植物生态学报 ›› 2010, Vol. 34 ›› Issue (12): 1439-1447.DOI: 10.3773/j.issn.1005-264x.2010.12.010
贾士芳1,2, 李从锋1,3, 董树亭1,*(), 张吉旺1
收稿日期:
2010-01-04
接受日期:
2010-07-27
出版日期:
2010-01-04
发布日期:
2010-12-28
通讯作者:
董树亭
作者简介:
(E-mail: stdong@sdau.edu.cn)
JIA Shi-Fang1,2, LI Cong-Feng1,3, DONG Shu-Ting1,*(), ZHANG Ji-Wang1
Received:
2010-01-04
Accepted:
2010-07-27
Online:
2010-01-04
Published:
2010-12-28
Contact:
DONG Shu-Ting
摘要:
大田条件下, 以普通夏玉米(Zea mays) ‘泰玉2号’为材料, 于授粉后1-20天遮光55% (+S), 以大田自然光照条件下生长的玉米作为对照(-S), 研究了遮光及恢复过程中玉米植株的光合性能、叶绿体荧光参数、叶黄素循环以及光能分配的变化, 初步揭示夏玉米开花后弱光条件下光适应的生理机制, 为玉米高产稳产提供理论依据。结果表明, 遮光后玉米穗位叶叶绿素含量及可溶性蛋白含量均减少, RuBP羧化酶和PEP羧化酶活性显著降低, 导致穗位叶净光合速率(Pn)迅速下降, 光饱和点也明显降低; 恢复初期Pn迅速升高, 光合关键酶活性有所增强。遮光后植株的最大光化学效率(Fv/Fm)、实际光化学效率(ФPSII)显著降低, 非光化学淬灭(NPQ)则显著升高, 而恢复初期植株穗位叶ФPSII有所升高, 表明突然暴露在自然光下的光合电子传递速率明显加快, 这与其光合速率及光合酶活性的趋势保持一致; 遮光处理对穗位叶叶黄素循环库的大小(紫黄质+花药黄质+玉米黄质(V + A + Z))影响不显著, 但使叶黄素循环的脱环氧化状态(A + Z)/(V + A + Z)增加; 遮光后植株分配于光化学反应的光能明显减少, 天线耗散光能比率显著增加, 恢复过程中植株主要以过剩非光化学反应的形式耗散过剩的光能。遮光后及恢复初期, 玉米植株的PSII原初光化学活性明显下降, 限制了光合碳代谢的电子供应从而抑制了光合作用, 主要依赖叶黄素循环途径进行能量耗散, 而在光照转换后遮光的玉米叶片在适应自然光过程中的光保护机制不断完善, 光合能力逐渐得到 恢复。
贾士芳, 李从锋, 董树亭, 张吉旺. 弱光胁迫影响夏玉米光合效率的生理机制初探. 植物生态学报, 2010, 34(12): 1439-1447. DOI: 10.3773/j.issn.1005-264x.2010.12.010
JIA Shi-Fang, LI Cong-Feng, DONG Shu-Ting, ZHANG Ji-Wang. Physiological mechanism of shading stress on photosynthetic efficiency in summer maize (Zea mays). Chinese Journal of Plant Ecology, 2010, 34(12): 1439-1447. DOI: 10.3773/j.issn.1005-264x.2010.12.010
处理 Treatment | 光辐射强度 Light intensity (μmol·m-2 ·s-1) | 群体内不同位置温度 Temperature of different position within population(℃) | CO2浓度 CO2 concentration (μmol·mol-1) | ||
---|---|---|---|---|---|
地温 Ground | 穗位 Ear | 冠层 Canopy | |||
-S | 1 135.9a | 24.9a | 28.9a | 29.4a | 336.2a |
+S | 573.3b | 23.1b | 28.5a | 29.0a | 337.3a |
表1 遮光处理对玉米群体小气候的影响(2005)
Table 1 Effect of shading treatments on microclimate of maize population (2005)
处理 Treatment | 光辐射强度 Light intensity (μmol·m-2 ·s-1) | 群体内不同位置温度 Temperature of different position within population(℃) | CO2浓度 CO2 concentration (μmol·mol-1) | ||
---|---|---|---|---|---|
地温 Ground | 穗位 Ear | 冠层 Canopy | |||
-S | 1 135.9a | 24.9a | 28.9a | 29.4a | 336.2a |
+S | 573.3b | 23.1b | 28.5a | 29.0a | 337.3a |
处理 Treatment | 波长 Weave length (nm) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
460 | 510 | 560 | 610 | 660 | 680 | 710 | 760 | 810 | 870 | 950 | 1 100 | |
S/CK | 42.56a | 36.33a | 37.28a | 38.96a | 36.25a | 37.42a | 38.73a | 39.93a | 39.69a | 40.05a | 38.88a | 42.65a |
Y/CK | 41.14a | 35.38a | 36.26a | 36.41a | 36.73a | 36.43a | 39.16a | 41.27a | 40.78a | 40.42a | 42.22b | 46.35b |
表2 遮光处理对入射光光质的影响(2005)
Table 2 Effect of shading treatments on light quality of incident light (2005)
处理 Treatment | 波长 Weave length (nm) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
460 | 510 | 560 | 610 | 660 | 680 | 710 | 760 | 810 | 870 | 950 | 1 100 | |
S/CK | 42.56a | 36.33a | 37.28a | 38.96a | 36.25a | 37.42a | 38.73a | 39.93a | 39.69a | 40.05a | 38.88a | 42.65a |
Y/CK | 41.14a | 35.38a | 36.26a | 36.41a | 36.73a | 36.43a | 39.16a | 41.27a | 40.78a | 40.42a | 42.22b | 46.35b |
图1 遮光对玉米穗位叶光合速率、叶绿素含量及可溶性蛋白含量的影响。+S, -S, 同表1。
Fig. 1 Effect of shading on photosynthetic rate (Pn), chlorophyll content and soluble protein content in maize ear leaf. +S, -S, see Table 1.
图2 遮光10天(左)和遮光结束当天(右)玉米穗位叶光合-光响应(Pn-PFD)曲线。+S, -S, 同表1。
Fig.2 The photosynthetic rate-photon flux density (Pn-PFD) curve of maize ear leaf on 10th day after shading treatment (left) and the day of shading finish (right). +S, -S, see Table 1.
图3 遮光对玉米穗位叶光合关键酶RuBP羧化酶(RuBPC- ase)和PEP羧化酶(PEPCase)活性的影响。+S, -S, 同表1。
Fig. 3 Effect of shading on photosynthesis key enzyme ribulosebisphosphate carboxylase (RuBPCase) and phosphoenolpyruvate carboxylase (PEPCase) in maize ear leaf. +S, -S, see Table 1.
图4 遮光对玉米穗位叶荧光参数的影响。Fv/Fm, 最大光化学效率; NPQ, 非光化学淬灭; ФPSII, 实际光化学效率。+S, -S, 同表1。
Fig. 4 Effect of shading on chlorophyll fluorescence parameters in maize ear leaf. Fv/Fm, maximal photochemistry efficiency; NPQ, non-photochemical quenching; ФPSII, actual photochemistry efficiency. +S, -S, see Table 1.
图5 遮光对玉米穗位叶叶黄素循环的影响。A, 花药黄质; V, 紫黄质; Z, 玉米黄质。+S, -S, 同表1。
Fig. 5 Effect of shading on the xanthophyll cycle in maize ear leaf. A, antheraxanthin; V, violaxanthin; Z, zeaxanthin. +S, -S, see Table 1.
图6 遮光对玉米穗位叶光能分配的影响。+S、-S同表1。
Fig. 6 Effect of shading on PSII photochemistry (P), antenna heat dissipation (D) and excess energy (Ex) in maize ear leaf. +S, -S, see Table 1.
[1] |
Asada K (1999). The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photos. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 601-639.
DOI URL PMID |
[2] |
Buykey KO, Wells R (1991). Response of soybean photosynthesis and chloroplast membrane function to canopy development and mutual shading. Plant Physiology, 97, 245-252.
DOI URL PMID |
[3] | Chow WS (1991). Photosynthetic acclimation of Tradescantia albiflora to growth irradiance: lack of adjustment of light-harvesting components and its consequences. Physiologia Plantarum, 81, 75-182. |
[4] | Christy AL, Porter CA (1982). Canopy photosynthesis and yield in soybean. In: Govindjee ed. Photosynthesis, Development, Carbon Metabolism and Plant Productivity II. Academic Press, New York. 499-511. |
[5] | Demmig-Adams B (1996). Xanthophyll cycle and light stress in nature: uniform response to excess direct sunlight among higher plant species. Planta, 198, 460-470. |
[6] | Demmig-Adams B, Adams III WW, Barker DH, Logan BA, Bowling DR, Verhoeven AS (1996). Using Chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiologia Plantarum, 98, 253-264. |
[7] | Dong ST (董树亭) (2006). Eco-Physiology and Formation of Yield and Quality in Maize (玉米生态生理与产量品质形成). Higher Education Press, Beijing. (in Chinese) |
[8] | Early EB, McIlrath WO, Seif RD, Hageman RH (1967). Effects of shade applied at different stages of plant development on corn (Zea mays L.) production. Crop Science, 7, 151-156. |
[9] | Gilmore AM (1997). Mechanistic aspects of xanthophyll cycle- dependent photo-protection in higher plant chloroplasts and leaves. Physiologia Plantarum, 99, 197-209. |
[10] | Guan YX (关义新), Lin B (林葆), Ling BY (凌碧莹) (2000). Interaction effects of light density and nitrogen on maize leaf pigments, chlorophyll fluorescence and energy transition. Plant Nutrition and Fertilizer Science (植物营养与肥料学报), 6, 152-158. (in Chinese with English abstract) |
[11] | Hidema J, Makino A, Mae T, Ojima K (1991). Photosynthetic characteristics of rice leaves aged under different irradiances from full expansion through senescence. Plant Physiology, 97, 1287-1293. |
[12] | Hu CH (胡昌浩) (1995). Cultivation Physiology of Maize (玉米栽培生理). China Agriculture Press, Beijing. (in Chinese) |
[13] |
Jia SF (贾士芳), Dong ST (董树亭), Wang KJ (王空军), Zhang JW (张吉旺), Liu P(刘鹏) (2007). Effects of weak light stress on grain yield and photosynthetic traits of maize. Chinese Journal of Applied Ecology (应用生态学报), 18, 2456-2461. (in Chinese with English abstract)
URL PMID |
[14] | Kiniry JR, Ritchie JT (1985). Shade-sensitive interval of kernel number of maize. Agronomy Journal, 77, 711-715. |
[15] | Kobata T, Sugawara M, Takatu S (2000). Shading during the early grain filling period does not affect potential grain dry matter increase in rice. Agronomy Journal, 92, 411-417. |
[16] | Li CH (李潮海), Luan LM (栾丽敏), Wang Q (王群), Li N (李宁), Zhao YL (赵亚丽) (2005a). Effect of seedling shading and light intensity transfer on photosynthetic efficiency of different maize (Zea mays L.) hybrids. Acta Agronomica Sinica (作物学报), 31, 381-385. (in Chinese with English abstract) |
[17] | Li CH (李潮海), Luan LM (栾丽敏), Yin F (尹飞), Wang Q (王群), Zhao YL (赵亚丽) (2005b). Effects of light stress at different stages on the growth and yield of different maize genotypes (Zea mays L.). Acta Ecologica Sinica (生态学报), 25, 824-830. (in Chinese with English abstract) |
[18] |
Lilley RM, Walker DA (1974). An improved spectrophotometric assay for ribulose bisphosphate carboxylase. Biochimica et Biophysica Acta, 358, 226-229.
DOI URL PMID |
[19] | Liu GS (刘国顺), Zhao XZ (赵献章), Wei FJ (韦凤杰), Wang F (王芳), Wang WJ (汪文杰) (2007). Effects of shading at fast-growing stage and light intensity transfer on photosynthetic efficiency in tobacco (Nicotiana tobacum L.) varieties. Scientia Agricultura Sinica (中国农业科学), 40, 2368-2375. (in Chinese with English abstract) |
[20] | Liu X (刘霞), Yin YP (尹燕枰), Jiang CM (姜春明), He MR (贺明荣), Wang ZL (王振林) (2005). Effects of weak light and high temperature stress after anthesis on flag leaf chlorophyll fluorescence and grain fill of wheat. Chinese Journal of Applied Ecology (应用生态学报), 16, 2117- 2121. ( in Chinese with English abstract) |
[21] | Mou HR (牟会荣), Jiang D (姜东), Dai TB (戴廷波), Jing Q (荆奇), Cao WX (曹卫星) (2008). Effect of shading on photosynthesis and chlorophyll fluorescence characters in wheat flag leaves. Scientia Agricultura Sinica (中国农业科学), 41, 599-606. (in Chinese with English abstract) |
[22] |
Powles SB, Björkman O (1983). Photoinhibition of photosynthesis: effect on chlorophyll fluorescence at 77K in intact leaves and in chloroplast membranes of Nerium oleander. Planta, 156, 97-107.
DOI URL PMID |
[23] | Racker E (1962). Ribulose diphosphate carboxylase from spinach leaves. In: Colowick SP, Kaplan NO eds. Methods in Enzymology Vol. V. Academic Press, New York. 266-270. |
[24] |
Reed JA, Singletary GW (1989). Roles of carbohydrate supply and phytohomones in maize kernel abortion. Plant Physiology, 91, 986-992.
DOI URL PMID |
[25] | Reed JA, Singletary GW, Schussler JR (1988). Shading effects on dry matter and nitrogen partitioning, kernel number, and yield of maize. Crop Science, 28, 819-825. |
[26] |
Roberts DR, Thompson JE, Dumbroff EB, Gepstein S, Mattoo AK (1987). Differential changes in the synthesis and steady-state levels of thylakoid protein during bean leaf senescence. Plant Molecular Biology, 9, 343-354.
DOI URL PMID |
[27] | Struik PC (1983). The effect of short and long shading, applied during different stages of growth, on the development, productivity and quality of forage maize (Zea mays L.). Netherlands Journal of Agricultural Science, 31, 101-124. |
[28] | Terashima I, Wong SC, Osmond CB, Faruhar GD (1988). Characterisation of non-uniform photosynthesis induced by abscisic acid in leaves having different mesophyll anatomies. Plant and Cell Physiology, 29, 385-394. |
[29] | Ward DA, Woolhouse HW (1986). Comparative effects of light during growth on the photosynthetic properties of NADP- ME type C4 grasses from open and shaded habitats. II. Photosynthetic enzyme activities and metabolism. Plant, Cell & Environment, 9, 271-277. |
[30] |
Zhang JW (张吉旺), Dong ST (董树亭), Wang KJ (王空军) (2006). Effects of shading on the growth, development and grain yield of summer maize. Chinese Journal of Applied Ecology (应用生态学报), 17, 657-662. (in Chinese with English abstract)
URL PMID |
[31] | Zhao D, Oosterhuis D (1998). Influence of shade on mineral nutrient status of field-grown cotton. Plant Nutrient, 21, 1681-1692. |
[32] | Zhao JR (赵久然), Chen GP (陈国平) (1990). Effects of shading treatment at different stages of plant development on grain production of maize and observations of tip kernel abortion, Scientia Agricultura Sinica (中国农业科学), 23(4), 28-34. (in Chinese with English abstract) |
[33] | Zhao M (赵明), Ding ZS (丁在松), Ishhill R, Chen L (陈鹂), Zhang X (张旭) (2003). The changes and components of non-photochemical quenching under drought and shade conditions in maize. Acta Agronomica Sinica (作物学报), 29, 59-62. (in Chinese with English abstract) |
[34] | Zou Q (邹琦) (1995). Guidance of Plant Experiment Physiology and Biochemistry (植物生理生化实验指导). Higher Education Press, Beijing. 36-39. (in Chinese) |
[35] | Zhou ZG (周治国), Meng YL (孟亚利), Shi P (施培) (2001). Effect of shading during seedling period on the structure of cotton stem and leaf and photosynthetic performance of functional leaf. Scientia Agriculture Sinica (中国农业科学), 34, 465-468. (in Chinese with English abstract) |
[1] | 程可心, 杜尧, 李凯航, 王浩臣, 杨艳, 金一, 何晓青. 玉米与叶际微生物组的互作遗传机制[J]. 植物生态学报, 2024, 48(2): 215-228. |
[2] | 李义博, 宋贺, 周莉, 许振柱, 周广胜. C4植物玉米的光合-光响应曲线模拟研究[J]. 植物生态学报, 2017, 41(12): 1289-1300. |
[3] | 赵文赛, 孙永林, 刘西平. 干旱-复水-再干旱处理对玉米光合能力和生长的影响[J]. 植物生态学报, 2016, 40(6): 594-603. |
[4] | 张峰, 周广胜. 玉米农田冠层光合参数的多光谱遥感反演[J]. 植物生态学报, 2014, 38(7): 710-719. |
[5] | 吴正锋, 孙学武, 王才斌, 郑亚萍, 万书波, 刘俊华, 郑永美, 吴菊香, 冯昊, 于天一. 弱光胁迫对花生功能叶片RuBP羧化酶活性及叶绿体超微结构的影响[J]. 植物生态学报, 2014, 38(7): 740-748. |
[6] | 孟凡超, 张佳华, 姚凤梅. CO2浓度升高和降水增加协同作用对玉米产量及生长发育的影响[J]. 植物生态学报, 2014, 38(10): 1064-1073. |
[7] | 郑亚萍,信彩云,王才斌,孙秀山,杨伟强,万书波,郑永美,冯昊,陈殿绪,孙学武,吴正锋. 磷肥对花生根系形态、生理特性及产量的影响[J]. 植物生态学报, 2013, 37(8): 777-785. |
[8] | 王艳哲, 邵立威, 刘秀位, 张小雨, 张喜英. 小麦和玉米根系取样位置优化确定及根系分布模拟[J]. 植物生态学报, 2013, 37(4): 365-372. |
[9] | 李涛, 陈保冬. 丛枝菌根真菌通过上调根系及自身水孔蛋白基因表达提高玉米抗旱性[J]. 植物生态学报, 2012, 36(9): 973-981. |
[10] | 杨斌, 谢甫绨, 温学发, 孙晓敏, 王建林. 华北平原农田土壤蒸发δ18O的日变化特征及其影响因素[J]. 植物生态学报, 2012, 36(6): 539-549. |
[11] | 杨鹏, 胥晓. 淹水胁迫对青杨雌雄幼苗生理特性和生长的影响[J]. 植物生态学报, 2012, 36(1): 81-87. |
[12] | 时鹏, 王淑平, 贾书刚, 高强, 孙晓强. 三种种植方式对土壤微生物群落组成的影响[J]. 植物生态学报, 2011, 35(9): 965-972. |
[13] | 王红丽, 张绪成, 宋尚有. 半干旱区旱地不同覆盖种植方式玉米田的土壤水分和产量效应[J]. 植物生态学报, 2011, 35(8): 825-833. |
[14] | 刘富俊, 黎云祥, 廖咏梅, 陈劲松, 权秋梅, 龚新越. 异质性重金属镉胁迫下克隆整合对匍匐茎草本植物积雪草生长的影响[J]. 植物生态学报, 2011, 35(8): 864-871. |
[15] | 江浩, 周国逸, 黄钰辉, 刘世忠, 唐旭利. 南亚热带常绿阔叶林林冠不同部位藤本植物的光合生理特征及其对环境因子的适应[J]. 植物生态学报, 2011, 35(5): 567-576. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19