植物生态学报 ›› 2010, Vol. 34 ›› Issue (12): 1433-1438.DOI: 10.3773/j.issn.1005-264x.2010.12.009
收稿日期:
2010-05-20
接受日期:
2010-08-31
出版日期:
2010-05-20
发布日期:
2010-12-28
通讯作者:
刘红霞
作者简介:
(E-mail: hongxia@bjfu.edu.cn)HOU Tian-Wen1, JIN Hui2, LIU Hong-Xia1,*(), LUO Yi-Bo2
Received:
2010-05-20
Accepted:
2010-08-31
Online:
2010-05-20
Published:
2010-12-28
Contact:
LIU Hong-Xia
摘要:
利用从高原温带兰科植物菌根中获得的22个菌根真菌菌株, 对五唇兰(Doritis pulcherrima)进行了室内种子萌发、原球茎分化和组培苗回接试验, 从交叉回接的角度对附生兰科植物与菌根真菌的生理专一性进行了探讨。经过20周的共生培养, 只有编号为Cf1和Mm1的两个菌株使种子表现出种胚明显膨大的萌发迹象; 9个菌株能够促使原球茎较好地分化发育出根叶; 11个菌株处理苗的平均鲜重增长率高于对照组(156.25%), 其中Mm1的效果达到极显著水平(p = 0.01)。通过根切片显微观察, 在原球茎分化根和回接效果良好的处理苗的根皮层组织发现典型的菌丝团结构, 表明菌根体系已成功建立。温带地生兰菌根真菌对五唇兰种子萌发、原球茎发育和幼苗生长等3个重要生长阶段影响的试验显示, 五唇兰的种子和菌根真菌的共生萌发效果不佳, 而原球茎及幼株更容易与之建立良好的共生关系。同时, 也没有发现同一个真菌菌株能够对五唇兰的种子、原球茎和幼苗均产生促进作用。研究结果表明, 五唇兰的菌根真菌专一性因生理生长阶段的不同而存在差异。
侯天文, 金辉, 刘红霞, 罗毅波. 实验室条件下五唇兰菌根真菌专一性研究. 植物生态学报, 2010, 34(12): 1433-1438. DOI: 10.3773/j.issn.1005-264x.2010.12.009
HOU Tian-Wen, JIN Hui, LIU Hong-Xia, LUO Yi-Bo. Mycorrhizal specificity of Doritis pulcherrima in in-vitro research. Chinese Journal of Plant Ecology, 2010, 34(12): 1433-1438. DOI: 10.3773/j.issn.1005-264x.2010.12.009
阶段 Stage | 描述 Description |
---|---|
0 | 未萌发 No germination |
1 | 种胚膨大 Swelling of the embryo |
2 | 基毛出现 Development of radical hairs |
3 | 叶原基出现 Development of a leaf primodium |
4 | 第一片叶子出现 Development of the first leaf |
5 | 第二片叶子出现 Development of the second leaf |
6 | 根萌发 Development of roots |
表1 实验室条件下兰科植物的种子萌发阶段(引自Otero等, 2004)
Table 1 Germination stages of orchid seeds in vitro (Cited from Otero et al., 2004)
阶段 Stage | 描述 Description |
---|---|
0 | 未萌发 No germination |
1 | 种胚膨大 Swelling of the embryo |
2 | 基毛出现 Development of radical hairs |
3 | 叶原基出现 Development of a leaf primodium |
4 | 第一片叶子出现 Development of the first leaf |
5 | 第二片叶子出现 Development of the second leaf |
6 | 根萌发 Development of roots |
图1 共生培养20周后的五唇兰种子、原球茎和组培苗。A, 萌发的种子(供试菌株Mm1)。B, 分化生长旺盛的原球茎(供试菌株Mm4)。C, 生长良好的接种苗(供试菌株Mm1)和对照苗的对比。
Fig. 1 Symbiotic seeds, protocorms and seedlings of Doritis pulcherrima after 20 weeks. A, Successfully germinated seed with fungi strain Mm1. B, Excellently developed protocorms with fungi strain Mm4. C, Seedlings comparison between well-growing inoculation samples with fungi strain Mm1 and control treatments.
处理 Treatment | 鉴定信息 Identified information | 种子萌发 Seeds germination | 原球茎分化 Protocorm differentiation | 处理苗平均鲜重增长率 Average increasement of fresh mass (%) |
---|---|---|---|---|
Control | 无真菌处理 No fungus treatment | × | 无明显分化 No obvious differentiation | 156.25 |
Cf1 | Cryptosporiopsis radicicola | √ | 死亡 Dead | 0 |
Cf2 | 未知真菌 Unknown fungus | × | 同对照 As control treatment | 86.10 |
Ct1 | 康宁木霉 Trichoderma koningii | × | 死亡 Dead | 265.89 |
Ct2 | 冬虫夏草 Cordyceps sinensis | × | 同对照 As control treatment | 185.98 |
Ct3 | 胶膜菌 Tulasnella sp. | × | 死亡 Dead | 272.22 |
Gd1 | 绿色肉座菌 Hypocrea virens | × | 死亡 Dead | 177.08 |
Mm1 | 瘤菌根菌 Epulorhiza sp. | √ | 被污染 Polluted | 619.84** |
Mm2 | 烧地环锈伞 Pholiota carbonaria | × | 同对照 As control treatment | 135.10 |
Mm3 | 帚状弯孢聚壳 Eutypella scoparia | × | 死亡 Dead | 51.87 |
Mm4 | 丛赤壳科真菌 Nectriaceae sp. | × | 分化旺盛 Well differentiated | 110.42 |
Na1 | 杜鹃菌根菌 Ericoid mycorrhizal fungus | × | 分化旺盛 Well differentiated | 112.70 |
Na2 | 柱捕单顶孢菌 Monacrosporium cionopagum | × | 分化旺盛 Well differentiated | 79.80 |
Na3 | 未知担子菌 Unknown basidiomycete | × | 分化旺盛 Well differentiated | 0 |
Pc1 | 毛霉属真菌 Mortierella sp. | × | 死亡 Dead | 302.67 |
Pd1 | 胶膜菌 Tulasnellaceae isolate | × | 分化旺盛 Well differentiated | 285.00 |
Pd2 | 镰刀菌 Fusarium tricinctum | × | 分化旺盛 Well differentiated | 65.50 |
Pm1 | 炭角菌 Xylaria arbuscula | × | 死亡 Dead | 0 |
Ts1 | 丝核菌 Rhizoctonia sp. | × | 分化旺盛 Well differentiated | 201.80 |
Ts2 | 柔膜菌目外生菌根真菌 Ectomycorrhizal fungi of Helotiales | × | 分化旺盛 Well differentiated | 161.10 |
Ts3 | 粪盘菌 Ascobolus crenulatus | × | 同对照 As control treatment | 266.67 |
Ts4 | Creosphaeria sassafras | × | 分化旺盛 Well differentiated | 347.04 |
Ts5 | 奥氏蜜环菌 Armillaria ostoyae | × | 死亡 Dead | 145.90 |
表2 温带地生兰根部内生真菌对五唇兰的回接效果
Table 2 Inoculation results of Doritis pulcherrima with the endophytic fungi of temperate terrestrial orchid
处理 Treatment | 鉴定信息 Identified information | 种子萌发 Seeds germination | 原球茎分化 Protocorm differentiation | 处理苗平均鲜重增长率 Average increasement of fresh mass (%) |
---|---|---|---|---|
Control | 无真菌处理 No fungus treatment | × | 无明显分化 No obvious differentiation | 156.25 |
Cf1 | Cryptosporiopsis radicicola | √ | 死亡 Dead | 0 |
Cf2 | 未知真菌 Unknown fungus | × | 同对照 As control treatment | 86.10 |
Ct1 | 康宁木霉 Trichoderma koningii | × | 死亡 Dead | 265.89 |
Ct2 | 冬虫夏草 Cordyceps sinensis | × | 同对照 As control treatment | 185.98 |
Ct3 | 胶膜菌 Tulasnella sp. | × | 死亡 Dead | 272.22 |
Gd1 | 绿色肉座菌 Hypocrea virens | × | 死亡 Dead | 177.08 |
Mm1 | 瘤菌根菌 Epulorhiza sp. | √ | 被污染 Polluted | 619.84** |
Mm2 | 烧地环锈伞 Pholiota carbonaria | × | 同对照 As control treatment | 135.10 |
Mm3 | 帚状弯孢聚壳 Eutypella scoparia | × | 死亡 Dead | 51.87 |
Mm4 | 丛赤壳科真菌 Nectriaceae sp. | × | 分化旺盛 Well differentiated | 110.42 |
Na1 | 杜鹃菌根菌 Ericoid mycorrhizal fungus | × | 分化旺盛 Well differentiated | 112.70 |
Na2 | 柱捕单顶孢菌 Monacrosporium cionopagum | × | 分化旺盛 Well differentiated | 79.80 |
Na3 | 未知担子菌 Unknown basidiomycete | × | 分化旺盛 Well differentiated | 0 |
Pc1 | 毛霉属真菌 Mortierella sp. | × | 死亡 Dead | 302.67 |
Pd1 | 胶膜菌 Tulasnellaceae isolate | × | 分化旺盛 Well differentiated | 285.00 |
Pd2 | 镰刀菌 Fusarium tricinctum | × | 分化旺盛 Well differentiated | 65.50 |
Pm1 | 炭角菌 Xylaria arbuscula | × | 死亡 Dead | 0 |
Ts1 | 丝核菌 Rhizoctonia sp. | × | 分化旺盛 Well differentiated | 201.80 |
Ts2 | 柔膜菌目外生菌根真菌 Ectomycorrhizal fungi of Helotiales | × | 分化旺盛 Well differentiated | 161.10 |
Ts3 | 粪盘菌 Ascobolus crenulatus | × | 同对照 As control treatment | 266.67 |
Ts4 | Creosphaeria sassafras | × | 分化旺盛 Well differentiated | 347.04 |
Ts5 | 奥氏蜜环菌 Armillaria ostoyae | × | 死亡 Dead | 145.90 |
[1] | Arditti J, Ernst R, Yam TW, Glabe C (1990). The contributions of orchid mycorrhizal fungi to seed germination: a speculative review. Lindleyana, 5, 249-255. |
[2] | Bayman P, Gonzalez EJ, Fumero JJ, Tremblay RL (2002). Are fungi necessary? How fungicides affect growth and survival of the orchid Lepanthes rupestris in the field. Journal of Ecology, 90, 1002-1008. |
[3] | Bonnardeaux Y, Brundrett M, Batty A (2007). Diversity of mycorrhizal fungi of terrestrial orchids: compatibility webs, brief encounters, lasting relationships and alien invasions. Mycological Research, 3, 51-61. |
[4] | Chen JH (陈金花), Hu MJ (胡美娇), Song XQ (宋希强), He MG (何明高), Luo YB (罗毅波) (2010). Microscopic observation on mycorrhiza of Doritis pulcherrima. Mycosystema (菌物学报), 29, 26-30. (in Chinese with English abstract) |
[5] | Chen XC (陈心启), Tsi ZH (吉占和) (1998). The Chinese Orchids (中国兰花全书). China Forestry Publishing House, Beijing. (in Chinese) |
[6] |
Dearnaley JDW (2007). Further advances in orchid mycorrhizal research. Mycorrhiza, 17, 475-486.
DOI URL PMID |
[7] | Dijk E, Willems JH, van Andel J (1997). Nutrient responses as a key factor to the ecology of orchid species. Acta Botanica Neerlandica, 46, 339-363. |
[8] | Fan L (范黎), Guo SX (郭顺星) (1998). Research development of orchid mycorrhizal fungi. Microbiology (微生物学通报), 24, 227-230. (in Chinese with English abstract) |
[9] | He MG (何明高), Song SQ (宋松泉), Song XQ (宋希强), Wang RX (王瑞霞) (2009). A Kind of Testing Method of Orchid Seeds Vitality (一种兰花种子活力的测试方法). China Patent No.: 200810118434.4. 2009. 4. 8 |
[10] | Hou TW (侯天文) (2010). Mycorrhizal Fungi Diversity of the Dominant Orchids in the Huanglong Valley, Sichuan (四川黄龙沟优势兰科植物菌根真菌多样性). Master Dissertation, Beijing Forestry University, Beijing. (in Chinese with English abstract) |
[11] | Ke HL (柯海丽), Song XQ (宋希强), Tan ZQ (谭志琼), Liu HX (刘红霞), Luo YB (罗毅波) (2007). Endophytic fungi diversity in root of Doritis pulcherrima (Orchidaceae). Biodiversity Science (生物多样性), 15, 456-462. (in Chinese with English abstract) |
[12] | Ke HL (柯海丽), Song XQ (宋希强), Luo YB (罗毅波), Zhu GP (朱国鹏), Ling XB (凌绪柏) (2008). Seedling cultivation of Doritis pulcherrima Lindl. with mycorrhizal fungi. Acta Horticulturae Sinica (园艺学报), 35, 571-576. (in Chinese with English abstract) |
[13] |
Otero JT, Ackerman JD, Bayman P (2002). Diversity and host specificity of endophytic Rhizoctonia-like fungi from tropical orchids. American Journal of Botany, 89, 1852-1858.
DOI URL PMID |
[14] |
Otero JT, Ackerman JD, Bayman P (2004). Differences in mycorrhizal preferences between two tropical orchids. Molecular Ecology, 13, 2393-2404.
DOI URL PMID |
[15] |
Otero JT, Flanagan NS, Herre EA, Ackerman JD, Bayman P (2007). Widespread mycorrhizal specificity correlates to mycorrhizal function in the neotropical, epiphytic orchid Ionopsis utricularioides(Orchidaceae). American Journal of Botany, 94, 1944-1950.
DOI URL PMID |
[16] | Rasmussen HN (2002). Recent development in the study of OM. Plant and Soil, 244, 149-163. |
[17] | Rasmussen HN, Whigham DF (1998). The underground phase: a special challenge in studies of terrestrial orchid populations. Botanical Journal of the Linnean Society, 126, 49-64. |
[18] |
Suárez JP, Weiß M, Abele A, Garnica S, Oberwinkler F, Kottke I (2006). Diverse tulasnelloid fungi form mycorrhizas with epiphytic orchids in an Andean cloud forest. Mycological Research, 110, 1257-1270.
DOI URL PMID |
[19] | Tan LY, Aung T, Yam TW (2004). Studies on the growth rate of tropical orchid seeds in symbiotic cultures. http://staff.science.nus.edu.sg/~scilooe/srp_2003/sci_paper/botanic/research_paper/tan_liyang.pdf. Cited July 10, 2009. |
[20] |
Taylor DL, Bruns TD (1999). Population, habitat and genetic correlates of mycorrhizal specialization in the ‘cheating’ orchids Corallorhiza maculate and C. mertensiana. Molecular Ecology, 8, 1719-1732.
URL PMID |
[21] | Tremblay RL, Ackerman JD, Zimmerman JK, Calvo RN (2004). Variation in sexual reproduction in orchids and its evolutionary consequences: a spasmodic journey to diversification. Biological Journal of the Linnean Society, 84, 1-54. |
[22] | Warcup JH (1981). The mycorrhizal relationships of Australian orchids. New Phytologist, 87, 371-381. |
[23] | Zettler LW, Burkhead JC, Marshall JA (1999). Use of a mycorrhizal fungus from Epidendrum conopseum to germinate seed of Encyclia tampensis in vitro. Lindleyana, 14, 102-105. |
[1] | 陈科宇 邢森 唐玉 孙佳慧 任世杰 张静 纪宝明. 不同草地型土壤丛枝菌根真菌群落特征及其驱动因素[J]. 植物生态学报, 2024, 48(5): 660-674. |
[2] | 徐子怡 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡[J]. 植物生态学报, 2024, 48(5): 612-622. |
[3] | 胡蝶 蒋欣琪 戴志聪 陈戴一 张雨 祁珊珊 杜道林. 丛枝菌根真菌提高入侵杂草南美蟛蜞菊对除草剂的耐受性[J]. 植物生态学报, 2024, 48(5): 651-659. |
[4] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[5] | 任悦, 高广磊, 丁国栋, 张英, 赵珮杉, 柳叶. 不同生长期樟子松外生菌根真菌群落物种组成及其驱动因素[J]. 植物生态学报, 2023, 47(9): 1298-1309. |
[6] | 胡同欣, 李蓓, 李光新, 任玥霄, 丁海磊, 孙龙. 火烧黑碳对生长季兴安落叶松林外生菌根真菌群落物种组成的影响[J]. 植物生态学报, 2023, 47(6): 792-803. |
[7] | 杨佳绒, 戴冬, 陈俊芳, 吴宪, 刘啸林, 刘宇. 丛枝菌根真菌多样性对植物群落构建和稀有种维持的研究进展[J]. 植物生态学报, 2023, 47(6): 745-755. |
[8] | 何斐, 李川, Faisal SHAH, 卢谢敏, 王莹, 王梦, 阮佳, 魏梦琳, 马星光, 王卓, 姜浩. 丛枝菌根菌丝桥介导刺槐-魔芋间碳转运和磷吸收[J]. 植物生态学报, 2023, 47(6): 782-791. |
[9] | 周莹莹, 林华. 不同水热梯度下冠层优势树种叶片热力性状及适应策略的变化趋势[J]. 植物生态学报, 2023, 47(5): 733-744. |
[10] | 赵榕江, 陈焘, 董丽佳, 郭辉, 马海鲲, 宋旭, 王明刚, 薛伟, 杨强. 植物-土壤反馈及其在生态学中的研究进展[J]. 植物生态学报, 2023, 47(10): 1333-1355. |
[11] | 张慧, 曾文静, 龚新桃, 马泽清. 亚热带典型树种根毛特征及其与共生真菌的关系[J]. 植物生态学报, 2023, 47(1): 88-100. |
[12] | 谢伟, 郝志鹏, 张莘, 陈保冬. 丛枝菌根网络介导的植物间信号交流研究进展及展望[J]. 植物生态学报, 2022, 46(5): 493-515. |
[13] | 单婷婷, 陈彤垚, 陈晓梅, 郭顺星, 王爱荣. 菌根真菌与兰科植物氮营养关系的研究进展[J]. 植物生态学报, 2022, 46(5): 516-528. |
[14] | 马炬峰, 辛敏, 徐陈超, 祝琬莹, 毛传澡, 陈欣, 程磊. 丛枝菌根真菌与氮添加对不同根形态基因型水稻氮吸收的影响[J]. 植物生态学报, 2021, 45(7): 728-737. |
[15] | 庞芳, 夏维康, 何敏, 祁珊珊, 戴志聪, 杜道林. 固氮菌缓解氮限制环境中丛枝菌根真菌对加拿大一枝黄花的营养竞争[J]. 植物生态学报, 2020, 44(7): 782-790. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19