植物生态学报 ›› 2018, Vol. 42 ›› Issue (9): 885-905.DOI: 10.17521/cjpe.2018.0083
所属专题: 根系生态学
• 综述 • 下一篇
席本野1,*(),邸楠1,*,曹治国1,4,*,刘金强1,李豆豆1,王烨1,2,李广德3,段劼1,贾黎明1,张瑞娜1
收稿日期:
2018-04-11
修回日期:
2018-09-10
出版日期:
2018-09-20
发布日期:
2018-09-26
通讯作者:
席本野,邸楠,曹治国
基金资助:
XI Ben-Ye1,*(),DI Nan1,*,CAO Zhi-Guo1,4,*,LIU Jin-Qiang1,LI Dou-Dou1,WANG Ye1,2,LI Guang-De3,DUAN Jie1,JIA Li-Ming1,ZHANG Rui-Na1
Received:
2018-04-11
Revised:
2018-09-10
Online:
2018-09-20
Published:
2018-09-26
Contact:
Ben-Ye XI,Nan DI,Zhi-Guo CAO
Supported by:
摘要:
根系吸水是树木水分关系的重要环节, 在树木生理活动中发挥着至关重要的作用。深层土壤中的水资源含量一般相对较高, 常可为树木生长供给大量水分, 并在旱季保障其生存与正常生长。因此, 了解树木对深层土壤水的吸收利用特征与机制, 可帮助深入认识树木与环境的互作机制、树木的生长与生存策略、物种间的共存与竞争机制等内容, 同时还可帮助构建既能降低外部水资源投入, 又能避免水分生态环境负面效应的人工林绿色栽培制度。基于已有研究, 该文对树木吸收利用深层土壤水的特征与机制进行了综述。首先, 探讨了深层根系和深层土壤的界定, 指出对于除寒温带针叶林以外的其他主要森林植被类型, 可以1 m作为树木深根系和深土层的平均划分(参考)标准, 并明确了全球范围内树木深根系的成因。其次, 对已有研究中观察到的树木对深层土壤水的吸收利用特征及其影响因素进行了归纳与总结, 并从深根系性状调节、整株水力特性协调两方面探讨了树木高效吸收利用深层土壤水的机制, 如可通过深根系的空间、时间和效率调节策略来促进对深土层水分的吸收。最后, 提出了树木利用深土层水分对人工林培育的几点启示, 包括水分管理.中应使林木适度利用深层土壤水, 选用合适的灌水频率、合理的树种混交能促进深层土壤水分储库“缓冲”作用的发挥, 基于树木土壤水分利用深度的间伐木选择技术等, 并指出了该领域现有研究的不足以及今后的发展方向。
席本野, 邸楠, 曹治国, 刘金强, 李豆豆, 王烨, 李广德, 段劼, 贾黎明, 张瑞娜. 树木吸收利用深层土壤水的特征与机制: 对人工林培育的启示. 植物生态学报, 2018, 42(9): 885-905. DOI: 10.17521/cjpe.2018.0083
XI Ben-Ye, DI Nan, CAO Zhi-Guo, LIU Jin-Qiang, LI Dou-Dou, WANG Ye, LI Guang-De, DUAN Jie, JIA Li-Ming, ZHANG Rui-Na. Characteristics and underlying mechanisms of plant deep soil water uptake and utilization: Implication for the cultivation of plantation trees. Chinese Journal of Plant Ecology, 2018, 42(9): 885-905. DOI: 10.17521/cjpe.2018.0083
植被类型 Vegetation type | d95 (cm)* |
---|---|
苔原 Tundra | 29 |
寒温带针叶林 Boreal forest | 58 |
寒温带森林(含人工林) Cool-temperate forest (including plantations) | 104 |
暖温带森林(含人工林) Warm-temperate forest (including plantations) | 121 |
森林草甸 Meadows in the forest zone | 40 |
草原 Prairie | 91 |
半荒漠草地 Semi-desert steppe | 120 |
温带稀树草原 Temperate savanna | 140 |
地中海灌丛/林地 Mediterranean shrubland/woodland | 171 |
半荒漠灌丛 Semi-desert shrubland | 131 |
荒漠 Desert | 112 |
干旱热带稀树草原 Dry tropical savannas | 144 |
湿润热带稀树草原 Humid tropical savannas | 94 |
热带半落叶和落叶林 Tropical semi-deciduous and deciduous forest | 95 |
热带常绿林 Tropical evergreen forest | 91 |
表1 全球不同植被类型累积95%根系的分布深度(d95) (数据源自Schenk & Jackson, 2002a)
Table 1 The estimated depths of 95% cumulative roots (d95) for global vegetation types (data from Schenk & Jackson, 2002a)
植被类型 Vegetation type | d95 (cm)* |
---|---|
苔原 Tundra | 29 |
寒温带针叶林 Boreal forest | 58 |
寒温带森林(含人工林) Cool-temperate forest (including plantations) | 104 |
暖温带森林(含人工林) Warm-temperate forest (including plantations) | 121 |
森林草甸 Meadows in the forest zone | 40 |
草原 Prairie | 91 |
半荒漠草地 Semi-desert steppe | 120 |
温带稀树草原 Temperate savanna | 140 |
地中海灌丛/林地 Mediterranean shrubland/woodland | 171 |
半荒漠灌丛 Semi-desert shrubland | 131 |
荒漠 Desert | 112 |
干旱热带稀树草原 Dry tropical savannas | 144 |
湿润热带稀树草原 Humid tropical savannas | 94 |
热带半落叶和落叶林 Tropical semi-deciduous and deciduous forest | 95 |
热带常绿林 Tropical evergreen forest | 91 |
[1] |
Adane ZA, Gates JB ( 2015). Determining the impacts of experimental forest plantation on groundwater recharge in the Nebraska Sand Hills (USA) using chloride and sulfate. Hydrogeology Journal, 23, 81-94.
DOI URL |
[2] |
Adriano E, Laclau JP, Rodrigues JD ( 2017). Deep rooting of rainfed and irrigated orange trees in Brazil. Trees, 31, 285-297.
DOI URL |
[3] |
Amazonas NT, Forrester DI, Oliveira RS, Brancalion PHS ( 2018). Combining Eucalyptus wood production with the recovery of native tree diversity in mixed plantings: Implications for water use and availability. Forest Ecology and Management, 418, 34-40.
DOI URL |
[4] |
Antunes C, Barradas MCD, Zunzunegui M, Vieira S, Pereira A, Anjos A, Correia O, Pereira MJ, Máguas C ( 2018). Contrasting plant water-use responses to groundwater depth in coastal dune ecosystems. Functional Ecology, 32, 1931-1943.
DOI URL |
[5] | Baddeley JA, Watson CA ( 2005). Influences of root diameter, tree age, soil depth and season on fine root survivorship in Prunus avium. Plant and Soil, 276, 15-22. |
[6] |
Barbeta A, Pe?uelas J ( 2017). Relative contribution of groundwater to plant transpiration estimated with stable isotopes. Scientific Reports, 7, 10580. DOI: 10.1038/s41598-017-?09643-x.
DOI URL PMID |
[7] |
Barron-Gafford GA, Sanchezca?ete EP, Minor RL, Hendryx SM, Lee E, Sutter L, Tran N, Parra E, Colella T, Murphy P, Hamerlynck E, Kumar P, Scott R ( 2017). Impacts of hydraulic redistribution on grass-tree competition vs facilitation in a semi-arid savanna. New Phytologist, 215, 1451-1461.
DOI URL |
[8] | Billings SA, Hirmas D, Sullivan PL, Lehmeier CA, Bagchi S, Min K, Brecheisen Z, Hauser E, Stair R, Flournoy R, Richter D ( 2018). Loss of deep roots limits biogenic agents of soil development that are only partially restored by decades of forest regeneration. Elementa: Science of the Anthropocene, 6, 34. DOI: 10.1525/elementa.287. |
[9] |
Bordron B, Robin A, Oliveira IR, Guillemot J, Laclau JP, Jourdan C, Nouvellon Y, Abreu-Junior CH, Trivelin PCO, Gonc?alves JLM, Plassard C, Bouillet JP ( 2018). Fertilization increases the functional specialization of fine roots in deep soil layers for young Eucalyptus grandis trees. Forest Ecology and Management, (in press). DOI: 10.1016/j.?foreco.?2018.03.018.
DOI URL |
[10] |
B?rja I, Godbold DL, Světlík J, Nagy NE, Gebauer R, Urban J, Vola?ík D, Lange H, Krokene P, ?ermák P, Eldhuset TD ( 2017). Norway spruce fine roots and fungal hyphae grow deeper in forest soils after extended drought. In: Lukac M, Grenni P, Gamboni M eds . Soil Biological Communities and Ecosystem Resilience. Springer International Publishing, Berlin. 123-142.
DOI URL |
[11] |
Broedel E, Tomasella J, Candido LA, von Randow C ( 2017). Deep soil water dynamics in an undisturbed primary forest in central Amazonia: Differences between normal years, and the 2005 drought. Hydrological Processes, 31, 1749-1759.
DOI URL |
[12] |
Brum M, Teodoro GS, Abrah?o A, Oliveira RS ( 2017). Coordination of rooting depth and leaf hydraulic traits defines drought-related strategies in the campos rupestres, a tropical montane biodiversity hotspot. Plant and Soil, 420, 467-480.
DOI URL |
[13] |
Bucci SJ, Scholz FG, Goldstein G, Meinzer FC, Arce ME ( 2009). Soil water availability and rooting depth as determinants of hydraulic architecture of Patagonian woody species. Oecologia, 160, 631-641.
DOI URL PMID |
[14] |
Caldwell MM, Dawson TE, Richards JH ( 1998). Hydraulic lift: Consequences of water efflux from the roots of plants. Oecologia, 113, 151-161.
DOI URL PMID |
[15] |
Canadell J, Jackson RB, Ehleringer JR, Mooney HA, Sala OE, Schulze ED ( 1996). Maximum rooting depth of vegetation types at the global scale. Oecologia, 108, 583-595.
DOI URL PMID |
[16] |
Chen YN, Li WH, Zhou HH, Chen YP, Hao XM, Fu AH, Ma JX ( 2016). Field experiment on water transport in desert riparian forests downstream of the Heihe River. Journal of Beijing Normal University (Natural Science), 52, 271-276.
DOI URL |
[ 陈亚宁, 李卫红, 周洪华, 陈亚鹏, 郝兴明, 付爱红, 马建新 ( 2016). 黑河下游荒漠河岸林植物水分传输观测试验研究. 北京师范大学学报(自然科学版), 52, 271-276.]
DOI URL |
|
[17] | Chen YP, Chen YN, Xu CC, Li WH ( 2016). The effects of groundwater depth on water uptake of Populus euphratica and Tamarix ramosissima in the hyperarid region of Northwestern China. Environmental Science and Pollution Research, 23, 17404-17412. |
[18] |
Chitra-Tarak R, Ruiz L, Dattaraja HS, Kumar MSM, Riotte J, Suresh HS, McMahon SM, Sukumar R ( 2018). The roots of the drought: Hydrology and water uptake strategies mediate forest-wide demographic response to precipitation. Journal of Ecology, 106, 1495-1507.
DOI URL |
[19] |
Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Field TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martinez-Vilalta J, Mayr S, Mencuccini M, Mitchell PJ, Nardini A, Pittermann J, Pratt RB, Sperry JS, Westoby M, Wright IJ, Zanne AE ( 2012). Global convergence in the vulnerability of forests to drought. Nature, 491, 752-755.
DOI URL |
[20] |
Christina M, Laclau JP, Goncalves LM, Jourdan C, Nouvellon Y, Bouillet JP ( 2011). Almost symmetrical vertical growth rates above and below ground in one the world’s most productive forests. Ecoshpere, 2, 1-10.
DOI URL |
[21] |
Christina M, le Maire G, Nouvellon Y, Vezy R, Bordon B, Battie-Laclau P, Goncalves JLM, Delgado-Rojas JS, Bouillet JP, Laclau JP ( 2018). Simulating the effects of different potassium and water supply regimes on soil water content and water table depth over a rotation of a tropical Eucalyptus grandis plantation. Forest Ecology and Management, 418, 4-14.
DOI URL |
[22] |
Christina M, Nouvellon Y, Laclau JP, Stape JL, Bouillet JP, Lambais GR, le Maire G ( 2017). Importance of deep water uptake in tropical eucalypt forest. Functional Ecology, 31, 509-519.
DOI URL |
[23] |
Comas LH, Becker SR, Cruz VMV, Byme PF, Dierig DA ( 2013). Root traits contributing to plant productivity under drought. Frontiers in Plant Science, 4, 1-16.
DOI URL PMID |
[24] |
Cubera E, Moreno G ( 2007). Effects of single Quercus ilex trees upon spatial and seasonal changes in soil water content in dehesas of central western Spain. Annals of Forest Science, 64, 355-364.
DOI URL |
[25] |
da Silva EV, Bouillet JP, de Moraes GJL, Junior CHA, Trivelin PCO, Hinsinger P, Jourdan C, Nouvellon Y, Stape JL, Laclau JP ( 2011). Functional specialization of Eucalyptus fine roots: Contrasting potential uptake rates for nitrogen, potassium and calcium tracers at varying soil depths. Functional Ecology, 25, 996-1006.
DOI URL |
[26] |
Dawson TE, Ehleringer JR ( 1991). Streamside trees that do not use stream water. Nature, 350, 335-337.
DOI URL |
[27] |
de Deurwaerder H, Hervé-Fernández P, Stahl C, Burban B, Petronelli P, Hoffman B, Bonal D, Boeckx P, Verceeck H ( 2018). Liana and tree below-ground water competition— Evidence for water resource partitioning during the dry season. Tree Physiology, 38, 1071-1083.
DOI URL PMID |
[28] |
Dhiman I, Bilheux H, DeCarlo K, Painter SL, Santodonato L, Warren JM ( 2017). Quantifying root water extraction after drought recovery using sub-mm in situ empirical data. Plant and Soil, 424, 73-89.
DOI URL |
[29] |
Di N, Liu Y, Mead DJ, Xie YQ, Jia LM, Xi BY ( 2018). Root-system characteristics of plantation-grown Populus tomentosa adapted to seasonal fluctuation in the groundwater table. Trees, 32, 137-149.
DOI URL |
[30] |
Domec JC, Warren JM, Meinzer FC, Brooks JR, Coulombe R ( 2004). Native root xylem embolism and stomatal closure in stands of Douglas-fir and ponderosa pine: Mitigation by hydraulic redistribution. Oecologia, 141, 7-16.
DOI URL PMID |
[31] |
Fan Y, Miguez-Macho G, Jobbágy EG, Jackson RB, Oterocasal C ( 2017). Hydrologic regulation of plant rooting depth. Proceedings of the National Academy of Sciences of the United States of America, 114, 10572-10577.
DOI URL PMID |
[32] |
Gambetta GA, Knipfer T, Fricke W, Mcelrone AJ ( 2017). Aquaporin and root water uptake. In: Fran?ois C, Stephen DT eds . Plant Aquaporins. Springer International Publishing, Cham, Switzerland. 133-153.
DOI URL |
[33] |
Germon A, Cardinael R, Prieto I, Mao Z, Kim J, Stokes A, Dupraz C, Laclau JP, Jourdan C ( 2016). Unexpected phenology and lifespan of shallow and deep fine roots of walnut trees grown in a silvoarable Mediterranean agroforestry system. Plant and Soil, 401, 409-426.
DOI URL |
[34] | Germon A, Guerrini IA, Bordron B, Bouillet JP, Nouvellon Y, de Moraes Gon?alves JL, Jourdan C, Paula RR, Laclau JP ( 2017). Consequences of mixing Acacia mangium and Eucalyptus grandis on soil exploration by fine-roots down to a depth of 17 m. Plant and Soil, 424, 203-220. |
[35] |
Guderle M, Bachmann D, Milcu A, Gockele A, Bechmann M, Fisher C, Roscher C, Landais D, Ravel O, Devidal S, Roy J, Gessler A, Buchmann N, Weigelt A, Hildebrandt A ( 2018). Dynamic niche partitioning in root water uptake facilitates efficient water use in more diverse grassland plant communities. Functional Ecology, 32, 214-227.
DOI URL |
[36] |
Hardanto A, R?ll A, Hendrayanto, H?lscher D ( 2017). Tree soil water uptake and transpiration in mono-cultural and jungle rubber stands of Sumatra. Forest Ecology and Management, 397, 67-77.
DOI URL |
[37] |
Hasenmueller EA, Gu X, Weitzman JN, Adams TS, Stinchcomb GE, Eissenstat DM, Drohan PJ, Brantley SL, Kaye JP ( 2017). Weathering of rock to regolith: The activity of deep roots in bedrock fractures. Geoderma, 300, 11-31.
DOI URL |
[38] | Hayes FA, Stoeckler JH ( 1935). Possibilities of Shelterbelt Planting in the Plains Regions. US Forest Service, Wash-ington . 111-155. |
[39] |
He CX, Chen P, Meng P, Zhang JS, Yang HG ( 2016). Interspecific water use strategies of a Juglans regia and Isatis tinctoria/Senna tora agroforestry system in a hilly area of Northern China. Chinese Journal of Plant Ecology, 40, 151-164.
DOI URL |
[ 何春霞, 陈平, 孟平, 张劲松, 杨洪国 ( 2016). 华北低丘山区果药复合系统种间水分利用策略. 植物生态学报, 40, 151-164.]
DOI URL |
|
[40] | He Y, Lan ZP, Sun SW, Liu JQ ( 2015). Effects of drip irrigation on the growth and use efficiency of water and fertilizer of Young ‘107’ poplar plantation. Journal of Northeast Forestry University, 43(11), 37-41. |
[ 贺勇, 兰再平, 孙尚伟, 刘俊琴 ( 2015). 地面滴灌对107杨幼林生长和水肥利用的影响. 东北林业大学学报, 43(11), 37-41.] | |
[41] |
Holloway JV, Rillig MC, Gurnell AM ( 2017). Physical environmental controls on riparian root profiles associated with black poplar ( Populus nigra L.) along the Tagliamento River, Italy. Earth Surface Processes and Landforms, 42, 1262-1273.
DOI URL |
[42] |
Ishikawa CM, Bledsoe CS ( 2000). Seasonal and diurnal patterns of soil water potential in the rhizosphere of blue oaks: Evidence for hydraulic lift. Oecologia, 125, 459-465.
DOI URL PMID |
[43] |
Jackson RB, Mooney HA, Schulze ED ( 1997). A global budget for fine root biomass, surface area, and nutrient contents. Ecology, 94, 7362-7366.
DOI URL PMID |
[44] |
Jasińska AK, Alber M, Tullus A, Rahi M, Sellin A ( 2015). Impact of elevated atmospheric humidity on anatomical and hydraulic traits of xylem in hybrid aspen. Functional Plant Biology, 42, 565-578.
DOI URL |
[45] |
Jin Y, Wang CK ( 2015). Trade-offs between plant leaf hydraulic and economic traits. Chinese Journal of Plant Ecology, 39, 1021-1032.
DOI URL |
[ 金鹰, 王传宽 ( 2015). 植物叶片水力与经济性状权衡关系的研究进展. 植物生态学报, 39, 1021-1032.]
DOI URL |
|
[46] |
Johnson DM, Brodersen CR, Reed M, Domec JC, Jackson RB ( 2014 a). Role of aquaporin activity in regulating deep and shallow root hydraulic conductance during extreme drought. Trees, 28, 1323-1331.
DOI URL |
[47] |
Johnson DM, Brodersen CR, Reed M, Domec JC, Jackson RB ( 2014b ). Contrasting hydraulic architecture and function in deep and shallow roots of tree species from a semi-arid habitat. Annals of Botany, 113, 617-627.
DOI URL PMID |
[48] |
Johnson DM, Wortemann R, McCulloh KA, Meille LJ, Ward E, Warren JM, Palmroth S, Domec JC ( 2016). A test of the hydraulic vulnerability segmentation hypothesis in angiosperm and conifer tree species. Tree Physiology, 36, 983. DOI: 10.1093/treephys/tpw031.
DOI URL PMID |
[49] |
Kirfel K, Leuschner C, Hertel D, Schuldt B ( 2017). Influence of root diameter and soil depth on the xylem anatomy of fine- to medium-sized roots of mature beech trees in the top- and subsoil. Frontiers in Plant Science, 8, 1194. DOI: 10.3389/fpls.2017.01194.
DOI URL PMID |
[50] |
Kleidon A, Heimann M ( 1998). A method of determining rooting depth from a terrestrial biosphere model and its impacts on the global water and carbon cycle. Global Change Biology, 4, 275-286.
DOI URL PMID |
[51] |
Kumagai T, Mudd RG, Giambelluca TW, Kobayashi N, Miyazawa Y, Lim TK, Liu W, Huang MY, Fox JM, Ziegler AD, Yin S, Mak SV, Kasemasp P ( 2015). How do rubber ( Hevea brasiliensis) plantations behave under seasonal water stress in northeastern Thailand and central Cambodia? Agricultural and Forest Meteorology, 213, 10-22.
DOI URL |
[52] |
Laclau JP, da Silva EA, Lambais GR, Bernoux M, Maire GI, Stape JL, Bouillet JP, de Moraes Goncalves JL, Jourdan C, Nouvellon Y ( 2013). Dynamics of soil exploration by fine roots down to a depth of 10 m throughout the entire rotation in Eucalyptus grandisplantations. Frontiers in Plant Science, 4, 1-12.
DOI URL PMID |
[53] |
Laclau PB, Laclau JP ( 2009). Growth of the whole root system for a plant crop of sugarcane under rainfed and irrigated environments in Brazil. Field Crops Research, 114, 351-360.
DOI URL |
[54] |
Lambais GR, Jourdan C, de Cássia Piccolo M, Germon A, Pinheiro RC, Nouvellon Y, Stape JL, Campoe OC, Robin A, Bouillet JP, le Maire G, Laclau JP ( 2017). Contrasting phenology of Eucalyptus grandisfine roots in upper and very deep soil layers in Brazil. Plant and Soil, 421, 301-318.
DOI URL |
[55] |
Lee JE, Oliveira RS, Dawson TE, Fung I ( 2005). Root functioning modifies seasonal climate. Proceedings of the National Academy of Sciences of the United States of America, 102, 17576-17581.
DOI URL |
[56] |
Lindh M, Zhang L, Falster D, Franklin O, Br?nnstr?m ? ( 2014). Plant diversity and drought: The role of deep roots. Ecological Modelling, 290, 85-93.
DOI URL |
[57] |
Liu XL, Ma LH, Yang RH, Wu PT, Wang YK ( 2014). Deep soil water depletion characteristic of jujube plantation in loess semiarid region. Transactions of the Chinese Society for Agricultural Machinery, 45, 139-145.
DOI URL |
[ 刘晓丽, 马理辉, 杨荣慧, 吴普特, 汪有科 ( 2014). 黄土半干旱区枣林深层土壤水分消耗特征. 农业机械学报, 45, 139-145.]
DOI URL |
|
[58] |
Liu XL, Wang YK, Ma LH, Liang Y ( 2013). Relationship between deep soil water vertical variation and root distribution in dense jujube plantation. Transactions of the Chinese Society of Agricultural Machinery, 44, 90-97.
DOI URL |
[ 刘晓丽, 汪有科, 马理辉, 梁宇 ( 2013). 密植枣林地深层土壤水分垂直变化与根系分布关系. 农业机械学报, 44, 90-97.]
DOI URL |
|
[59] |
Liu Y, Miao HT, Huang Z, Cui Z, He HH, Zheng JY, Han FP, Chang XF, Wu GL ( 2018a ). Soil water depletion patterns of artificial forest species and ages on the Loess Plateau (China). Forest Ecology and Management, 417, 137-143.
DOI URL |
[60] | Liu ZQ, Jia GD, Yu XX, Lu WW, Zhang JM ( 2018b ). Water use by broadleaved tree species in response to changes in precipitation in a mountainous area of Beijing. Agriculture, Ecosystem and Environment, 251, 132-140. |
[61] |
Luo DD, Wang CK, Jin Y ( 2017). Plant water-regulation strategies: Isohydric versus anisohydric behavior. Chinese Journal of Plant Ecology, 41, 1020-1032.
DOI URL |
[ 罗丹丹, 王传宽, 金鹰 ( 2017). 植物水分调节对策: 等水与非等水行为. 植物生态学报, 41, 1020-1032.]
DOI URL |
|
[62] |
Ma LH, Liu XL, Wang YK, Wu PT ( 2013). Effects of drip irrigation on the deep root distribution, rooting depth, and soil water profile of jujube in a semiarid region. Plant and Soil, 373, 995-1006.
DOI URL |
[63] |
Ma ZQ, Guo DL, Xu XL, Lu MZ, Bardgett RD, Mccormack ML, Hedin LO ( 2018). Evolutionary history resolves global organization of root functional roots. Nature, 555, 48-56.
DOI URL PMID |
[64] | Maeght JL, Gonkhamdee S, Clément C, Ayutthaya SIN, Stokes A, Pierret A ( 2015). Seasonal patterns of fine root production and turnover in a mature rubber tree ( Hevea brasiliensisMüll. Arg.) stand—Differentiation with soil depth and implications for soil carbon stocks. Frontiers in Plant Science, 6, 1022. DOI: 10.3389/fpls.2015.01022. |
[65] |
Maeght JL, Rewald B, Pierret A ( 2013). How to study deep roots and why it matters. Frontiers in Plant Science, 4, 299. DOI: 10.3389/fpls.2013.00299.
DOI URL PMID |
[66] |
McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, Guo DL, Helmisaari HS, Hobbie EA, Iversen CM, Jackson RB, Lepp?lammi-Kujansuu J, Norby RJ, Phillips RP, Pregitzer KS, Pritchard SG, Rewald B, Zadworny M ( 2015). Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytologist, 207, 505-518.
DOI URL PMID |
[67] |
McCulley RL, Jobbágy EG, Pockman WT, Jackson RB ( 2004). Nutrient uptake as a contributing explanation for deep rooting in arid and semi-arid ecosystems. Oecologia, 141, 620-628.
DOI URL PMID |
[68] |
McElrone AJ, Bichler J, Pockman WT, Addington RN, Linder CR, Jackson RB ( 2007). Aquaporin-mediated changes in hydraulic conductivity of deep tree roots accessed via caves. Plant, Cell & Environment, 30, 1411-1421.
DOI URL PMID |
[69] |
McElrone AJ, Pockman WT, Martínez-Vilalta J, Jackson RB ( 2004). Variation in xylem structure and function in stems and roots of trees to 20 m depth. New Phytologist, 163, 507-517.
DOI URL |
[70] |
Meinzer FC, Brooks JR, Bucci S, Goldstein G, Scholz FG, Warren JM ( 2004). Converging patterns of uptake and hydraulic redistribution of soil water in contrasting woody vegetation types. Tree Physiology, 24, 919-928.
DOI URL PMID |
[71] |
Miao B, Meng P, Zhang JS, He FJ, Sun SJ ( 2017). Difference of water relationships of poplar trees in Zhangbei County, Hebei, China based on stable isotope and thermal dissipation method. Chinese Journal of Applied Ecology, 28, 2111-2118.
DOI URL |
[ 苗博, 孟平, 张劲松, 何方杰, 孙守家 ( 2017). 基于稳定同位素和热扩散技术的张北杨树水分关系差异. 应用生态学报, 28, 2111-2118.]
DOI URL |
|
[72] |
Mulia R, Dupraz C ( 2006). Unusual fine root distributions of two deciduous tree species in southern France: What consequences for modeling of tree root dynamics? Plant and Soil, 281, 71-85.
DOI URL |
[73] |
Nadezhdina N, Ferreira MI, Concei??o N, Pacheco CA, H?usler M, David TS ( 2014). Water uptake and hydraulic redistribution under a seasonal climate: Long-term study in a rainfed olive orchard. Ecohydrology, 8, 387-397.
DOI URL |
[74] |
Naumburg E, Mata-Gonzalez R, Hunter RG, Mclendon T, Martin DW ( 2005). Phreatophytic vegetation and groundwater fluctuations: A review of current research and application of ecosystem response modeling with an emphasis on great basin vegetation. Environmental Management, 35, 726-740.
DOI URL PMID |
[75] | Nepstad DC, de Carvalho CR, Davidson EA, Jipp PH, Lefebvre PA, Negreiros GH, da Silva ED, Stone TA, Trumbore SE, Vieira S ( 1994). The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature, 372, 666-669. |
[76] |
Neumann RB, Cardon ZG ( 2012). The magnitude of hydraulic redistribution by plant roots: A review and synthesis of empirical and modeling studies. New Phytologist, 194, 337-352.
DOI URL PMID |
[77] |
Oliveira RS, Bezerra L, Davidson EA, Pinto F, Klink CA, Nepstad DC, Moreira AM ( 2005). Deep root function in soil water dynamics in cerrado savannas of central Brazil. Functional Ecology, 19, 574-581.
DOI URL |
[78] | Pan YP, Chen YP ( 2014). Recent advances in leaf hydraulic traits. Chinese Journal of Ecology, 33, 2834-2841. |
[ 潘莹萍, 陈亚鹏 ( 2014). 叶片水力性状研究进展. 生态学杂志, 33, 2834-2841.] | |
[79] |
Pate JS, Jeschke WD, Aylward MJ ( 1995). Hydraulic architecture and xylem structure of the dimorphic roots systems of South-West Australian species of Proteaceae. Journal of Experimental Botany, 46, 907-915.
DOI URL |
[80] | Pierret A, Lacombe G ( 2018). Hydrologic regulation of plant rooting depth: Breakthrough or observational conundrum? Proceedings of the National Academy of Sciences of the United States of America, 114, 10572-10577. |
[81] |
Pierret A, Maeght JL, Clément C, Montoroi JP, Hartmann C, Gonkhamdee S ( 2016). Understanding deep roots and their functions in ecosystems: An advocacy for more unconventional research. Annals of Botany, 118, 621-635.
DOI URL PMID |
[82] |
Pinheiro RC, de Deus Jr JC, Nouvellon Y, Campoe O, Stape JL, Aló LL, Guerrini IA, Jourdan C, Laclau JP ( 2016). A fast exploration of very deep soil layers by Eucalyptusseedlings and clones in Brazil. Forest Ecology and Management, 366, 143-152.
DOI URL |
[83] |
Prieto I, Roumet C, Cardinael R, Dupraz C, Jourdan C, Kim JH, Maeght JL, Mao Z, Pierret A, Portillo N, Roupsard O, Thammahacksa C, Stokes A ( 2015). Root functional parameters along a land-use gradient: Evidence of a community-?level economics spectrum. Journal of Ecology, 103, 361-373.
DOI URL |
[84] |
Qi J, Markewitz D, Radcliffe D ( 2018). Modeling the effect of changing precipitation inputs on deep soil water utilization. Hydrological Processes, 32, 672-686.
DOI URL |
[85] |
Rempe DM, Dietrich WE ( 2018). Direct observations of rock moisture, a hidden component of the hydrologic cycle. Proceedings of the National Academy of Sciences of the United States of America, 115, 2664-2669.
DOI URL PMID |
[86] |
Richards JH, Caldwell MM ( 1987). Hydraulic lift: Substantial nocturnal water transport between soil layers by Artem isiatridentate roots. Oecologia, 73, 486-489.
DOI URL PMID |
[87] |
Ryel RJ, Caldwell MM, Yoder CK, Or D, Leffler AJ ( 2002). Hydraulic redistribution in a stand of Artemisia tridentate: Evaluation of benefits to transpiration assessed with a simulation model. Oecologia, 130, 173-184.
DOI URL PMID |
[88] |
Schenk HJ ( 2008). The shallowest possible water extraction profile: A null model for global root distribution. Vadose Zone Journal, 7, 1119-1124.
DOI URL |
[89] |
Schenk HJ, Jackson RB ( 2002a ). The global biogeography of roots. Ecological Monographs, 72, 311-328.
DOI URL |
[90] |
Schenk HJ, Jackson RB ( 2002b ). Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. Journal of Ecology, 90, 480-494.
DOI URL |
[91] |
Schenk HJ, Jackson RB ( 2005). Mapping the global distribution of deep roots in relation to climate and soil characteristics. Geoderma, 126, 129-140.
DOI URL |
[92] |
Schippers B, Schroth MN, Hildebrand DC ( 1967). Emanation of water from underground plant parts. Plant and Soil, 27, 81-91.
DOI URL |
[93] |
Sekiya N, Araki H, Yano K ( 2011). Applying hydraulic lift in an agroecosystem: Forage plants with shoots removed supply water to neighboring vegetable crops. Plant and Soil, 341, 39-50.
DOI URL |
[94] |
Shangguan W, Hengl T, de Jesus JM, Yuan H, Dai YJ ( 2017). Mapping the global depth to bedrock for land surface modeling. Journal of Advances in Modeling Earth System, 9, 65-88.
DOI URL |
[95] | Si JH, Feng Q, Cao SK, Yu TF, Zhao CY ( 2014). Water sources of desert riparian Populus euphraticaforests. Environmental Monitoring and Assessment, 186, 5469-5477. |
[96] |
Siqueira M, Katul G, Porporato A ( 2008). Onset of water stress, hysteresis in plant conductance, and hydraulic lift: Scaling soil water dynamics from millimeters to meters. Water Resources Research, 44, 358-366.
DOI URL |
[97] | Song LN, Zhu JJ, Li MC, Zhang JX, Lv LY ( 2016). Sources of water used by Pinus sylvestrisvar. mongolica trees based on stable isotope measurements in a semiarid sandy region of Northeast China. Agricultural Water Management, 164, 281-290. |
[98] | Sprackling JA, Read RA ( 1979). Tree Root Systems in Eastern Nebraska. The Conservation and Survey Division, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln, Lincoln, NE. Nebraska Conservation Bulletin 37. |
[99] |
Stahl C, Hérault B, Rossi V, Burban B, Bréchet C, Bonal D ( 2013). Depth of soil water uptake by tropical rainforest trees during dry periods: Does tree dimension matter? Oecologia, 173, 1191-1201.
DOI URL PMID |
[100] |
Steggles EK, Holland KL, Chittleborough DJ, Doudle SL, Clarke LJ, Watling JR, Facelli JM ( 2016). The potential for deep groundwater use by Acacia papyrocarpa( Western myall) in a water-limited environment. Ecohydrology, 10, e1791. DOI: 10.1002/eco.1791.
DOI URL |
[101] |
Stone EL, Kalisz PJ ( 1991). On the maximum extent of tree roots. Forest Ecology and Management, 46, 59-102.
DOI URL |
[102] |
Stratton LC, Goldstein G, Meinzer FC ( 2000). Temporal and spatial partitioning of water resources among eight woody species in a Hawaiian dry forest. Oecologia, 124, 309-317.
DOI URL PMID |
[103] |
Su H, Liu W, Li YG ( 2014). Ecological implications of hydraulic redistribution in nutrient cycling of soil-plant system. Chinese Journal of Plant Ecology, 38, 1019-1028.
DOI URL |
[ 苏华, 刘伟, 李永庚 ( 2014). 水分再分配对土壤-植物系统养分循环的生态意义. 植物生态学报, 38, 1019-1028.]
DOI URL |
|
[104] |
Sun SJ, He CX, Qiu LF, Li CY, Zhang JS, Meng P ( 2018). Stable isotope analysis reveals prolonged drought stress in poplar plantation mortality of the three-north shelter forest in Northern China. Agricultural and Forest Meteorology, 252, 39-48.
DOI URL |
[105] | Wagg JWB ( 1967). Origin and Development of White Spruce Root-Forms. Queen’s Printer and Controller of Stationery, Ottawa, Ontario, Canada. Forestry Branch Departmental Publication No. 1192. |
[106] |
Wang X, Tang C, Guppy CN, Sale PWG ( 2009). The role of hydraulic lift and subsoil P placement in P uptake of cotton ( Gossypium hirsutum L.). Plant and Soil, 325, 263-275.
DOI URL |
[107] |
Wang Y, Dong XY, Wang HF, Wang ZQ, Gu JC ( 2015). Root tip morphology, anatomy, chemistry and potential hydraulic conductivity vary with soil depth in three temperate hardwood species. Tree Physiology, 36, 99-108. DOI: 10.1093/treephys/tpv094.
DOI URL PMID |
[108] | Wang ZQ, Guo DL ( 2008). Root ecology. Journal of Plant Ecology (Chinese Version), 32, 1213-1216. |
[ 王政权, 郭大立 ( 2008). 根系生态学. 植物生态学报, 32, 1213-1216.] | |
[109] |
Wason JW, Anstreicher KS, Stephansky N, Huggett BA, Brodersen CR ( 2018). Hydraulic safety margins and air-seeding thresholds in roots, trunks, branches and petioles of four northern hardwood trees. New Phytologist, 219, 77-88.
DOI URL PMID |
[110] | Weemstra M, Sterck FJ, Visser EJW, Kuyper TW, Goudzwaard L, Mommer L ( 2017). Fine-root trait plasticity of beech ( Fagus sylvatica) and spruce( Picea abies) forests on two contrasting soils. Plant and Soil, 415, 175-188. |
[111] |
Wei XG, Chen DY, Liu SY, Wang X, Gao ZY, Wang YK ( 2014). Effect of trim on jujube transpiration in Loess hilly region. Transactions of the Chinese Society for Agricultural Machinery, 45, 194-202.
DOI URL |
[ 魏新光, 陈滇豫, Liu Shouyang, 汪星, 高志永, 汪有科 ( 2014). 修剪对黄土丘陵区枣树蒸腾的调控作用. 农业机械学报, 45, 194-202.]
DOI URL |
|
[112] |
Wu Y, Liu WY, Song L, Chen X, Lu HZ, Li S, Shi XM ( 2016). Advances in ecological studies of epiphytes using canopy cranes. Chinese Journal of Plant Ecology, 40, 508-522.
DOI URL |
[ 吴毅, 刘文耀, 宋亮, 陈曦, 卢华正, 李苏, 石贤萌 ( 2016). 基于林冠塔吊的附生植物生态学研究进展. 植物生态学报, 40, 508-522.]
DOI URL |
|
[113] |
Xi BY, Bloomberg M, Watt MS, Wang Y, Jia LM ( 2016). Modeling growth response to soil water availability simulated by HYDRUS for a mature triploid Populus tomentosaplantation located on the North China Plain. Agricultural Water Management, 176, 243-254.
DOI URL |
[114] | Xi BY, Di N, Liu JQ, Zhang RN, Cao ZG ( 2018). Hydrologic regulation of plant rooting depth: Pay attention to the widespread scenario with intense seasonal groundwater table fluctuation. Proceedings of the National Academy of Sciences of the United States of America, 115. DOI: 10.1073/pnas.1803987115. |
[115] |
Xi BY, Di N, Wang Y, Duan J, Jia LM ( 2017). Modeling stand water use response to soil water availability and groundwater level for a mature Populus tomentosa plantation located on the North China Plain. Forest Ecology and Management, 391, 63-74.
DOI URL |
[116] |
Xi BY, Li GD, Bloomberg M, Jia LM ( 2014). The effect of subsurface irrigation at different soil water potential thresholds on the growth and transpiration of Populus tomentosain the North China Plain. Australian Forestry, 77, 159-167.
DOI URL |
[117] |
Xi BY, Wang Y, Jia LM, Bloomberg M, Li GD, Di N ( 2013). Characteristics of fine root system and water uptake in a triploid Populus tomentosa plantation in the North China Plain: Implications for irrigation water management. Agricultural Water Management, 117, 83-92.
DOI URL |
[118] |
Xu GQ, Li Y ( 2008). Rooting depth and leaf hydraulic conductance in the xeric tree Haloxyolon ammodendron growing at sites of contrasting soil texture. Functional Plant Biology, 35, 1234-1242.
DOI URL |
[119] | Yang FT, Feng ZM, Wang HM, Dai XQ, Fu XL ( 2017). Deep soil water extraction helps to drought avoidance but shallow soil water uptake during dry season controls the inter-?annual variation in tree growth in four subtropical plantations. Agricultural and Forest Meteorology, 234, 106-114. |
[120] |
Yoder CK, Nowak RS ( 1999). Hydraulic lift among native plant species in the Mojave Desert. Plant and Soil, 215, 93-102.
DOI URL |
[121] |
Yu TF, Feng Q, Si JH, Mitchell PJ, Forester MA, Zhang XY, Zhao CY ( 2018). Depressed hydraulic redistribution of roots more by stem refilling than by nocturnal transpiration for Populus euphraticaOliv. in situ measurement. Ecology and Evolution, 8, 2607-2616.
DOI URL |
[122] |
Yu TF, Feng Q, Si JH, Zhang XY ( 2014). Patterns, magnitude and controlling factors of hydraulic redistribution by Populus euphratica roots. Journal of Beijing Forestry University, 36, 22-29.
DOI URL |
[ 鱼腾飞, 冯起, 司建华, 张小由 ( 2014). 胡杨根系水力再分配的模式、大小及其影响因子. 北京林业大学学报, 36, 22-29.]
DOI URL |
|
[123] |
Yu TF, Feng Q, Si JH, Zhang XY, Zhao CY ( 2017). The contribution of hydraulic lift to evapotranspiration by Tamarix ramosissima Ledeb. in the lower Heihe River, China. Acta Ecologica Sinica, 37, 6029-6037.
DOI URL |
[ 鱼腾飞, 冯起, 司建华, 张小由, 赵春彦 ( 2017). 黑河下游柽柳根系水力提升对林分蒸散的贡献. 生态学报, 37, 6029-6037.]
DOI URL |
|
[124] |
Yuan GF, Zhang P, Xue SS, Zhuang W ( 2012). Change characteristics in soil water content in root zone and evidence of root hydraulic lift in Tamarix ramosissima thickets on sand dunes. Chinese Journal of Plant Ecology, 36, 1033-1042.
DOI URL |
[ 袁国富, 张佩, 薛沙沙, 庄伟 ( 2012). 沙丘多枝柽柳灌丛根层土壤含水量变化特征与根系水力提升证据. 植物生态学报, 36, 1033-1042.]
DOI URL |
|
[125] |
Zhang H, Cao J, Wang HB, Song B, Jia GD, Liu ZQ, Yu XX, Zeng J ( 2018). Water utilization characteristics of the degraded poplar shelterbelts in Zhangbei, Hebei, China. Chinese Journal of Applied Ecology, 29, 1381-1388.
DOI URL |
[ 张欢, 曹俊, 王化冰, 宋波, 贾国栋, 刘自强, 余新晓, 曾佳 ( 2018). 张北地区退化杨树防护林的水分利用特征. 应用生态学报, 29, 1381-1388.]
DOI URL |
|
[126] | Zhu JL, Bo HJ, Li X, Song LJ, Wang J, Nie LS, Tian J ( 2017). Effects of soil water and nitrogen on the stand volume of four hybrid Populus tomentosa clones. Forests, 8, 250. DOI: 10.3390/f8070250. |
[127] | Zunzunegui M, Boutaleb S, Barradas DMC, Esquvias MP, Valera J, Jáuregui J, Tagma T, Ain-Lhout F ( 2017). Reliance on deep soil water in the tree species Argania spinose. Tree Physiology, 38, 678-689. |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 徐子怡 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡[J]. 植物生态学报, 2024, 48(5): 612-622. |
[3] | 杨尚锦, 范云翔, 章毓文, 韩巧玲, 赵玥, 段劼, 邸楠, 席本野. 树木夜间液流组分划分方法对比——以毛白杨为例[J]. 植物生态学报, 2024, 48(4): 496-507. |
[4] | 曲泽坤, 朱丽琴, 姜琦, 王小红, 姚晓东, 蔡世锋, 罗素珍, 陈光水. 亚热带常绿阔叶林丛枝菌根树种养分觅食策略及其与细根形态间的关系[J]. 植物生态学报, 2024, 48(4): 416-427. |
[5] | 杜旭龙, 黄锦学, 杨智杰, 熊德成. 增温对植物叶片和细根氧化损伤与防御特征及其相互关联影响的研究进展[J]. 植物生态学报, 2024, 48(2): 135-146. |
[6] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[7] | 吴晨, 陈心怡, 刘源豪, 黄锦学, 熊德成. 增温对森林细根生长、死亡及周转特征影响的研究进展[J]. 植物生态学报, 2023, 47(8): 1043-1054. |
[8] | 孙佳慧, 史海兰, 陈科宇, 纪宝明, 张静. 植物细根功能性状的权衡关系研究进展[J]. 植物生态学报, 2023, 47(8): 1055-1070. |
[9] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[10] | 刘婧, 缑倩倩, 王国华, 赵峰侠. 晋西北丘陵风沙区柠条锦鸡儿叶片与土壤生态化学计量特征[J]. 植物生态学报, 2023, 47(4): 546-558. |
[11] | 祝维, 周欧, 孙一鸣, 古丽米热·依力哈木, 王亚飞, 杨红青, 贾黎明, 席本野. 混交林内毛白杨和刺槐根系吸水的动态生态位划分[J]. 植物生态学报, 2023, 47(3): 389-403. |
[12] | 范云翔, 邸楠, 刘洋, 章毓文, 段劼, 李新, 王海红, 席本野. 毛白杨茎干夜间液流时空动态及其环境影响因子[J]. 植物生态学报, 2023, 47(2): 262-274. |
[13] | 陈心怡, 吴晨, 黄锦学, 熊德成. 增温对林木细根物候影响的研究进展[J]. 植物生态学报, 2023, 47(11): 1471-1482. |
[14] | 刘洋, 马煦, 邸楠, 曾子航, 付海曼, 李新, 席本野. 毛白杨根系液流与水力再分配特征[J]. 植物生态学报, 2023, 47(1): 123-133. |
[15] | 党宏忠, 张学利, 韩辉, 石长春, 葛玉祥, 马全林, 陈帅, 刘春颖. 樟子松固沙林林水关系研究进展及对营林实践的指导[J]. 植物生态学报, 2022, 46(9): 971-983. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19