植物生态学报 ›› 2013, Vol. 37 ›› Issue (10): 961-971.DOI: 10.3724/SP.J.1258.2013.00099
邸楠1,*,席本野1,*,Jeremiah R.PINTO2,王烨1,李广德3,贾黎明1,**()
收稿日期:
2013-03-19
接受日期:
2013-07-16
出版日期:
2013-03-19
发布日期:
2013-09-29
通讯作者:
邸楠,席本野,贾黎明
基金资助:
DI Nan1,*,XI Ben-Ye1,*,Jeremiah R. PINTO2,WANG Ye1,LI Guang-De3,JIA Li-Ming1,**()
Received:
2013-03-19
Accepted:
2013-07-16
Online:
2013-03-19
Published:
2013-09-29
Contact:
DI Nan,XI Ben-Ye,JIA Li-Ming
摘要:
三倍体毛白杨(triploid Populus tomentosa)是我国华北地区主要纸浆林品种, 在该地区多采用宽窄行模式栽植。为基于根系结构特征制定该模式下毛白杨人工林高效水肥管理策略和明确影响其根系空间分布的主要因子, 在5年生林分中于8株样树周围挖取2106个土柱, 研究该栽植模式下毛白杨根系生物量的空间分布特征, 并分析了细根垂直分布对土壤有机质、速效磷和碱解氮等的响应。结果表明, 一维垂向上, 宽行内细根根重密度(FRBD)在0-30 cm土层中随深度增加而递减, 但在30 cm以下土层呈均匀分布(p = 0.079); 窄行内FRBD呈“双峰”分布, 即在0-20 cm (22%)和70-110 cm (31%)土层均有较多细根分布; 10-150 cm各土层中, 窄行FRBD较宽行高17%-148%。宽、窄行内, 随深度增加, 粗根根重密度(CRBD)均呈先增后减变化, 而细根粗根比(F/C)无显著变化(p > 0.05), 窄行平均F/C较宽行高60%。一维径向上, 宽、窄行内FRBD均呈近均匀分布, 而CRBD和F/C均随距离增加分别显著递减和增大。二维尺度上, FRBD在窄行内分布相对均匀, 但在宽行内主要集中在表土层且随距离增加细根浅层化程度增强; CRBD在树干两侧呈“不对称”分布; 垂向0-20 cm、径向160-300 cm范围是宽行内平均FRBD和F/C较高区域, 分别为宽行相应指标总平均的2.8和1.1倍。FRBD在0-30 cm土层中随土壤有机质、速效磷和碱解氮含量的增加而逐渐增大, 但在30 cm以下土层中无明显变化趋势。研究结果表明, 宽、窄行间毛白杨根系分布的差异性主要体现在细根一维垂直分布和细根、粗根二维分布上。土壤有机质、速效磷和碱解氮是0-30 cm土层中毛白杨细根垂直分布的重要影响因子, 但对下层土壤中根系分布无影响。对宽窄行栽植的毛白杨林分灌溉时, 灌溉水应供给到窄行区域; 施肥时, 缓释肥和速效肥应分别浅施在宽行中央附近和窄行内。
邸楠,席本野,Jeremiah R.PINTO,王烨,李广德,贾黎明. 宽窄行栽植下三倍体毛白杨根系生物量分布及其对土壤养分因子的响应. 植物生态学报, 2013, 37(10): 961-971. DOI: 10.3724/SP.J.1258.2013.00099
DI Nan,XI Ben-Ye,Jeremiah R. PINTO,WANG Ye,LI Guang-De,JIA Li-Ming. Root biomass distribution of triploid Populus tomentosa under wide- and narrow-row spacing planting schemes and its responses to soil nutrients. Chinese Journal of Plant Ecology, 2013, 37(10): 961-971. DOI: 10.3724/SP.J.1258.2013.00099
土壤深度 Soil depth (cm) | 砂粒 Sand (%) | 粉粒 Silt (%) | 黏粒 Clay (%) | 质地1) Texture1) | 容重 Bulk density (g·cm-3) | 饱和含水量 Saturated water content (cm3·cm-3) |
---|---|---|---|---|---|---|
0-30 | 16.04 | 83.53 | 0.43 | 粉土 Silt | 1.627 | 0.383 |
30-70 | 4.48 | 94.82 | 0.70 | 粉土 Silt | 1.633 | 0.396 |
70-90 | 10.14 | 89.61 | 0.25 | 粉土 Silt | 1.521 | 0.419 |
90-120 | 6.38 | 93.48 | 0.15 | 粉土 Silt | 1.465 | 0.454 |
>120 | 43.94 | 56.06 | 0.01 | 粉壤 Silt loam | 1.499 | 0.437 |
表1 试验地土壤物理性质
Table 1 Soil physical properties of the experimental site
土壤深度 Soil depth (cm) | 砂粒 Sand (%) | 粉粒 Silt (%) | 黏粒 Clay (%) | 质地1) Texture1) | 容重 Bulk density (g·cm-3) | 饱和含水量 Saturated water content (cm3·cm-3) |
---|---|---|---|---|---|---|
0-30 | 16.04 | 83.53 | 0.43 | 粉土 Silt | 1.627 | 0.383 |
30-70 | 4.48 | 94.82 | 0.70 | 粉土 Silt | 1.633 | 0.396 |
70-90 | 10.14 | 89.61 | 0.25 | 粉土 Silt | 1.521 | 0.419 |
90-120 | 6.38 | 93.48 | 0.15 | 粉土 Silt | 1.465 | 0.454 |
>120 | 43.94 | 56.06 | 0.01 | 粉壤 Silt loam | 1.499 | 0.437 |
土壤深度 Soil depth (cm) | 土壤有机质 Soil organic matter (g·kg-1) | 土壤速效磷 Soil available phosphorus (mg·kg-1) | 土壤碱解氮 Soil alkaline nitrogen (mg·kg-1) |
---|---|---|---|
0-10 | 12.7 ± 2.0a | 14.8 ± 4.8a | 75.9 ± 2.5a |
10-20 | 8.8 ± 1.0b | 13.0 ± 4.2ab | 67.6 ± 14.9ab |
20-30 | 7.3 ± 1.5bc | 9.8 ± 7.6abc | 47.3 ± 3.0bc |
30-40 | 5.5 ± 1.4bcdef | 3.2 ± 0.5bcde | 42.7 ± 4.4cd |
40-50 | 4.4 ± 1.2cdefg | 3.7 ± 0.9abcde | 35.6 ± 5.7cd |
50-60 | 6.8 ± 0.8bcd | 2.0 ± 0.5cde | 38.2 ± 4.9cd |
60-70 | 6.8 ± 0.9bcd | 2.5 ± 0.1cde | 45.7 ± 7.1cd |
70-80 | 6.5 ± 0.6bcde | 1.5 ± 0.4e | 37.8 ± 3.4cd |
80-90 | 5.8 ± 1.1bcdef | 3.0 ± 1.1cde | 32.5 ± 2.9de |
90-100 | 3.0 ± 0.5fg | 1.9 ± 0.9de | 23.9 ± 0.6ef |
100-110 | 3.7 ± 0.6defg | 6.1 ± 2.2abcd | 21.9 ± 3.1f |
110-120 | 3.3 ± 0.6efg | 1.8 ± 0.8e | 22.4 ± 0.8f |
120-130 | 3.5 ± 0.6defg | 3.2 ± 1.0bcde | 23.5 ± 1.5f |
130-140 | 1.6 ± 0.4g | 3.0 ± 0.3bcde | 20.9 ± 3.6f |
140-150 | 1.5 ± 0.5g | 3.5 ± 0.5abcde | 12.8 ± 0.6g |
表2 试验地土壤化学性质(平均值±标准误差)
Table 2 Soil chemical properties of the experimental site (mean ± SE)
土壤深度 Soil depth (cm) | 土壤有机质 Soil organic matter (g·kg-1) | 土壤速效磷 Soil available phosphorus (mg·kg-1) | 土壤碱解氮 Soil alkaline nitrogen (mg·kg-1) |
---|---|---|---|
0-10 | 12.7 ± 2.0a | 14.8 ± 4.8a | 75.9 ± 2.5a |
10-20 | 8.8 ± 1.0b | 13.0 ± 4.2ab | 67.6 ± 14.9ab |
20-30 | 7.3 ± 1.5bc | 9.8 ± 7.6abc | 47.3 ± 3.0bc |
30-40 | 5.5 ± 1.4bcdef | 3.2 ± 0.5bcde | 42.7 ± 4.4cd |
40-50 | 4.4 ± 1.2cdefg | 3.7 ± 0.9abcde | 35.6 ± 5.7cd |
50-60 | 6.8 ± 0.8bcd | 2.0 ± 0.5cde | 38.2 ± 4.9cd |
60-70 | 6.8 ± 0.9bcd | 2.5 ± 0.1cde | 45.7 ± 7.1cd |
70-80 | 6.5 ± 0.6bcde | 1.5 ± 0.4e | 37.8 ± 3.4cd |
80-90 | 5.8 ± 1.1bcdef | 3.0 ± 1.1cde | 32.5 ± 2.9de |
90-100 | 3.0 ± 0.5fg | 1.9 ± 0.9de | 23.9 ± 0.6ef |
100-110 | 3.7 ± 0.6defg | 6.1 ± 2.2abcd | 21.9 ± 3.1f |
110-120 | 3.3 ± 0.6efg | 1.8 ± 0.8e | 22.4 ± 0.8f |
120-130 | 3.5 ± 0.6defg | 3.2 ± 1.0bcde | 23.5 ± 1.5f |
130-140 | 1.6 ± 0.4g | 3.0 ± 0.3bcde | 20.9 ± 3.6f |
140-150 | 1.5 ± 0.5g | 3.5 ± 0.5abcde | 12.8 ± 0.6g |
图1 细根根重密度(FRBD) (A)和粗根根重密度(CRBD) (B)的垂直分布(平均值±标准误差)。图中同一区域(宽行或窄行)内不同深度上的不同字母表示差异显著(p = 0.05), 根据Duncan检验。
Fig. 1 Vertical distribution of fine root biomass density (FRBD) (A) and coarse root biomass density (CRBD) (B) (mean ± SE). Different letters in different soil depths in the same area (wide or narrow row zone) indicate significant difference (p = 0.05), according to the Duncan test.
图2 细根根重密度(FRBD) (A)和粗根根重密度(CRBD) (B)的水平分布(平均值±标准误差)。同一图中的不同字母表示差异显著(p = 0.05), 根据Duncan检验。图中虚线为宽窄行分界, 即树体位置。
Fig. 2 Lateral distribution of fine root biomass density (FRBD) (A) and coarse root biomass density (CRBD) (B) (mean ± SE). Different letters in the same figure indicate significant difference (p = 0.05), according to the Duncan test. Dotted lines indicate the boundary of wide and narrow row, i.e. the tree position.
图3 细根根重密度(FRBD; 蓝、白色阴影区域)和粗根根重密度(CRBD; 红色等值线, 单位mg·cm-3)的二维分布。图中虚线为宽窄行分界, 即树体位置。
Fig. 3 Two dimensional distribution of fine root biomass density (FRBD; shaded blue to white areas) and coarse root biomass density (CRBD; red isoline, unit mg·cm-3). Dotted lines indicate the boundary of wide- and narrow-row, i.e. the tree position.
图4 细根/粗根(F/C)的垂直(A)和水平(B)变化(平均值±标准误差)。图中虚线为宽窄行分界, 即树体位置。同一图中的不同字母表示差异显著(p = 0.05), 根据Duncan检验。
Fig. 4 Vertical (A) and lateral (B) variations of fine root to coarse root ratio (F/C) (mean ± SE). Dotted line indicate the boundary of wide and narrow row, i.e. the tree position. Different letters in the same figure indicate significant difference (p = 0.05), according to the Duncan test.
图5 细根/粗根(F/C)二维变化。图中虚线为宽窄行分界, 即树体位置。
Fig. 5 Two dimensional variation of fine root to coarse root ratio (F/C). Dotted line indicate the boundary of wide and narrow row, i.e. the tree position.
图6 细根根重密度(FRBD)与土壤有机质(A)、速效磷(B)和碱解氮(C)的相关关系。0-120 cm土层中的数据均为8棵样树的平均值, 120-130、130-140和140-150 cm土层中的数据分别为6、5和3棵样树的平均值。
Fig. 6 Correlation between fine root biomass density (FRBD) and soil organic matter (A), available P (B) and alkaline N (C). Data of 0-120 cm soil layers are means of eight trees, data of 120-130, 130-140 and 140-150 cm soil layers are means of six, five and three trees, respectively.
[1] |
Al Afas N, Marron N, Zavalloni C, Ceulemans R(2008). Growth and production of a short-rotation coppice culture of poplar—IV: Fine root characteristics of five poplar clones. Biomass and Bioenergy, 32, 494-502.
DOI URL |
[2] |
Bengough AG, McKenzie BM, Hallett PD, Valentine TA(2011). Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits. Journal of Experimental Botany, 62, 59-68.
DOI URL |
[3] |
Burton AJ, Pregitzer KS, Hendrick RL(2000). Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests. Oecologia, 125, 389-399.
DOI URL |
[4] | Deng T, Jia LM (2009). Nutritional characteristics and fertilization of poplar. World Forestry Research, 22(5), 51-56. (in Chinese with English abstract) |
[ 邓坦, 贾黎明 (2009). 杨树营养及施肥研究进展. 世界林业研究, 22(5), 51-56.] | |
[5] |
Domenicano S, Coll L, Messier C, Berninger F(2011). Nitrogen forms affect root structure and water uptake in the hybrid poplar. New Forests, 42, 347-362.
DOI URL |
[6] |
Douglas GB, McIvor IR, Potter JF, Foote LG(2010). Root distribution of poplar at varying densities on pastoral hill country. Plant and Soil, 333, 147-161.
DOI URL |
[7] | Fitter AH 1996. Characteristics and functions of root systems. In: Waisel EAY, Kafkafi U eds. Plant Roots: the Hidden Half. Marcel Dekker, New York. 1-20. |
[8] |
Fu AH, Chen YN, Li WH(2010). Analysis on the change of water potential of Populus euphratica Oliv. and P. russkii Jabl under different irrigation volumes in temperate desert zone. Chinese Science Bulletin, 55, 965-972.
DOI URL |
[9] |
Gerard DJ, Sexton P, Shaw G(1982). Physical factors influencing soil strength and root growth. Agronomy Journal, 74, 875-879.
DOI URL |
[10] |
Gordon WS, Jackson RB(2000). Nutrient concentrations in fine roots. Ecology, 81, 275-280.
DOI URL |
[11] |
Guo DL, Xia MX, Wei X, Chang W, Liu Y, Wang ZQ(2008). Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytologist, 180, 673-683.
DOI URL |
[12] |
Heilman PE, Ekuan G, Fogle D(1994). Above- and belowground biomass and fine roots of four-year-old hybrids of Populus trichocarpa × Populus deltoides and parental species in short-rotation culture. Canadian Journal of Forest Research, 24, 1186-1192.
DOI URL |
[13] |
Hendrick RL, Pregitzer KS(1997). The relationship between fine root demography and the soil environment in northern hardwood forests. Ecoscience, 4, 99-105.
DOI URL |
[14] |
Hertel D, Moser G, Culmsee H, Erasmi S, Horna V, Schuldt B, Leuschner CH(2009). Below- and above-ground biomass and net primary production in a paleotropical natural forest (Sulawesi, Indonesia) as compared to neotropical forests. Forest Ecology and Management, 258, 1904-1912.
DOI URL |
[15] |
Hubbert KR, Graham RC, Anderson MA(2001). Soil and weathered bedrock: components of a Jeffrey pine plantation substrate. Soil Science Society of America Journal, 65, 1255-1262.
DOI URL |
[16] | Jackson RB, Mooney HA, Schulze ED(1997). A global budget for fine root biomass, surface area, and nutrient contents. Ecology, 94, 7362-7366. |
[17] | Jackson RB, Moore LA, Hoffmann WA, Pockman WT, Linder CR(1999). Ecosystem rooting depth determined with caves and DNA. Proceedings of the National Academy of Sciences of the United States of America, 96, 11387-11392. |
[18] | Kang XY, Zhu ZT (2002). Status and role of triploid Populus tomentosa in pulp production in China. Journal of Beijing Forestry University, 24(Suppl.), 51-56. (in Chinese) |
[ 康向阳, 朱之悌 (2002). 三倍体毛白杨在我国纸浆生产中的地位与作用. 北京林业大学学报, 24(增刊), 51-56.] | |
[19] |
Khamzina A, Lamers JPA, Vlek PLG(2008). Tree establishment under deficit irrigation on degraded agricultural land in the lower Amu Darya River region, Aral Sea Basin. Forest Ecology and Management, 255, 168-178.
DOI URL |
[20] |
Liu LP, Gan YT, Bueckerta R, Rees KV(2011). Rooting systems of oilseed and pulse crops. II. Vertical distribution patterns across the soil profile. Field Crops Research, 122, 248-255.
DOI URL |
[21] |
Luo DH, Xia J, Yuan JW, Zhang ZH, Zhu JD, Ni J (2010). Root biomass of karst vegetation in a mountainous area of southwestern China. Chinese Journal of Plant Ecology, 34, 611-618. (in Chinese with English abstract)
DOI URL |
[ 罗东辉, 夏婧, 袁婧薇, 张忠华, 祝介东, 倪健 (2010). 我国西南山地喀斯特植被的根系生物量初探. 植物生态学报, 34, 611-618.]
DOI URL |
|
[22] | Ma LH, Wu PT, Wang YK(2012). Spatial distribution of roots in a dense jujube plantation in the semiarid hilly region of the Chinese Loess Plateau. Plant and Soil, 36, 292-301. |
[23] |
Ma LH, Wu PT, Wang YK (2012). Spatial pattern of root systems of dense jujube plantation with jujube age in the semiarid loess hilly region of China. Chinese Journal of Plant Ecology, 36, 292-301. (in Chinese with English abstract)
DOI URL |
[ 马理辉, 吴普特, 汪有科 (2012). 黄土丘陵半干旱区密植枣林随树龄变化的根系空间分布特征. 植物生态学报, 36, 292-301.]
DOI URL |
|
[24] |
McIvor IR, Douglas GB, Benavides R(2009). Coarse root growth of Veronese poplar trees varies with position on an erodible slope in New Zealand. Agroforestry Systems, 76, 251-264.
DOI URL |
[25] |
McIvor IR, Douglas GB, Hurst SE, Hussain Z, Foote AG(2008). Structural root growth of young Veronese poplars on erodible slopes in the southern North Island, New Zealand. Agroforestry Systems, 72, 75-86.
DOI URL |
[26] | Mei L, Wang ZQ, Han YZ, Gu JC, Wang XR, Cheng YH, Zhang XJ (2006). Distribution patterns of Fraxinus mandshurica root biomass, specific root length and root length density. Chinese Journal of Applied Ecology, 17, 1-4. (in Chinese with English abstract) |
[ 梅莉, 王政权, 韩有志, 谷加存, 王向荣, 程云环, 张秀娟 (2006). 水曲柳根系生物量、比根长和根长密度的分布格局. 应用生态学报, 17, 1-4.] | |
[27] |
Moreno G, Obrador JJ, Cubera E, Dupraz C(2005). Fine root distribution in Dehesas of Central-Western Spain. Plant and Soil, 277, 153-162.
DOI URL |
[28] | Mulia R, Dupraz C(2006). Unusual fine root distributions of two deciduous tree species in southern France: What consequences for modelling of tree root dynamics? Plant and Soil, 282, 71-85. |
[29] |
Nagler P, Jetton A, Fleming J, Didan K, Glenn E, Erker J, Morino K, Milliken J, Gloss S(2007). Evapotranspiration in a cottonwood ( Populus fremontii) restoration plantation estimated by sap flow and remote sensing methods. Agricultural and Forest Meteorology, 144, 95-110.
DOI URL |
[30] |
Puri S, Singh V, Bhushan B, Singh S(1994). Biomass production and distribution of roots in three stands of Populus deltoides. Forest Ecology and Management, 65, 135-147.
DOI URL |
[31] |
Schenk HJ, Jackson RB(2005). Mapping the global distribution of deep roots in relation to climate and soil characteristics. Geoderma, 126, 129-140.
DOI URL |
[32] | Singh DV, Rathore TR(2003). Soil strength and its relation with exchangeable cations, organic carbon and finer soil fractions. Indian Journal of Agricultural Research, 37, 17-22. |
[33] | Song YQ, Zhai MP, Jia LM, Li GD (2010). Fine root dynamics of different aged triploid Populus tomentosa pulp forests during growth period. Chinese Journal of Ecology, 29, 1696-1702. (in Chinese with English abstract) |
[ 宋曰钦, 翟明普, 贾黎明, 李广德 (2010). 不同年龄三倍体毛白杨纸浆林生长期间细根变化规律. 生态学杂志, 29, 1696-1702.] | |
[34] | Song ZG, Zhou WQ, Wang YH (2009). The fine root distribution characters of the shelterbelt of Populus tomentosa. Forest Resources Management,(6), 96-101. (in Chinese with English abstract) |
[ 宋子刚, 周文权, 王彦辉 (2009). 毛白杨农田防护林带细根分布特征. 林业资源管理, (6), 96-101.] | |
[35] | Wang WQ, Jia YB, Xu LM, Zhang ZJ (1997). Study on the root distribution of Populus tomentosa. Journal of Agricultural University of Hebei, 20(1), 24-29. (in Chinese with English abstract) |
[ 王文全, 贾渝彬, 胥丽敏, 张振江 (1997). 毛白杨根系分布的研究. 河北农业大学学报, 20(1), 24-29.] | |
[36] | Xi BY, Wang Y, Jia LM, Si J, Xiang DK (2011). Property of root distribution of triploid Populus tomentosa and its relation to root water uptake under the wide-and-narrow row spacing scheme. Acta Ecologica Sinica, 31, 47-57. (in Chinese with English abstract) |
[ 席本野, 王烨, 贾黎明, 司婧, 向地奎 (2011). 宽窄行栽植模式下三倍体毛白杨根系分布特征及其与根系吸水的关系. 生态学报, 31, 47-57.] | |
[37] | Yan H, Liu GQ, Li HS (2010). Changes of root biomass, root surface area, and root length density in a Populus cathayana plantation. Chinese Journal of Applied Ecology, 21, 2763-2768. (in Chinese with English abstract) |
[ 燕辉, 刘广全, 李红生 (2010). 青杨人工林根系生物量、表面积和根长密度变化. 应用生态学报, 21, 2763-2768.] | |
[38] | Yan H, Su YQ, Zhu YY, Zhang JQ (2009). Distribution characters of fine root of poplar plantation and its relation to properties of soil in the northern slope of Qinling Mountain. Journal of Nanjing Forestry University (Natural Science Edition), 33(2), 85-89. (in Chinese with English abstract) |
[ 燕辉, 苏印泉, 朱昱燕, 张景群 (2009). 秦岭北坡杨树人工林细根分布与土壤特性的关系. 南京林业大学学报(自然科学版), 33(2), 85-89.] | |
[39] | Yang LY, Luo TX, Wu ST (2007). Fine root biomass and its depth distribution across the primitive Korean pine and broad-leaved forest and its secondary forests in Changbai Mountain, North-East China. Acta Ecologica Sinica, 27, 3609-3617. (in Chinese with English abstract) |
[ 杨丽韫, 罗天祥, 吴松涛 (2007). 长白山原始阔叶红松(Pinus koraiensis)林及其次生林细根生物量与垂直分布特征. 生态学报, 27, 3609-3617.] | |
[40] |
Yang XT, Yan DF, Zeng LL, Wu MZ(2012). Correlation of root structures and soil properties in the near-surface soil of three forest types in the southern mountains of He’nan Province, China. Journal of Agricultural Science and Applications, 1, 79-85.
DOI URL |
[41] |
Zhang HP, Morison JIL, Simmonds LP(1999). Transpiration and water relations of poplar trees growing close to the water table. Tree Physiology, 19, 563-573.
DOI URL |
[42] |
Zhao Z, Li P, Xue WP, Guo SW (2004). Study on relations of growth and vertical distribution of fine root system of main planting tree species to soil density in the Weibei Loess Plateau. Scientia Silvae Sinicae, 40(5), 50-55. (in Chinese with English abstract)
DOI URL |
[ 赵忠, 李鹏, 薛文鹏, 郭生武 (2004). 渭北主要造林树种细根生长及分布与土壤密度关系. 林业科学, 40(5), 50-55.]
DOI URL |
|
[43] |
Zhou ZC, Shangguan ZP(2007). Vertical distribution of fine roots in relation to soil factors in Pinus tabulaeformis Carr. forest of the Loess Plateau of China. Plant and Soil, 291, 119-129.
DOI URL |
[44] | Zhu QG, Zhang HC, Fang SZ, Jia XP, Yang L (2008). Distribution and seasonal changes of fine roots in poplar plantations in the northern areas of Jiangsu Province China. China Forestry Science And Technology, 22(3), 45-48. (in Chinese with English abstract) |
[ 朱强根, 张焕朝, 方升佐, 贾学萍, 杨丽 (2006). 苏北杨树人工林细根分布及其季节动态. 林业科技开发, 22(3), 45-48.] |
[1] | 李万年, 罗益敏, 黄则月, 杨梅. 望天树人工幼林混交对土壤微生物功能多样性与碳源利用的影响[J]. 植物生态学报, 2022, 46(9): 1109-1124. |
[2] | 孙彩丽, 仇模升, 黄朝相, 王艺伟. 黔西南石漠化过程中土壤胞外酶活性及其化学计量变化特征[J]. 植物生态学报, 2022, 46(7): 834-845. |
[3] | 朱玉荷, 肖虹, 王冰, 吴颖, 白永飞, 陈迪马. 蒙古高原草地不同深度土壤碳氮磷化学计量特征对气候因子的响应[J]. 植物生态学报, 2022, 46(3): 340-349. |
[4] | 牟文博, 徐当会, 王谢军, 敬文茂, 张瑞英, 顾玉玲, 姚广前, 祁世华, 张龙, 苟亚飞. 排露沟流域不同海拔灌丛土壤碳氮磷化学计量特征[J]. 植物生态学报, 2022, 46(11): 1422-1431. |
[5] | 毛瑾, 朵莹, 邓军, 程杰, 程积民, 彭长辉, 郭梁. 冬季增温和减雪对黄土高原典型草原土壤养分和细菌群落组成的影响[J]. 植物生态学报, 2021, 45(8): 891-902. |
[6] | 魏春雪, 杨璐, 汪金松, 杨家明, 史嘉炜, 田大栓, 周青平, 牛书丽. 实验增温对陆地生态系统根系生物量的影响[J]. 植物生态学报, 2021, 45(11): 1203-1212. |
[7] | 胡琪娟, 盛茂银, 殷婕, 白义鑫. 西南喀斯特石漠化环境适生植物构树细根、根际土壤化学计量特征[J]. 植物生态学报, 2020, 44(9): 962-972. |
[8] | 梅孔灿, 程蕾, 张秋芳, 林开淼, 周嘉聪, 曾泉鑫, 吴玥, 徐建国, 周锦容, 陈岳民. 不同植物来源可溶性有机质对亚热带森林土壤酶活性的影响[J]. 植物生态学报, 2020, 44(12): 1273-1284. |
[9] | 陈禹含, 罗亦夫, 孙鑫晟, 魏冠文, 黄文军, 罗芳丽, 于飞海. 根部水淹和土壤养分提升对三峡库区消落带水蓼生长和繁殖特性的影响[J]. 植物生态学报, 2020, 44(11): 1184-1194. |
[10] | 李军军, 李萌茹, 齐兴娥, 王立龙, 徐世健. 芨芨草叶片养分特征对氮磷不同添加水平的响应[J]. 植物生态学报, 2020, 44(10): 1050-1058. |
[11] | 岑宇, 王成栋, 张震, 任侠, 刘美珍, 杨帆. 河北省天然草地生物量和碳密度空间分布格局[J]. 植物生态学报, 2018, 42(3): 265-276. |
[12] | 苟小林, 周青平, 陈有军, 魏小星, 涂卫国. 青藏高原不同气候区高寒沙地两种优势植物及其根际土壤的养分特征[J]. 植物生态学报, 2018, 42(1): 133-142. |
[13] | 赵睿宇, 李正才, 王斌, 葛晓改, 戴云喜, 赵志霞, 张雨洁. 毛竹林地表覆盖年限对土壤有机碳的影响[J]. 植物生态学报, 2017, 41(4): 418-429. |
[14] | 张蔷, 李家湘, 谢宗强. 氮添加对亚热带山地杜鹃灌丛土壤呼吸的影响[J]. 植物生态学报, 2017, 41(1): 95-104. |
[15] | 李丹, 康萨如拉, 赵梦颖, 张庆, 任海娟, 任婧, 周俊梅, 王珍, 吴仁吉, 牛建明. 内蒙古羊草草原不同退化阶段土壤养分与植物功能性状的关系[J]. 植物生态学报, 2016, 40(10): 991-1002. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19