.331 | 8 | <0.001 |
P × M | 193.495 | 8 | <0.001 | P × M × Ti | 165.427 | 24 | <0.001 |
P × Te | 139.538 | 4 | <0.001 | P × Ti × Te | 109.271 | 12 | <0.001 |
P × Ti | 553.715 | 12 | <0.001 | M × Ti × Te | 65.653 | 6 | <0.001 |
表4 基于广义线性分析的种群、存储方式、存储时间、存储温度及其交互作用对水毛花种子萌发的影响
Table 4 Effects of population, storage manner, storage time, storage temperature and their interaction on the germination of Schoenoplectiella triangulate seeds based on generalized linear analysis
因子 Factor | Wald’s χ2 | df | p | 因子 Factor | Wald’s χ2 | df | p |
---|---|---|---|---|---|---|---|
种群 Population (P) | 664.030 | 4 | <0.001 | M × Te | 88.044 | 2 | <0.001 |
存储方式 Storage manner (M) | 190.189 | 2 | <0.001 | M × Ti | 170.335 | 6 | <0.001 |
存储温度 Storage temperature (Te) | 142.543 | 1 | <0.001 | Ti × Te | 58.457 | 3 | <0.001 |
存储时间 Storage time (Ti) | 515.916 | 3 | <0.001 | P × M × Te | 107.331 | 8 | <0.001 |
P × M | 193.495 | 8 | <0.001 | P × M × Ti | 165.427 | 24 | <0.001 |
P × Te | 139.538 | 4 | <0.001 | P × Ti × Te | 109.271 | 12 | <0.001 |
P × Ti | 553.715 | 12 | <0.001 | M × Ti × Te | 65.653 | 6 | <0.001 |
图4 存储条件对水毛花种子的累积发芽率的影响。A, 海口昌旺种群。B, 海口羊山种群。C、D, 贵州草海不同种群。E, 上饶余干种群。
Fig. 4 Effects of storage conditions on the cumulative germination percentage of Schoenoplectiella triangulate seeds. A, Changwang population in Haikou. B, Yangshan population in Haikou. C, D, Different populations in Caohai, Guizhou. E, Yugan population in Shangrao.
图5 存储时间对水毛花种子发芽率的影响(平均值±标准误)。A, 冷沙。B, 冷水。C, 冷干。D, 常沙。E, 常水。F, 常干。不同小写字母表示不同存储时间间差异显著(p < 0.05)。HN1, 海口昌旺种群; HN2, 海口羊山种群; GZ1、GZ2, 贵州草海不同种群; JX, 上饶余干种群。
Fig. 5 Effects of storage time on the germination percentage of Schoenoplectiella triangulate seeds (mean ± SE). A, Low temperature plus sand reservoir. B, Low temperature plus water reservoir. C, Low temperature plus dry reservoir. D, Normal temperature plus sand reservoir. E, Normal temperature plus water reservoir. F, Normal temperature plus dry reservoir. Different lowercase letters indicate significant differences among different storage time (p < 0.05). HN1, Changwang population in Haikou; HN2, Yangshan population in Haikou; GZ1 and GZ2, different populations in Caohai, Guizhou; JX, Yugan population in Shangrao.
图6 氟啶酮(FL)对水毛花种子萌发的影响(平均值±标准误)。 A, 发芽率。B, 萌发指数。C, 萌发时滞。D, 幼苗形态, 从左到右依次为FL处理JX种子萌发后第2、4、5、6、7、9、11、14天幼苗形态。不同小写字母表示不同处理间差异显著(p < 0.05)。HN1, 海口昌旺种群; HN2, 海口羊山种群; GZ1、GZ2, 贵州草海不同种群; JX, 上饶余干种群。CK, 对照。
Fig. 6 Effects of fluridone (FL) on the germination of Schoenoplectiella triangulate seeds (mean ± SE). A, Germination percentage. B, Germination index. C, Germination time-lag. D, Seedling morphology (from left to right, on day 2, 4, 5, 6, 7, 9, 11 and 14 after JX seeds treated by FL germinated). Different lowercase letters indicate significant differences between different treatments (p < 0.05). HN1, Changwang population in Haikou; HN2, Yangshan population in Haikou; GZ1 and GZ2, different populations in Caohai, Guizhou; JX, Yugan population in Shangrao. CK, control.
图7 赤霉素(GA3)对水毛花种子萌发的影响(平均值±标准误)。A, 发芽率。B, 萌发指数。C, 萌发时滞。D, 幼苗形态, 从左到右依次为JX种子萌发后第2、4、6、8、10、12天幼苗形态。不同小写字母表示不同处理间差异显著(p < 0.05)。HN1, 海口昌旺种群; HN2, 海口羊山种群; GZ1、GZ2, 贵州草海不同种群; JX, 上饶余干种群。
Fig. 7 Effects of Gibberellins on the germination of Schoenoplectiella triangulate seeds (mean ± SE). A, Germination percentage. B, Germination index. C, Germination time-lag. D, Seedling morphology (from left to right, on day 2, 4, 6, 8, 10 and 12 after JX seeds treated by GA3 germinated). Different lowercase letters indicate significant differences among different treatments (p < 0.05). HN1, Changwang population in Haikou; HN2, Yangshan population in Haikou; GZ1 and GZ2, different populations in Caohai, Guizhou; JX, Yugan population in Shangrao.
图8 水毛花不同地区种群种子的聚类分析。Length、Width、Height、Mass、WA为种子的长、宽、高、千粒质量、吸水率; GRT1、GRT2、GRT3、GRT4、GRT5依次为5个变温下发芽率。HN1、HN2、GZ1、GZ2、JX同表1。
Fig. 8 Cluster analysis of Schoenoplectiella triangulata seeds from different populations. Length, Width, Height, Mass, and WA are the length, width, height, 1 000-grain mass, and water absorption rate of seeds, respectively; GRT1, GRT2, GRT3, GRT4 and GRT5 are the germination percentages under five variable temperatures, respectively. HN1, HN2, GZ1, GZ2 and JX were the same as those in Table 1.
图9 不同地区种群水毛花种子的形态特性、发芽率与环境因子的相关性分析。GRT1、GRT2、GRT3、GRT4、GRT5依次为5个变温下发芽率; Lat, 纬度; Length、Width、Height、Mass、WA依次为种子的长、宽、高、千粒质量、吸水率; Long, 经度; MAAT, 年平均气温; MAP, 年降水量。*, p < 0.05; **, p < 0.01。
Fig. 9 Correlation analyses among morphological characteristics, germination percentage and environmental factors of Schoenoplectiella triangulata seeds from different populations. GRT1, GRT2, GRT3, GRT4, GRT5, the germination percentages under five variable temperatures, respectively; Lat, latitude; Length, Width, Height, Mass, and WA are the length, width, height, 1 000-grain mass, and water absorption rate of seeds, respectively; Long, longitude; MAAT, mean annual air temperature; MAP, mean annual precipitation. *, p < 0.05; **, p < 0.01.
[1] | Baskin CC, Baskin JM (2014). Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination. 2nd ed. Academic Press, London. |
[2] | Baskin JM, Baskin CC (2004). A classification system for seed dormancy. Seed Science Research, 14. 1-16. |
[3] | Bhatt A, Bhat NR, Al-Nasser A, Carón MM, Santo A (2020). Inter-population variabilities in seed mass and germination of Panicum turgidum and Pennisetum divisum on the desert of Kuwait. Journal of Arid Land, 12,144-153. |
[4] | Bucharova A, Michalski S, Hermann JM, Heveling K, Durka W, Hölzel N, Kollmann J, Bossdorf O (2017). Genetic differentiation and regional adaptation among seed origins used for grassland restoration: lessons from a multispecies transplant experiment. Journal of Applied Ecology, 54, 127-136. |
[5] | De Vitis M, Seal CE, Ulian T, Pritchard HW, Magrini S, Fabrini G, Mattana E (2014). Rapid adaptation of seed germination requirements of the threatened Mediterranean species Malcolmia littorea (Brassicaceae) and implications for its reintroduction. South African Journal of Botany, 94, 46-50. |
[6] | Hamadina E, Hamadina MK (2018). Residual fluridone in humid tropical soils: carryover effects on germination and seedling growth of maize (Zea mays L.). Resources and Environment, 8, 38-42. |
[7] | Hamidzadeh MS, Alebrahim MT, Tobeh A, Mohebodini M, Werck-Reichhart D, MacGregor DR, Tseng TM (2021). Redroot pigweed (Amaranthus retroflexus L.) and lamb’s quarters (Chenopodium album L.) populations exhibit a high degree of morphological and biochemical diversity. Frontiers in Plant Science, 12, 593037. DOI: 10.3389/fpls.2021.593037. |
[8] | Hammami H, Saadatian B, Hossein Hosseini SA(2020). Geographical variation in seed germination and biochemical response of milk thistle (Silybum marianum) ecotypes exposed to osmotic and salinity stresses. Industrial Crops and Products, 152, 112507. DOI: 10.1016/j.indcrop.2020.112507. |
[9] | Imbert E (2002). Ecological consequences and ontogeny of seed heteromorphism. Perspectives in Plant Ecology, Evolution and Systematics, 5,13-36. |
[10] | Joseph N, Siril E, Nair GM (2010). Imbibition duration, seed treatment, seed mass and population influence germination of annatto (Bixa orellana L.) seeds. Seed Technology, 32, 37-45. |
[11] | Kucera B, Cohn MA, Leubner-Metzger G (2005). Plant hormone interactions during seed dormancy release and germination. Seed Science Research, 15, 281-307. |
[12] | Lando AP, Viana WG, Silva RA, Costa CDD, Fraga HPF, Santos M, Mioto PT, Guerra MP, Steiner N (2020). The physiological relationship between abscisic acid and gibberellinduring seed germination of Trichocline catharinensis (Asteraceae) is associated with polyamine and antioxidant enzymes. Journal of Plant Growth Regulation, 39, 395-410. |
[13] | Li SS, Huang HX, Liu QM, Du J, Han JF (2020). Analysis on seed characteristics of different populations of naked fruit trees. Agriculture of Henan, (8), 12-14. |
[李树森, 黄海霞, 刘青梅, 杜鹃, 韩俊芳 (2020). 裸果木不同种群种子特性分析. 河南农业, (8), 12-14.] | |
[14] | Li XY, Huang Y, Jin X, Liu GD (2021a). Seed dormancy and germination characteristics of Cyperus iria. Chinese Journal of Tropical Crops, 42, 2001-2007. |
[李欣勇, 黄迎, 金雪, 刘国道 (2021a). 碎米莎草种子休眠与萌发特性研究. 热带作物学报, 42, 2001-2007.] | |
[15] | Li XY, Huang Y, Luo XY, Liu GD (2020). Seed dormancy and germination characteristics of Pycreus globosus. Chinese Journal of Ecology, 39, 4015-4021. |
[李欣勇, 黄迎, 罗小燕, 刘国道 (2020). 球穗扁莎种子的休眠与萌发特性. 生态学杂志, 39, 4015-4021.] | |
[16] | Li XY, Huang Y, Zhang JW (2021b). Study on dormancy and germination characteristics of Cyperus alternifolius seeds. Seed, 40(5), 57-62. |
[李欣勇, 黄迎, 张静文 (2021b). 风车草种子休眠及萌发特性研究. 种子, 40(5), 57-62.] | |
[17] | Li YX, Yan CL, Zhang YM, Yang XL, Zhao KT (2022). Seed phenotype and germination characteristics of different populations of Cupressus gigantea. Seed, 41(4), 81-85. |
[李永霞, 颜呈霖, 张一鸣, 杨小林, 赵垦田 (2022). 不同种群巨柏种子表型及萌发特性. 种子, 41(4), 81-85.] | |
[18] | Liu GH, Yuan LY, Su RL, Li W (2005). Effects of storage conditions and duration on seed germination of six wetland perennials. Acta Ecologica Sinica, 25, 371-374. |
[刘贵华, 袁龙义, 苏睿丽, 李伟 (2005). 储藏条件和时间对六种多年生湿地植物种子萌发的影响. 生态学报, 25, 371-374.] | |
[19] | Lorres M L, Weldy P, Levy M, Emery NC (2017). Spatiotemporal heterogeneity in precipitation patterns explain population-level germination strategies in an edaphic specialist. Annals of Botany, 119, 253-265. |
[20] | Luo RR, Wang RD, Cao L, Li LL, Li X, Yuan Y, Yan JR, Hou J, Hu JB (2022). Effects of plant growth regulators on physiological characteristics and related gene expression in melon seedlings under cold stress. Journal of Henan Agricultural University, 56, 411-419. |
[罗忍忍, 王瑞丹, 曹磊, 李丽丽, 李翔, 袁烨, 晏家茹, 侯娟, 胡建斌 (2022). 植物生长调节剂对冷胁迫下甜瓜幼苗生理特性及相关基因表达的影响. 河南农业大学学报, 56, 411-419.] | |
[21] | Luo Y, Yu QZ, Wang XY, Chen P, Wang Q, Tang ZQ, Huang QD (2021). Effects of temperature on pollen viability and germination of cherry tomato. Journal of Anhui Agricultural Sciences, 49(22), 53-58. |
[罗艳, 于琴芝, 王先裕, 陈鹏, 汪茜, 唐振权, 黄庆岛 (2021). 温度对樱桃番茄花粉活力及萌发率的影响. 安徽农业科学, 49(22), 53-58.] | |
[22] | Meng SS, Huang ZF, Su JT, Chen ZX, Jiang CL, Ma ZQ, Huang HJ, Wei SH (2021). Seed germination of different populations of Abutilon theophrasti. Plant Protection, 47(4), 113-117. |
[孟帅帅, 黄兆峰, 苏杰天, 陈召霞, 姜翠兰, 马子晴, 黄红娟, 魏守辉 (2021). 苘麻不同种群的种子萌发特性. 植物保护, 47(4), 113-117.] | |
[23] | Qin QJ, Yan JY, Wei Y (2022). Dormancy and germination characteristics of the dimorphic seeds of Polygonum aviculare. Pratacultural Science, 39, 1405-1411. |
[秦启娟, 严佳玥, 魏岩 (2022). 扁蓄二型性种子休眠及萌发特性. 草业科学, 39, 1405-1411.] | |
[24] | Reznicek AA (1990). Evolution in sedges (Carex, Cyperaceae). Canadian Journal of Botany, 68, 1409-1432. |
[25] | Sun Q, Li CJ (2020). Germination characteristics of Cakile edentula (Brassicaceae) seeds from two different climate zones. Environmental and Experimental Botany, 180, 104268. DOI: 10.1016/j.envexpbot.2020.104268. |
[26] | Tang JG, Li WJ, Zhou CY, Chen X, Wu D, Luo SQ (2013). Study on 5 species of cyperceae aquatic plant seed germination in Caohai Lake, Weining County, Guizhou Province. Seed, 32(11), 52-54. |
[唐金刚, 李苇洁, 周传艳, 陈宵, 吴迪, 罗时琴 (2013). 威宁草海莎草科5种挺水植物种子萌发研究. 种子, 32(11), 52-54.] | |
[27] | van Mölken T, Jorritsma-Wienk LD, van Hoek PHW, de Kroon H (2005). Only seed size matters for germination in different populations of the dimorphic Tragopogon pratensis subsp. pratensis (Asteraceae). American Journal of Botany, 92, 432-437. |
[28] | Vicente MJ, Martínez-Díaz E, Martínez-Sánchez JJ, Franco JA, Bañón S, Conesa E (2020). Effect of light, temperature, and salinity and drought stresses on seed germination of Hypericum ericoides, a wild plant with ornamental potential. Scientia Horticulturae, 270, 109433. DOI: 10.1016/j.scienta.2020.109433. |
[29] | Wang R, He L, Zhang M, Cao T, Zhang XL, Liu Y, Ni LY, Ge G (2021). Factors on seed germination, tuber sprout and plant growth of Vallisneria species in China. Journal of Lake Science, 33, 1315-1333. |
[王瑞, 何亮, 张萌, 曹特, 张霄林, 刘颖, 倪乐意, 葛刚 (2021). 中国苦草属(Vallisneria)植物萌发与生长的影响因素. 湖泊科学, 33, 1315-1333.] | |
[30] | Wang YH, Kong YG, Li QH, Wu DJ, Yan LP, Xu T, Lu YZ, Zhai GF (2022). Study on germination characteristics and dormancy breaking methods of Tilia amurensis seeds. Chinese Agricultural Science Bulletin, 38(29), 80-85. |
[王因花, 孔雨光, 李庆华, 吴德军, 燕丽萍, 许涛, 鲁仪增, 翟国锋 (2022). 紫椴种子萌发特性及休眠解除方法研究. 中国农学通报, 38(29), 80-85.]
DOI |
|
[31] | Xie KX, Niu SN, Chi HK, Zhang PD (2022). Studies on morphological and germination characteristics of Zostera marina seed from different populations in Shandong Peninsula. Periodical of Ocean University of China, 52(4), 43-52. |
[谢坤秀, 牛淑娜, 迟会凯, 张沛东 (2022). 山东半岛不同种群鳗草种子形态学特征及萌发特性研究. 中国海洋大学学报(自然科学版), 52(4), 43-52.] | |
[32] | Xue MZ, Li RF, Xin X, Zhang JM, He JJ, Chen XL, Chen JY, Lu XX (2018). Research on soluble sugar metabolic regulation during the initial period of seed germination in maize. Journal of Maize Sciences, 26(4), 91-98. |
[薛梅真, 李瑞芳, 辛霞, 张金梅, 何娟娟, 陈晓玲, 陈军营, 卢新雄 (2018). 玉米种子萌发初期可溶性糖代谢途径的调控研究. 玉米科学, 26(4), 91-98.] | |
[33] |
Zhang M, Zhu JJ, Yan QL (2012). Review on influence mechanisms of light in seed germination. Chinese Journal of Plant Ecology, 36, 899-908.
DOI |
[张敏, 朱教君, 闫巧玲 (2012). 光对种子萌发的影响机理研究进展. 植物生态学报, 36, 899-908.]
DOI |
|
[34] |
Zhang R, Chen DL, Liu HZ, Guo CL, Tang L, Wang HG, Chen YH, Luo K (2022). Effect of temperature and water potential on the germination of seeds from three different populations of Bidens pilosa as a potential Cd hyperaccumulator. BMC Plant Biology, 22, 487.
DOI PMID |
[35] | Zhang ZX (2020). The Adaptability of Seed Germination and Seedling Establishment of Stipa breviflora in Different Populations. Master degree dissertation, Lanzhou University, Lanzhou. |
[张祖欣 (2020). 不同种群短花针茅种子萌发与出苗适应性研究. 硕士学位论文, 兰州大学, 兰州.] | |
[36] | Zhou ZQ, Li TS, Hu XW (2013). Seed dormancy and germination characteristics of four Cyperaceae species. Acta Botanica Boreali-Occidentalia Sinica, 33, 1885-1890. |
[周芝琴, 李廷山, 胡小文 (2013). 莎草科4种植物种子休眠与萌发特性的研究. 西北植物学报, 33, 1885-1890.] | |
[37] | Zhu HY (2022). Effects of Temperature and Plant Traits on Seed Germination in Plants in an Alpine Meadow. Master degree dissertation, Jiangxi Agricultural University, Nanchang. |
[朱虹宇 (2022). 温度和植物性状对高山草甸群落植物种子萌发的影响. 硕士学位论文, 江西农业大学, 南昌.] |
[1] | 孙龙, 李文博, 娄虎, 于澄, 韩宇, 胡同欣. 火干扰对兴安落叶松种子萌发的影响[J]. 植物生态学报, 2024, 48(6): 770-779. |
[2] | 李绍阳, 马红媛, 赵丹丹, 马梦谣, 亓雯雯. 火烧信号对种子萌发影响的研究进展[J]. 植物生态学报, 2021, 45(11): 1177-1190. |
[3] | 艾沙江•阿不都沙拉木, 迪丽娜尔•阿布拉, 张凯, 买热也木古•吐尔逊, 卡迪尔•阿布都热西提, 李玲. 喀什霸王的结实和种子萌发特性[J]. 植物生态学报, 2019, 43(5): 437-446. |
[4] | 吴小琪, 杨圣贺, 黄力, 李笑寒, 杨超, 钱深华, 杨永川. 常绿阔叶林林冠环境对栲幼苗建成的影响[J]. 植物生态学报, 2019, 43(1): 55-64. |
[5] | 刘波, 吕宪国, 姜明, 张文广, 武海涛. 光照、水深交互作用对松嫩湿地芦苇种子萌发的影响[J]. 植物生态学报, 2015, 39(6): 616-620. |
[6] | 李晓娟, 王强, 倪穗, 阮晓, 王永红, 张焕, 王高峰. 栗与美国板栗化感作用的比较[J]. 植物生态学报, 2013, 37(2): 173-182. |
[7] | 陈志颖, 阮晓, 张玉竹, 潘存德, 王强. 3,4-二羟基苯乙酮胁迫对天山云杉种子萌发过程中内源植物激素含量变化的影响[J]. 植物生态学报, 2013, 37(12): 1114-1122. |
[8] | 胡小文, 王娟, 王彦荣. 野豌豆属4种植物种子萌发的积温模型分析[J]. 植物生态学报, 2012, 36(8): 841-848. |
[9] | 杨帆, 曹德昌, 杨学军, 高瑞如, 黄振英. 盐生植物角果碱蓬种子二型性对环境的适应策略[J]. 植物生态学报, 2012, 36(8): 781-790. |
[10] | 刘会良, 张永宽, 张道远, 尹林克, 张元明. 不同居群准噶尔无叶豆果实和种子特性及种子萌发差异[J]. 植物生态学报, 2012, 36(8): 802-811. |
[11] | 张敏, 朱教君, 闫巧玲. 光对种子萌发的影响机理研究进展[J]. 植物生态学报, 2012, 36(8): 899-908. |
[12] | 王桔红, 马瑞君, 陈文. 冷层积和室温干燥贮藏对河西走廊8种荒漠植物种子萌发的影响[J]. 植物生态学报, 2012, 36(8): 791-801. |
[13] | 刘文, 刘坤, 张春辉, 杜国祯. 种子萌发的积温效应——以青藏高原东缘的12种 菊科植物为例[J]. 植物生态学报, 2011, 35(7): 751-758. |
[14] | 申建红, 曾波, 类淑桐, 苏晓磊, 黄文军. 三峡水库消落区4种一年生植物种子的水淹耐受性及水淹对其种子萌发的影响[J]. 植物生态学报, 2011, 35(3): 237-246. |
[15] | 侯天文, 金辉, 刘红霞, 罗毅波. 实验室条件下五唇兰菌根真菌专一性研究[J]. 植物生态学报, 2010, 34(12): 1433-1438. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19