植物生态学报 ›› 2010, Vol. 34 ›› Issue (12): 1448-1453.DOI: 10.3773/j.issn.1005-264x.2010.12.011
收稿日期:
2010-01-12
接受日期:
2010-05-16
出版日期:
2010-01-12
发布日期:
2010-12-28
通讯作者:
杨洪强
作者简介:
(E-mail: hqyang@sdau.edu.cn)
MA Huai-Yu1, LÜ De-Guo1, YANG Hong-Qiang2,*()
Received:
2010-01-12
Accepted:
2010-05-16
Online:
2010-01-12
Published:
2010-12-28
Contact:
YANG Hong-Qiang
摘要:
以平邑甜茶(Malus hupehensis var. pingyiensis)实生幼苗为试验材料, 研究NaCl浇灌后根系线粒体H2O2含量、膜电位(Δψm)和根系ATP含量的变化以及细胞死亡特征。结果表明, 根系线粒体H2O2含量在0.085 mol·L -1 NaCl处理的第1-6天逐渐降低, 在第6-15天则快速上升; 线粒体Δψm在0.085 mol·L -1 NaCl处理的15天内一直呈下降趋势, 在第6-15天下降速度明显加快; 根系ATP含量在0.085 mol·L -1 NaCl处理的15天内始终低于对照, 但保持在一个较稳定的范围内。TUNEL原位末端标记试验显示, 0.085 mol·L -1 NaCl处理的第9天, 根系石蜡组织切片上的阳性反应斑点明显增多, 到第15天时阳性反应斑点密集成片, 表明细胞核DNA发生了细胞程序性死亡的特征性断裂。根系中细胞程序性死亡关键酶类caspase3/7活性在0.085 mol·L -1 NaCl处理的第1-6天处于较低水平, 其活性在第6-15天成倍上升。这些结果表明, 0.085 mol·L -1 NaCl处理6-15天能诱导平邑甜茶根细胞发生程序性死亡, 而且线粒体特性的变化与根系细胞程序性死亡密切相关。
马怀宇, 吕德国, 杨洪强. NaCl胁迫下平邑甜茶根系线粒体特性和细胞死亡特征. 植物生态学报, 2010, 34(12): 1448-1453. DOI: 10.3773/j.issn.1005-264x.2010.12.011
MA Huai-Yu, LÜ De-Guo, YANG Hong-Qiang. Characteristics of mitochondria and cell death in roots of Malus hupehensis var. pingyiensis under NaCl stress. Chinese Journal of Plant Ecology, 2010, 34(12): 1448-1453. DOI: 10.3773/j.issn.1005-264x.2010.12.011
图1 0.085 mol·L-1 NaCl处理后,平邑甜茶根系ATP含量的变化。
Fig. 1 Change of ATP content in Malus hupehensis var. pingyiensis roots after treated with 0.085 mol·L-1 NaCl.
图2 0.085 mol·L-1 NaCl处理后, 平邑甜茶根系线粒体H2O2含量的变化。
Fig. 2 Change of H2O2 quantity in Malus hupehensis var. pingyiensis roots mitochondria after treated with 0.085 mol·L-1 NaCl.
图3 0.085 mol·L-1 NaCl处理后, 平邑甜茶根系线粒体膜电位的变化。RFUs, 相对荧光单位。
Fig. 3 Change of membrane potential of mitochondrial (△ψm) in Malus hupehensis var. pingyiensis roots after treated with 0.085 mol·L-1 NaCl. RFUs, relative fluorescence units.
图4 0.085 mol·L-1 NaCl处理后, 平邑甜茶根系石蜡切片TUNEL染色(125×)。A, 对照。B, 处理3天。C, 处理6天。D, 处理9天。E, 处理12天。F, 处理15天。
Fig. 4 TUNEL assay of Malus hupehensis var. pingyiensis root paraffin section after treated with 0.085 mol·L-1 NaCl (125×). A, Control. B, Treated for 3 days. C, Treated for 6 days. D, Treated for 9 days. E, Treated for 12 days. F, Treated for 15 days.
对照 Control | 处理时间 Treatment time (d) | ||||
---|---|---|---|---|---|
3 | 6 | 9 | 12 | 15 | |
41.52 ± 10.36 | 45.94 ± 11.48 | 59.28 ± 10.04 | 217.33 ± 46.43 | 368.49 ± 41.32 | 452.27 ± 49.54 |
表1 0.085 mol·L-1 NaCl胁迫下平邑甜茶根系类caspase3/7酶活性的变化(相对光单位) (平均值±标准误差)
Table 1 Change of Caspase3/7 activity in Malus hupehensis var. pingyiensis roots after treated with 0.085 mol·L-1 NaCl (relative light units) (mean ± SE)
对照 Control | 处理时间 Treatment time (d) | ||||
---|---|---|---|---|---|
3 | 6 | 9 | 12 | 15 | |
41.52 ± 10.36 | 45.94 ± 11.48 | 59.28 ± 10.04 | 217.33 ± 46.43 | 368.49 ± 41.32 | 452.27 ± 49.54 |
[1] | Braidot E, Petrussa E, Macri F, Vianello A (1998). Plant mitochondrial electrical potential monitored by fluorescence quenching of rhodamine123. Biologia Plantarum, 41, 193-201. |
[2] | Chen Q, Vazquez EJ, Moghaddas S (2003). Production of reactive oxygen species by mitochondria: central role of complex III. Journal of Biological Chemistry, 278, 36027-36031. |
[3] |
Ferrer I, Planas AM (2003). Signaling of cell death and cell survival following focal cerebral ischemia: life and death struggle in the penumbra. Journal of Neuropathology and Experimental Neurology, 62, 329-339.
DOI URL PMID |
[4] | Halestrap AP, Gillespie JP, O’Toole A, Doran E (2000). Mitochondria and cell death: A pore way to die? In: Bryant JA, Hughes SG, Garland JM eds. Programmed Cell Death in Animals and Plants. BIOS Scientific Publishers, Oxford. 149-162. |
[5] |
Ichas F, Mazat JP (1998). From calcium signaling to cell death: two conformation for the mitochondrial permeability transition pore. Switching from low- to high-conductance state. Biochimica et Biophysica Acta, 1366, 33-50.
DOI URL PMID |
[6] | James FD, Riikka P, Tom B (2003). Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco. Plant Journal, 33, 621-632. |
[7] | Jezek P, Hlavata L (2005). Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Journal of Biochemical Cell Biology, 37, 2478-2503. |
[8] | Jiang LL (姜丽丽), Lian XF (连秀芬), Fan MS (樊明寿) (2005). Role of programmed cell death in adaptation of plant to environmental stress. Chinese Bulletin of Life Sciences (生命科学), 17, 267-270. (in Chinese with English abstract) |
[9] |
José CV, Ellis S, Roelie T (2005). Expression pattern of apoptosis-related markers in Huntington’s disease. Acta Neuropathol, 109, 321-328.
DOI URL PMID |
[10] | Katsuhara M, Shibasaka M (2000). Cell death and growth recovery of barley after transient salt stress. Journal of Plant Research, 113, 239-243. |
[11] |
Kroemer G, Zamzami N, Susin SA (1997). Mitochondrial control of apoptosis. Immunology Today, 18, 44-51.
DOI URL PMID |
[12] |
Liu SS (1999). Cooperation of a “reactive oxygen cycle” with the Q cycle and the cycling mechanism in mitochondria. Journal of Bioenergetics and Biomembranes, 31, 367-376.
DOI URL PMID |
[13] |
Liu YB, Fiskum G, Schubert D (2002). Generation of reactive oxygen species by the mitochondrial electron transport chain. Journal of Neurochemistry, 80, 780-787.
DOI URL PMID |
[14] | Lu XY (卢晓晔), Zhong XY (钟雪云) (2000). Caspases and apoptosis. Journal of Jinan University (Natural Science & Medicine Edition) ( 暨南大学学报(自然科学与医学版)), 21(6), 121-124. (in Chinese with English abstract) |
[15] |
Ma HY (马怀宇), Yang HQ (杨洪强) (2006). The effect of exogenous H2O2 on mitochondrial membrane permeability and cell nuclear DNA in roots of Malus hupehensis. Journal of Plant Physiology and Molecular Biology (植物生理与分子生物学学报), 32, 551-556. (in Chinese with English abstract)
URL PMID |
[16] |
Miller G, Shulaev V, Mittler R (2008). Reactive oxygen signaling and abiotic stress. Physiologia Plantarum, 133, 481-489.
DOI URL PMID |
[17] | Navrot N, Rouhier N, Gelhaye E, Jacquot JP (2007). Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiologia Plantarum, 129, 185-195. |
[18] | Promega (2009). Technical Bulletin—DeadEnd™ Colorimetric TUNEL System. http://www.promega.com/tbs/tb199/tb199.pdf. Cited Jan. 2010. |
[19] |
Ren HX (任红旭), Chen X (陈雄), Sun GJ (孙国钧), Wang YF (王亚馥) (2000). Response of wheat seedlings with different drought resistance to water deficiency and NaCl stresses. Chinese Journal of Applied Ecology (应用生态学报), 11, 718-722. (in Chinese with English abstract)
URL PMID |
[20] | Ren LM (任丽梅), Zhang J (张洁), Chen Y (陈琰), Wang DM (王冬梅) (2009). H2O2 induced programmed cell death of wheat suspension cells. Journal of Agricultural University of Hebei (河北农业大学学报), 32, 26-29. (in Chinese with English abstract) |
[21] | Storey R, Walker RR (1999). Citrus and salinity. Scientia Horticulturae, 78, 39-81. |
[22] | Wang WG (王维光) (1985). ATP determination with the method of bioluminescence. In: Shanghai Society of Plant Physiology ed. Experimental Manual of Plant Physiology (植物生理学实验手册). Shanghai Science and Technology Press, Shanghai. 115-117. (in Chinese) |
[23] | Yang HQ (杨洪强), Shu HR (束怀瑞) (2007). Studies of Apple Roots (苹果根系研究). Science Press, Beijing. 133-134. (in Chinese) |
[24] | Yang JY (杨玖英), Tan YP (谭艳平), Xia CJ (夏春皎), Zhu YG (朱英国), Liu XQ (刘学群) (2004). Honglian cytoplasmic male sterility in relation to its mitochondrial permeability transition. Journal of Wuhan Botanical Research (武汉植物学研究), 22, 385-390. (in Chinese with English abstract) |
[25] | Yang QL (杨启良), Zhang FC (张富仓), Liu XG (刘小刚), Yang ZY (杨振宇) (2009). Effects of drip irrigation mode and NaCl concentration on growth and hydraulic conductance of apple seedlings. Chinese Journal of Plant Ecology (植物生态学报), 33, 824-832. (in Chinese with English abstract) |
[26] | Yuan L (袁琳), Karim A ( 克热木·伊力), Zhang LQ (张利权) (2005). Effects of NaCl stress on active oxygen metabolism and membrane stability in Pistacia vera seedlings. Acta Phytoecologica Sinica (植物生态学报), 29, 985-991. (in Chinese with English abstract) |
[27] | Zhou ZB (周智波), Zhong LJ (钟丽君), Cheng S (程时) (2004). Measuring mitochondrial reactive oxygen species by a chemiluminescence method. Acta Zoologica Sinica (动物学报), 50, 120-125. (in Chinese with English abstract) |
[1] | 何斐, 李川, Faisal SHAH, 卢谢敏, 王莹, 王梦, 阮佳, 魏梦琳, 马星光, 王卓, 姜浩. 丛枝菌根菌丝桥介导刺槐-魔芋间碳转运和磷吸收[J]. 植物生态学报, 2023, 47(6): 782-791. |
[2] | 刘洋, 马煦, 邸楠, 曾子航, 付海曼, 李新, 席本野. 毛白杨根系液流与水力再分配特征[J]. 植物生态学报, 2023, 47(1): 123-133. |
[3] | 谢欢, 张秋芳, 陈廷廷, 曾泉鑫, 周嘉聪, 吴玥, 林惠瑛, 刘苑苑, 尹云锋, 陈岳民. 氮添加促进丛枝菌根真菌和根系协作维持土壤磷有效性[J]. 植物生态学报, 2022, 46(7): 811-822. |
[4] | 李孝龙, 周俊, 彭飞, 钟宏韬, Hans LAMBERS. 植物养分捕获策略随成土年龄的变化及生态学意义[J]. 植物生态学报, 2021, 45(7): 714-727. |
[5] | 魏春雪, 杨璐, 汪金松, 杨家明, 史嘉炜, 田大栓, 周青平, 牛书丽. 实验增温对陆地生态系统根系生物量的影响[J]. 植物生态学报, 2021, 45(11): 1203-1212. |
[6] | 刘丽燕, 冯锦霞, 刘文鑫, 万贤崇. 干旱胁迫对转PtPIP2;8基因84K杨苗木光合、生长和根系结构的影响[J]. 植物生态学报, 2020, 44(6): 677-686. |
[7] | 张乔艳, 唐丽霞, 廖华刚, 潘露, 陈龙, 黄同丽. 多花木蓝根截面微观结构对其抗拉特性的影响[J]. 植物生态学报, 2019, 43(8): 709-717. |
[8] | 邹显花, 胡亚楠, 韦丹, 陈思同, 吴鹏飞, 马祥庆. 磷高效利用杉木对低磷胁迫的适应性与内源激素的相关性[J]. 植物生态学报, 2019, 43(2): 139-151. |
[9] | 祝维, 余立璇, 赵德海, 贾黎明. 基于根系发育分级的砂壤土下成熟林木根系构型分析[J]. 植物生态学报, 2019, 43(2): 119-130. |
[10] | 高文童, 张春艳, 董廷发, 胥晓. 丛枝菌根真菌对不同性别组合模式下青杨雌雄植株根系生长的影响[J]. 植物生态学报, 2019, 43(1): 37-45. |
[11] | 席本野, 邸楠, 曹治国, 刘金强, 李豆豆, 王烨, 李广德, 段劼, 贾黎明, 张瑞娜. 树木吸收利用深层土壤水的特征与机制: 对人工林培育的启示[J]. 植物生态学报, 2018, 42(9): 885-905. |
[12] | 单立山, 苏铭, 张正中, 王洋, 王珊, 李毅. 不同生境下荒漠植物红砂-珍珠猪毛菜混生根系的垂直分布规律[J]. 植物生态学报, 2018, 42(4): 475-486. |
[13] | 岑宇, 王成栋, 张震, 任侠, 刘美珍, 杨帆. 河北省天然草地生物量和碳密度空间分布格局[J]. 植物生态学报, 2018, 42(3): 265-276. |
[14] | 孙元丰, 万宏伟, 赵玉金, 陈世苹, 白永飞. 中国草地生态系统根系周转的空间格局和驱动因子[J]. 植物生态学报, 2018, 42(3): 337-348. |
[15] | 尹华军, 张子良, 刘庆. 森林根系分泌物生态学研究: 问题与展望[J]. 植物生态学报, 2018, 42(11): 1055-1070. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19