植物生态学报 ›› 2023, Vol. 47 ›› Issue (1): 123-133.DOI: 10.17521/cjpe.2021.0492
所属专题: 根系生态学
刘洋1, 马煦2, 邸楠3, 曾子航4, 付海曼5, 李新6, 席本野1,**()
收稿日期:
2021-12-27
接受日期:
2022-02-17
出版日期:
2023-01-20
发布日期:
2022-04-11
通讯作者:
**席本野,ORCID:0000-0003-4730-6384(benyexi@bjfu.edu.cn)
作者简介:
*同等贡献
基金资助:
LIU Yang1, MA Xu2, DI Nan3, ZENG Zi-Hang4, FU Hai-Man5, LI Xin6, XI Ben-Ye1,**()
Received:
2021-12-27
Accepted:
2022-02-17
Online:
2023-01-20
Published:
2022-04-11
Contact:
**XI Ben-Ye,ORCID:0000-0003-4730-6384(benyexi@bjfu.edu.cn)
About author:
*Contributed equally to this work
Supported by:
摘要:
为确定毛白杨(Populus tomentosa)根系是否存在水力再分配现象, 并探究其发生特征与影响因子, 该研究以四年生毛白杨为研究对象, 利用热比率法对3株样树的共计7条侧根(R1-R7)进行长期液流监测, 并对土壤水分以及气象因子进行同步测定。结果显示: 毛白杨存在两种水力再分配模式, 分别为干旱驱动的水力提升和降雨驱动的水力下降, 水力再分配的发生模式与特征受侧根分布深度与直径大小的影响。在整个生长季尺度上, 毛白杨根系再分配的水量较低; 但在极端干旱条件下, 部分侧根再分配的水量可达其日总液流量的64.6%, 表明水力再分配会为干旱侧根提供大量水分。根系吸水与气象-土壤的耦合因子(太阳辐射(Rs) ×土壤含水率(SWC)、水汽压亏缺(VPD) × SWC、参考蒸散发(ETo) × SWC)间存在显著相关关系, 但水力再分配与所选因子基本不相关。此外, 毛白杨浅层根中存在特殊的日间逆向液流现象, 其液流量最高可占日液流总量的79.2% (R1)到90.7% (R2), 该现象可能对浅层根系抗旱起到重要作用。
刘洋, 马煦, 邸楠, 曾子航, 付海曼, 李新, 席本野. 毛白杨根系液流与水力再分配特征. 植物生态学报, 2023, 47(1): 123-133. DOI: 10.17521/cjpe.2021.0492
LIU Yang, MA Xu, DI Nan, ZENG Zi-Hang, FU Hai-Man, LI Xin, XI Ben-Ye. Root sap flow and hydraulic redistribution of Populus tomentosa. Chinese Journal of Plant Ecology, 2023, 47(1): 123-133. DOI: 10.17521/cjpe.2021.0492
图1 典型水力再分配的模式图。A, 水力提升, 干旱时期深层土壤水分向浅层土壤运移。B, 水力下降, 雨后浅层土壤水分向深层土壤运移。C, 横向水力再分配, 土壤不均匀湿润后水分从潮湿土壤向干燥土壤运移。
Fig. 1 Schematic diagrams of the typical hydraulic redistribution. A, Hydraulic lift, water moves from the deep to the shallow layer during drought. B, Hydraulic descent, water moves from the shallow to the deep layer after raining. C, Horizontal hydraulic redistribution, water moves from wet to dry soil after soil uneven wetting.
侧根编号 Lateral root number | 直径 Diameter (cm) | 平均分布深度 Average distribution depth (m) | 最大分布深度 Maximum distribution depth (m) |
---|---|---|---|
R1 | 4.13 | 8.7 | 11.5 |
R2 | 2.89 | 11.3 | 13.2 |
R3 | 4.54 | 12.5 | 21.1 |
R4 | 3.26 | 21.6 | 42.6 |
R5 | 4.86 | >44.6 | >70.0 |
R6 | 3.73 | 9.0 | 20.7 |
R7 | 4.80 | 10.6 | 19.1 |
表1 毛白杨液流监测根系信息
Table 1 Information of the roots for measuring sap flow of Populus tomentosa
侧根编号 Lateral root number | 直径 Diameter (cm) | 平均分布深度 Average distribution depth (m) | 最大分布深度 Maximum distribution depth (m) |
---|---|---|---|
R1 | 4.13 | 8.7 | 11.5 |
R2 | 2.89 | 11.3 | 13.2 |
R3 | 4.54 | 12.5 | 21.1 |
R4 | 3.26 | 21.6 | 42.6 |
R5 | 4.86 | >44.6 | >70.0 |
R6 | 3.73 | 9.0 | 20.7 |
R7 | 4.80 | 10.6 | 19.1 |
图2 干旱过程中毛白杨根系液流速率与环境因子的动态变化。B-E中, 灰色阴影代表液流速率(Vs) <0, 即为逆向液流。F中, SWC0.1 m、SWC0.5 m、SWC2.0 m分别为0.1、0.5和2.0 m深度的土壤含水率(SWC); 灰色柱子代表降雨量。Rs, 太阳辐射; VPD, 水汽压亏缺; R1-R5, 不同编号的侧根。
Fig. 2 Changing dynamics of roots sap flow velocity of Populus tomentosa and meteorological factors during drought process. In B-E, the gray shade indicates the sap flow velocity (Vs) <0, that is, the reverse sap flow. In F, SWC0.1 m, SWC0.5 m and SWC2.0 m are the soil water content (SWC) at 0.1, 0.5 and 2.0 m depths; the gray bars represent rainfall. Rs, solar radiation; VPD, vapor pressure deficit; R1-R5, the lateral roots of different numbers.
图3 雨后毛白杨根系液流速率与环境因子的动态变化。B-E中灰色阴影代表液流速率(Vs) <0, 即为逆向液流。F中, SWC0.1 m、SWC0.5 m、SWC2.0 m分别为0.1、0.5和2.0 m深度的土壤含水率(SWC); 灰色柱子代表降雨量。Rs, 太阳辐射; VPD, 水汽压亏缺; R1-R5, 不同编号的侧根。
Fig. 3 Changing dynamics of roots sap flow of Populus tomentosa and meteorological factors after rainfall. In B-E, the gray shade indicates the sap flow velocity (Vs) < 0, that is, the reverse sap flow. In F, SWC0.1 m, SWC0.5 m and SWC2.0 m are the soil water content (SWC) at 0.1, 0.5 and 2.0 m depths; the gray bars represent rainfall. Rs, solar radiation; VPD, vapor pressure deficit; R1-R5, the lateral roots of different numbers.
图4 毛白杨日间逆向液流速率与环境因子的动态变化。B和C中灰色阴影代表液流速率(Vs) <0, 即为逆向液流。D中, SWC0.1 m、SWC0.5 m、SWC2.0 m分别为0.1、0.5和2.0 m深度的土壤含水率(SWC); 灰色柱子代表降雨量。Rs, 太阳辐射; VPD, 水汽压亏缺; R1-R2, 不同编号的侧根。
Fig. 4 Changing dynamics of daytime reverse sap flow of Populus tomentosa and meteorological factors. In B and C, The gray shade indicates the sap flow velocity (Vs) < 0, that is, the reverse sap flow. In D, SWC0.1 m, SWC0.5 m and SWC2.0 m are the soil water content (SWC) at 0.1, 0.5 and 2.0 m depths; the gray bars represent rainfall. Rs, solar radiation; VPD, vapor pressure deficit; R1-R2, the lateral roots of different numbers.
图5 华北平原毛白杨人工林环境因子的季节变化。SWC0.1 m、SWC0.5 m、SWC2.0 m分别为0.1、0.5和2.0 m深度的土壤含水率。
Fig. 5 Seasonal dynamics of meteorological factors of Populus tomentosa plantation in the North China Plain. SWC0.1 m, SWC0.5 m and SWC2.0 m are the soil water content (SWC) at 0.1, 0.5 and 2.0 m depths.
图6 毛白杨根系每日液流量(Q)的季节变化。R1-R7, 不同编号的侧根。
Fig. 6 Seasonal dynamics of daily sap flow (Q) of Populus tomentosa roots. R1-R7, the lateral roots of different numbers.
侧根编号 Lateral root number | 干旱驱动的HR Drought induced HR | 降雨驱动的HR Rainfall induced HR | 总RHR Total RHR (%) | ||
---|---|---|---|---|---|
时间 Time (d) | 最高日RHR Max daily RHR (%) | 时间 Time (d) | 最高日RHR Max daily RHR (%) | ||
R1 | 26 | 50.8 | 0 | 0.0 | 1.2 |
R2 | 46 | 64.6 | 0 | 0.0 | 3.5 |
R3 | 18 | 6.7 | 7 | 3.1 | 0.4 |
R4 | 16 | 4.9 | 7 | 12.3 | 0.6 |
R5 | 16 | 1.8 | 3 | 0.6 | 0.1 |
R6 | 15 | 2.0 | 11 | 4.7 | 0.3 |
R7 | 21 | 4.4 | 8 | 5.8 | 0.4 |
表2 毛白杨水力再分配(HR)发生类型及其所占比
Table 2 Types and proportions of hydraulic redistribution (HR) and their proportions of Populus tomentosa
侧根编号 Lateral root number | 干旱驱动的HR Drought induced HR | 降雨驱动的HR Rainfall induced HR | 总RHR Total RHR (%) | ||
---|---|---|---|---|---|
时间 Time (d) | 最高日RHR Max daily RHR (%) | 时间 Time (d) | 最高日RHR Max daily RHR (%) | ||
R1 | 26 | 50.8 | 0 | 0.0 | 1.2 |
R2 | 46 | 64.6 | 0 | 0.0 | 3.5 |
R3 | 18 | 6.7 | 7 | 3.1 | 0.4 |
R4 | 16 | 4.9 | 7 | 12.3 | 0.6 |
R5 | 16 | 1.8 | 3 | 0.6 | 0.1 |
R6 | 15 | 2.0 | 11 | 4.7 | 0.3 |
R7 | 21 | 4.4 | 8 | 5.8 | 0.4 |
图7 毛白杨根系液流对环境因子的响应。A-C, R2液流量(Q)与太阳辐射(Rs)、水汽压亏缺(VPD)、参考蒸散发(ETo)和土壤含水率(SWC)乘积的关系。D-F, R4的Q与Rs、VPD、ETo和SWC乘积的关系。红色圆点代表正向液流量(QP), 蓝色圆点形代表逆向液流量(QR); 红色和蓝色直线分别是QP和QR对环境因子的线性拟合, 其中, 实线代表显著相关(p < 0.05), 而虚线代表不相关(p > 0.05)。R2和R4为侧根编号, 见表1。
Fig. 7 Response of root sap flow of Populus tomentosa to meteorological factors. A-C, the relation between R2 sap flow (Q) and the product of solar radiation (Rs), vapor pressure deficit (VPD), reference evapotranspiration (ETo) and soil water content (SWC). D-F, the relation between Q of R4 and the product of Rs, VPD, ETo with SWC. The red points represent the positive sap flow (QP), and the blue points represent the reverse sap flow (QR); the red and blue lines are the linear fitting of QP and QR to environmental factors, where the solid lines represent the significant correlation (p < 0.05) and the dashed lines represent the uncorrelated (p > 0.05). R2 and R4 are lateral root number, see datails in Table 1.
[1] | Allen RG, Pereira LS, Raes D, Smith M (1998). Crop evapotranspiration—Guidelines for computing crop water requirements//FAO. FAO Irrigation and Drainage Paper 56. FAO, Rome. |
[2] | Bauerle TL, Richards JH, Smart DR, Eissenstat DM (2008). Importance of internal hydraulic redistribution for prolonging the lifespan of roots in dry soil. Plant, Cell & Environment, 31, 177-186. |
[3] | Bleby TM, Mcelrone AJ, Jackson RB (2010). Water uptake and hydraulic redistribution across large woody root systems to 20 m depth. Plant, Cell & Environment, 33, 2132-2148. |
[4] | Brooks JR, Meinzer FC, Warren JM, Domec JC, Coulombe R (2006). Hydraulic redistribution in a Douglas-fir forest: lessons from system manipulations. Plant, Cell & Environment, 29, 138-150. |
[5] |
Burgess SSO, Adams MA, Turner NC, Ong CK (1998). The redistribution of soil water by tree root systems. Oecologia, 115, 306-311.
DOI PMID |
[6] |
Burgess SSO, Bleby TM (2006). Redistribution of soil water by lateral roots mediated by stem tissues. Journal of Experimental Botany, 57, 3283-3291.
PMID |
[7] | Burgess SSO, Downey A (2014). SFM1 Sap Flow Meter Manual. ICT International, Armidale, Australia. |
[8] | Burgess SSO, Pate JS, Adams MA, Dawson TE (2000). Seasonal water acquisition and redistribution in the Australian woody phreatophyte, Banksia prionotes. Annals of Botany, 85, 215-224. |
[9] |
Caldwell MM, Dawson TE, Richards JH (1998). Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia, 113, 151-161.
DOI PMID |
[10] |
Caldwell MM, Richards JH (1989). Hydraulic lift: water efflux from upper roots improves effectiveness of water uptake by deep roots. Oecologia, 79, 1-5.
DOI PMID |
[11] | Campbell GS, Norman JM (1998). An Introduction to Environmental Biophysics. 2nd ed. Springer, New York. |
[12] |
David TS, Pinto CA, Nadezhdina N, Kurz-Besson C, Henriques MO, Quilhó T, Cermak J, Chaves MM, Pereira JS, David JS (2013). Root functioning, tree water use and hydraulic redistribution in Quercus suber trees: a modeling approach based on root sap flow. Forest Ecology and Management, 307, 136-146.
DOI URL |
[13] |
Di N, Liu Y, Mead DJ, Xie YQ, Jia LM, Xi BY (2018). Root-system characteristics of plantation-grown Populus tomentosa adapted to seasonal fluctuation in the groundwater table. Trees, 32, 137-149.
DOI URL |
[14] |
Di N, Xi BY, Pinto JR, Wang Y, Li GD, Jia LM (2013). Root biomass distribution of triploid Populus tomentosa under wide- and narrow-row spacing planting schemes and its responses to soil nutrients. Chinese Journal of Plant Ecology, 37, 961-971.
DOI URL |
[ 邸楠, 席本野, Pinto JR, 王烨, 李广德, 贾黎明 (2013). 宽窄行栽植下三倍体毛白杨根系生物量分布及其对土壤养分因子的响应. 植物生态学报, 37, 961-971.]
DOI |
|
[15] |
Domec JC, Ogée J, Noormets A, Jouangy J, Gavazzi M, Treasure E, Sun G, McNulty SG, King JS (2012). Interactive effects of nocturnal transpiration and climate change on the root hydraulic redistribution and carbon and water budgets of southern United States pine plantations. Tree Physiology, 32, 707-723.
DOI URL |
[16] |
Ferreira MI, Green S, Conceição N, Fernández JE (2018). Assessing hydraulic redistribution with the compensated average gradient heat-pulse method on rain-fed olive trees. Plant and Soil, 425, 21-41.
DOI |
[17] | Hafner BD, Hesse BD, Grams TEE (2021). Friendly neighbours: hydraulic redistribution accounts for one quarter of water used by neighbouring drought stressed tree saplings. Plant, Cell & Environment, 44, 1243-1256. |
[18] | Hao XM, Chen YN, Li WH, Guo B, Zhao RF (2009). Evidence and ecological effects of hydraulic lift in Populus euphratica. Chinese Journal of Plant Ecology, 33, 1125-1131. |
[ 郝兴明, 陈亚宁, 李卫红, 郭斌, 赵锐锋 (2009). 胡杨根系水力提升作用的证据及其生态学意义. 植物生态学报, 33, 1125-1131.]
DOI |
|
[19] |
Hawkins HJ, Hettasch H, West AG, Cramer MD (2009). Hydraulic redistribution by Protea ‘Sylvia’ (Proteaceae) facilitates soil water replenishment and water acquisition by an understorey grass and shrub. Functional Plant Biology, 36, 752-760.
DOI URL |
[20] |
Jobbágy EG, Jackson RB (2004). The uplift of soil nutrients by plants: biogeochemical consequences across scales. Ecology, 85, 2380-2389.
DOI URL |
[21] |
Katul GG, Siqueira MB (2010). Biotic and abiotic factors act in coordination to amplify hydraulic redistribution and lift. New Phytologist, 187, 3-6.
DOI PMID |
[22] | Lee E, Kumar P, Barron-Gafford GA, Hendryx SM, Sanchez-Cañete EP, Minor RL, Colella T, Scott RL (2018). Impact of hydraulic redistribution on multi species vegetation water use in a semiarid savanna ecosystem: an experimental and modeling synthesis. Water Resources Research, 54, 4009-4027. |
[23] | Lee JE, Oliveira RS, Dawson TE, Fung I (2005). Root functioning modifies seasonal climate. Proceedings of the National Academy of Sciences of the United States of America, 102, 17576-17581. |
[24] |
Leffler AJ, Peek MS, Ryel RJ, Ivans CY, Caldwell MM (2005). Hydraulic redistribution through the root systems of senesced plants. Ecology, 86, 633-642.
DOI URL |
[25] |
Montaldo N, Oren R (2022). Rhizosphere water content drives hydraulic redistribution: implications of pore-scale heterogeneity to modeling diurnal transpiration in water-limited ecosystems. Agricultural and Forest Meteorology, 312, 108720. DOI: 10.1016/j.agrformet.2021.108720.
DOI |
[26] |
Moradi AB, Carminati A, Vetterlein D, Vontobel P, Lehmann E, Weller U, Hopmans JW, Vogel HJ, Oswald SE (2011). Three-dimensional visualization and quantification of water content in the rhizosphere. New Phytologist, 192, 653-663.
DOI PMID |
[27] |
Nadezhdina N, Čermák J, Gašpárek J, Nadezhdin V, Prax A (2006). Vertical and horizontal water redistribution in Norway spruce (Picea abies) roots in the Moravian Upland. Tree Physiology, 26, 1277-1288.
PMID |
[28] |
Nadezhdina N, David TS, David JS, Ferreira MI, Dohnal M, Tesař M, Gartner K, Leitgeb E, Nadezhdin V, Cermak J, Jimenez MS, Morales D (2010). Trees never rest: the multiple facets of hydraulic redistribution. Ecohydrology, 3, 431-444.
DOI URL |
[29] |
Nadezhdina N, Prax A, Čermák J, Nadezhdin V, Ulrich R, Neruda J, Schlaghamersky A (2012). Spruce roots under heavy machinery loading in two different soil types. Forest Ecology and Management, 282, 46-52.
DOI URL |
[30] |
Nadezhdina N, Steppe K, de Pauw DJ, Bequet R, Čermak J, Ceulemans R (2009). Stem-mediated hydraulic redistribution in large roots on opposing sides of a Douglas-fir tree following localized irrigation. New Phytologist, 184, 932-943.
DOI PMID |
[31] |
Neumann RB, Cardon ZG (2012). The magnitude of hydraulic redistribution by plant roots: a review and synthesis of empirical and modeling studies. New Phytologist, 194, 337-352.
DOI PMID |
[32] |
Payn T, Carnus JM, Freer-Smith P, Kimberley M, Kollert W, Liu SR, Orazio C, Rodriguez L, Silva LN, Wingfield MJ (2015). Changes in planted forests and future global implications. Forest Ecology and Management, 352, 57-67.
DOI URL |
[33] |
Richards JH, Caldwell MM (1987). Hydraulic lift: substantial nocturnal water transport between soil layers by Artemisia tridentata roots. Oecologia, 73, 486-489.
DOI PMID |
[34] |
Scholz FG, Bucci SJ, Goldstein G, Moreira MZ, Meinzer FC, Domec JC, Villalobos-Vega R, Franco AC, Miralles-Wilhelm F (2008). Biophysical and life-history determinants of hydraulic lift in neotropical savanna trees. Functional Ecology, 22, 773-786.
DOI URL |
[35] |
Scott RL, Cable WL, Hultine KR (2008). The ecohydrologic significance of hydraulic redistribution in a semiarid savanna. Water Resources Research, 44, W02440. DOI: 10.1029/2007WR006149.
DOI |
[36] |
Snyder KA, James JJ, Richards JH, Donovan LA (2008). Does hydraulic lift or nighttime transpiration facilitate nitrogen acquisition? Plant and Soil, 306, 159-166.
DOI URL |
[37] |
Sun L, Yang L, Chen LD, Zhao FK, Li SJ (2018). Hydraulic redistribution and its contribution to water retention during short-term drought in the summer rainy season in a humid area. Journal of Hydrology, 566, 377-385.
DOI URL |
[38] |
van Genuchten MT (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44, 892-898.
DOI URL |
[39] |
Wang GL, Alo C, Mei R, Sun SS (2011). Droughts, hydraulic redistribution, and their impact on vegetation composition in the Amazon forest. Plant Ecology, 212, 663-673.
DOI URL |
[40] |
Warren JM, Meinzer FC, Brooks JR, Domec JC (2005). Vertical stratification of soil water storage and release dynamics in Pacific Northwest coniferous forests. Agricultural and Forest Meteorology, 130, 39-58.
DOI URL |
[41] |
Warren JM, Meinzer FC, Brooks JR, Domec JC, Coulombe R (2007). Hydraulic redistribution of soil water in two old-growth coniferous forests: quantifying patterns and controls. New Phytologist, 173, 753-765.
DOI PMID |
[42] |
Wu HH, Fu CS, Wu HW, Zhang LL (2020). Influence of the dry event induced hydraulic redistribution on water and carbon cycles at five AsiaFlux forest sites: a site study combining measurements and modeling. Journal of Hydrology, 587, 124979. DOI: 10.1016/j.jhydrol.2020.129979.
DOI |
[43] | Xi BY (2019). Morphology, distribution, dynamic characteristics of poplar roots and its water uptake habits. Journal of Beijing Forestry University, 41(12), 37-49. |
[ 席本野 (2019). 杨树根系形态、分布、动态特征及其吸水特性. 北京林业大学学报, 41(12), 37-49.] | |
[44] |
Xu ZC, Chen XZ, Liu JG, Zhang Y, Chau S, Bhattarai N, Wang Y, Li YJ, Connor T, Li YK (2020). Impacts of irrigated agriculture on food-energy-water-CO2 nexus across metacoupled systems. Nature Communication, 11, 1-12.
DOI |
[45] |
Yu KL, D’Odorico P (2015). Hydraulic lift as a determinant of tree-grass coexistence on savannas. New Phytologist, 207, 1038-1051.
DOI PMID |
[46] |
Yu TF, Feng Q, Si JH, Mitchell PJ, Forster MA, Zhang XY, Zhao CY (2018). Depressed hydraulic redistribution of roots more by stem refilling than by nocturnal transpiration for Populus euphratica Oliv. in situ measurement. Ecology and Evolution, 8, 2607-2616.
DOI URL |
[47] | Zou SY, Li DD, Wang JS, Di N, Liu JQ, Wang Y, Li GD, Duan J, Jia LM, Xi BY (2019). Response of fine roots to soil moisture of different gradients in young Populus tomentosa plantation. Scientia Silvae Sinicae, 55(10), 124-137. |
[ 邹松言, 李豆豆, 汪金松, 邸楠, 刘金强, 王烨, 李广德, 段劼, 贾黎明, 席本野 (2019). 毛白杨幼林细根对梯度土壤水分的响应. 林业科学, 55(10), 124-137.] |
[1] | 祝维, 周欧, 孙一鸣, 古丽米热·依力哈木, 王亚飞, 杨红青, 贾黎明, 席本野. 混交林内毛白杨和刺槐根系吸水的动态生态位划分[J]. 植物生态学报, 2023, 47(3): 389-403. |
[2] | 赵飞飞, 马煦, 邸楠, 王烨, 刘洋, 李广德, 贾黎明, 席本野. 毛白杨茎干不同方位夜间液流变化规律及其主要影响因子[J]. 植物生态学报, 2020, 44(8): 864-874. |
[3] | 朱林, 王甜甜, 赵学琳, 祁亚淑, 许兴. 紫花苜蓿和斜茎黄耆水力提升作用及其对伴生植物的效应[J]. 植物生态学报, 2020, 44(7): 752-762. |
[4] | 席本野, 邸楠, 曹治国, 刘金强, 李豆豆, 王烨, 李广德, 段劼, 贾黎明, 张瑞娜. 树木吸收利用深层土壤水的特征与机制: 对人工林培育的启示[J]. 植物生态学报, 2018, 42(9): 885-905. |
[5] | 李豆豆, 席本野, 王斐, 贾素苹, 赵洪林, 贺曰林, 刘洋, 贾黎明. 毛白杨叶片膨压变化规律及其对环境因子的响应[J]. 植物生态学报, 2018, 42(7): 741-751. |
[6] | 邸楠,席本野,Jeremiah R.PINTO,王烨,李广德,贾黎明. 宽窄行栽植下三倍体毛白杨根系生物量分布及其对土壤养分因子的响应[J]. 植物生态学报, 2013, 37(10): 961-971. |
[7] | 袁国富, 张佩, 薛沙沙, 庄伟. 沙丘多枝柽柳灌丛根层土壤含水量变化特征与根系水力提升证据[J]. 植物生态学报, 2012, 36(10): 1033-1042. |
[8] | 何茜, 李吉跃, 沈应柏, 陈晓阳, 尚富华, 胡磊, 张志毅. 毛白杨杂种无性系叶片δ13C差异与气体交换参数[J]. 植物生态学报, 2010, 34(2): 144-150. |
[9] | 郝兴明, 陈亚宁, 李卫红, 郭斌, 赵锐锋. 胡杨根系水力提升作用的证据及其生态学意义[J]. 植物生态学报, 2009, 33(6): 1125-1131. |
[10] | 王昆, 刘颖慧, 高琼, 莫兴国. 植物根系水力再分配模型参数分析与尺度转换[J]. 植物生态学报, 2006, 30(6): 969-975. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19