植物生态学报 ›› 2021, Vol. 45 ›› Issue (11): 1203-1212.DOI: 10.17521/cjpe.2021.0195
魏春雪1,2, 杨璐2,3, 汪金松2,*(), 杨家明1,2, 史嘉炜1,2, 田大栓2, 周青平1,*(), 牛书丽2
收稿日期:
2021-05-20
接受日期:
2021-09-15
出版日期:
2021-11-20
发布日期:
2021-11-11
通讯作者:
汪金松,周青平
作者简介:
Zhou QP, qpingzh@aliyun.com)基金资助:
WEI Chun-Xue1,2, YANG Lu2,3, WANG Jin-Song2,*(), YANG Jia-Ming1,2, SHI Jia-Wei1,2, TIAN Da-Shuan2, ZHOU Qing-Ping1,*(), NIU Shu-Li2
Received:
2021-05-20
Accepted:
2021-09-15
Online:
2021-11-20
Published:
2021-11-11
Contact:
WANG Jin-Song,ZHOU Qing-Ping
Supported by:
摘要:
根系是植物吸收土壤水分和养分的重要器官, 驱动着多个生态系统过程, 该研究揭示了实验增温对根系生物量的影响及机制, 可为气候变暖背景下土壤碳动态和生态系统过程的变化提供理论依据。该研究从已发表的151篇国内外研究论文中收集到611组数据, 通过整合分析(meta-analysis)方法研究了实验增温对根系生物量(根系总生物量、粗根生物量、细根生物量、根冠比)的影响, 并探讨了增温幅度、增温年限、增温方式的影响, 以及根系生物量对增温的响应与本底环境条件(生态系统类型、年平均气温、年降水量、干旱指数)的关系。结果表明: (1)模拟增温使细根生物量显著增加8.87%, 而对根系总生物量、粗根生物量、根冠比没有显著影响; (2)中等强度增温(1-2 ℃)使得细根生物量和根冠比分别提高14.57%和23.63%; 中短期增温实验(<5年)对细根生物量具有促进影响, 而长期增温实验(≥5年)使细根生物量有降低的趋势; 开顶箱增温和红外辐射增温分别使细根生物量显著提高了17.50%和12.16%, 而电缆加热增温使细根生物量和粗根生物量显著降低了23.44%和43.23%; (3)不同生态系统类型对于增温响应不一致, 模拟增温使苔原生态系统细根生物量显著提高了21.03%, 细根生物量对增温的响应与本底年平均气温、年降水量、干旱指数均呈显著负相关关系。
魏春雪, 杨璐, 汪金松, 杨家明, 史嘉炜, 田大栓, 周青平, 牛书丽. 实验增温对陆地生态系统根系生物量的影响. 植物生态学报, 2021, 45(11): 1203-1212. DOI: 10.17521/cjpe.2021.0195
WEI Chun-Xue, YANG Lu, WANG Jin-Song, YANG Jia-Ming, SHI Jia-Wei, TIAN Da-Shuan, ZHOU Qing-Ping, NIU Shu-Li. Effects of experimental warming on root biomass in terrestrial ecosystems. Chinese Journal of Plant Ecology, 2021, 45(11): 1203-1212. DOI: 10.17521/cjpe.2021.0195
图2 模拟增温对根系总生物量(TRB)、细根生物量(FRB)、粗根生物量(CRB)、根冠比(R/S)的影响。右侧数字代表样本量, 误差线代表95%置信区间。实心圆代表增温处理效应达到显著水平(p < 0.05), 空心圆代表增温处理效应未达到显著水平。
Fig. 2 Effects of simulated warming (ln RR) on total root biomass (TRB), fine root biomass (FRB), coarse root biomass (CRB), and root:shoot ratio (R/S). The values within the graphic panel show the sample sizes for each of the variables. Error bars represent 95% confidence intervals. Solid circle represent significant warming effects (p < 0.05), and hollow circles indicate insignificant warming effects.
图3 模拟增温对根系总生物量(A)、细根生物量(B)、粗根生物量(C)、根冠比(D)的影响与增温幅度、增温年限、增温方式、生态系统类型的关系。右侧数字代表样本量, 误差线代表95%置信区间。实心圆代表增温处理效应达到显著水平(p < 0.05), 空心圆代表增温处理效应未达到显著水平。
Fig. 3 Effects of simulated warming (ln RR) on total root biomass (A), fine root biomass (B), coarse root biomass (C) and root:shoot ratio (D) in relation to the magnitude, duration and method of warming and ecosystem types. The values within the graphic panels show the sample sizes for each of the variables. Error bars represent 95% confidence intervals. Solid circles represent significant warming effects (p < 0.05), and hollow circles indicate insignificant warming effects. OTC, open top container.
根系生物量效应值 Effect size of root biomass | MAT | MAP | AI | ||||||
---|---|---|---|---|---|---|---|---|---|
df | F | p | df | F | p | df | F | p | |
TRB | 113 | 0.235 2 | 0.603 | 113 | 1.110 7 | 0.187 | 113 | 2.597 4 | 0.110 |
FRB | 360 | 34.760 0 | 0.000*** | 360 | 43.652 0 | 0.000*** | 360 | 16.726 0 | 0.000*** |
CRB | 26 | 0.082 6 | 0.776 | 26 | 1.400 2 | 0.248 | 26 | 3.448 9 | 0.075 |
R/S | 108 | 2.766 0 | 0.099 | 108 | 0.103 0 | 0.749 | 108 | 0.109 4 | 0.742 |
表1 模拟增温对根系总生物量(TRB)、细根生物量(FRB)、粗根生物量(CRB)、根冠比(R/S)的影响(ln RR)与年平均气温(MAT)、年降水量(MAP)、干旱指数(AI)的关系
Table 1 Effects of simulated warming on total root biomass (TRB), fine root biomass (FRB), coarse root biomass (CRB) and root:shoot ratio (R/S) in relation to mean annual air temperature (MAT), mean annual precipitation (MAP) and aridity index (AI)
根系生物量效应值 Effect size of root biomass | MAT | MAP | AI | ||||||
---|---|---|---|---|---|---|---|---|---|
df | F | p | df | F | p | df | F | p | |
TRB | 113 | 0.235 2 | 0.603 | 113 | 1.110 7 | 0.187 | 113 | 2.597 4 | 0.110 |
FRB | 360 | 34.760 0 | 0.000*** | 360 | 43.652 0 | 0.000*** | 360 | 16.726 0 | 0.000*** |
CRB | 26 | 0.082 6 | 0.776 | 26 | 1.400 2 | 0.248 | 26 | 3.448 9 | 0.075 |
R/S | 108 | 2.766 0 | 0.099 | 108 | 0.103 0 | 0.749 | 108 | 0.109 4 | 0.742 |
图4 增温对细根生物量的影响(ln RR)与年平均气温(MAT)(A)、年降水量(MAP)(B)、干旱指数(AI)(C)的关系。
Fig. 4 Effect of simulated warming (ln RR) on fine-root biomass in relation to mean annual air temperature (MAT)(A), mean annual precipitation (MAP)(B), and aridity index (AI)(C).
[1] |
Bai WM, Wan SQ, Niu SL, Liu WX, Chen QS, Wang QB, Zhang WH, Han XG, Li LH (2010). Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: implications for ecosystem C cycling. Global Change Biology, 16, 1306-1316.
DOI URL |
[2] |
Bradford MA, Berg B, Maynard DS, Wieder WR, Wood SA (2016). Understanding the dominant controls on litter decomposition. Journal of Ecology, 104, 229-238.
DOI URL |
[3] |
Chen J, Luo YQ, Xia JY, Shi Z, Jiang LF, Niu SL, Zhou XH, Cao JJ (2016). Differential responses of ecosystem respiration components to experimental warming in a meadow grassland on the Tibetan Plateau. Agricultural and Forest Meteorology, 220, 21-29.
DOI URL |
[4] |
Coldren GA, Barreto CR, Wykoff DD, Morrissey EM, Langley JA, Feller IC, Chapman SK (2016). Chronic warming stimulates growth of marsh grasses more than mangroves in a coastal wetland ecotone. Ecology, 97, 3167-3175.
DOI PMID |
[5] |
Domisch T, Finér L, Lehto T (2002). Growth, carbohydrate and nutrient allocation of Scots pine seedlings after exposure to simulated low soil temperature in spring. Plant and Soil, 246, 75-86.
DOI URL |
[6] |
Eldhuset TD, Lange H, de Wit HA (2006). Fine root biomass, necromass and chemistry during seven years of elevated aluminium concentrations in the soil solution of a middle-aged Picea abies stand. Science of Total Environment, 369, 344-356.
DOI URL |
[7] | Gan QJ, Liu JL, Chen H (2021). Progress in research on field warming methods. Chinese Journal of Applied and Environmental Biology, 27, 1092-1101. |
[ 甘琦杰, 刘建亮, 陈槐 (2021). 野外增温方法研究进展. 应用与环境生物学报, 27, 1092-1101.] | |
[8] |
Gimbel KF, Felsmann K, Baudis M, Puhlmann H, Gessler A, Bruelheide H, Kayler Z, Ellerbrock RH, Ulrich A, Welk E, Weiler M (2015). Drought in forest understory ecosystems—A novel rainfall reduction experiment. Biogeosciences, 12, 961-975.
DOI URL |
[9] |
Han SH, Kim S, Li G, Chang H, Yun SJ, An J, Son YH (2018). Effects of warming and precipitation manipulation on fine root dynamics of Pinus densiflora Sieb. et Zucc. seedlings. Forests, 9, 14. DOI: 10.3390/f9010014.
DOI URL |
[10] | Hedges LV, Olkin I (1985). Statistical Methods for Meta- analysis. Academic Press, New York. |
[11] | Hollister RD, Flaherty KJ (2010). Above- and below-ground plant biomass response to experimental warming in northern Alaska. Applied Vegetation Science, 13, 378-387. |
[12] |
Hou YH, Zhou GS, Xu ZZ (2013). An overview of research progress on responses of grassland ecosystems to global warming based on infrared heating experiments. Chinese Journal of Plant Ecology, 37, 1153-1167.
DOI URL |
[ 侯彦会, 周广胜, 许振柱 (2013). 基于红外增温的草地生态系统响应全球变暖的研究进展. 植物生态学报, 37, 1153-1167.] | |
[13] | IPCC (2013). Climate change: the physical science basis//IPCC. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[14] |
Jackson RB, Mooney HA, Schulze ED (1997). A global budget for fine root biomass, surface area, and nutrient contents. Proceedings of the National Academy of Sciences of the United States of America, 94, 7362-7366.
PMID |
[15] |
Joslin JD, Wolfe MH, Hanson PJ (2000). Effects of altered water regimes on forest root systems. New Phytologist, 147, 117-129.
DOI URL |
[16] |
Kirschbaum MUF (2004). Soil respiration under prolonged soil warming: Are rate reductions caused by acclimation or substrate loss? Global Change Biology, 10, 1870-1877.
DOI URL |
[17] |
Lee EH, Tingey DT, Beedlow PA, Johnson MG, Burdick CA (2007). Relating fine root biomass to soil and climate conditions in the Pacific Northwest. Forest Ecology and Management, 242, 195-208.
DOI URL |
[18] |
Leppälammi-Kujansuu J, Ostonen I, Strömgren M, Nilsson LO, Kleja DB, Sah SP, Helmisaari HS (2013). Effects of long- term temperature and nutrient manipulation on Norway spruce fine roots and mycelia production. Plant and Soil, 366, 287-303.
DOI URL |
[19] |
Li F, Peng YF, Chen LY, Yang GB, Abbott BW, Zhang DY, Fang K, Wang GQ, Wang J, Yu JC, Liu L, Zhang QW, Chen KL, Mohammat A, Yang YH (2020). Warming alters surface soil organic matter composition despite unchanged carbon stocks in a Tibetan permafrost ecosystem. Functional Ecology, 34, 911-922.
DOI URL |
[20] |
Li N, Wang GX, Yang Y, Gao YH, Liu GS (2011). Plant production, and carbon and nitrogen source pools, are strongly intensified by experimental warming in alpine ecosystems in the Qinghai-Tibet Plateau. Soil Biology & Biochemistry, 43, 942-953.
DOI URL |
[21] | Li XJ, Liu XF, Lin CF, Chen SD, Xiong DC, Lin WS, Xu C, Xie JS, Yang YS (2017). Effects of experimental soil warming on plant biomass allocation during the early stages of succession in a subtropical forest in China. Acta Ecologica Sinica, 37, 25-34. |
[ 李晓杰, 刘小飞, 林成芳, 陈仕东, 熊德成, 林伟盛, 胥超, 谢锦升, 杨玉盛 (2017). 土壤增温调节中亚热带森林更新初期植物生物量分配格局. 生态学报, 37, 25-34.] | |
[22] |
Lin DL, Xia JY, Wan SQ (2010). Climate warming and biomass accumulation of terrestrial plants: a meta-analysis. New Phytologist, 188, 187-198.
DOI URL |
[23] | Liu H, Mi Z, Lin L, Wang Y, Zhang Z, Zhang F, Wang H, Liu L, Zhu B, Cao G, Zhao X, Sanders NJ, Classen AT, Reich PB, He JS (2018). Shifting plant species composition in response to climate change stabilizes grassland primary production. Proceedings of the National Academy of Sciences of the United States of America, 115, 4051-4056. |
[24] |
Loik ME, Still CJ, Huxman TE, Harte J (2004). In situ photosynthetic freezing tolerance for plants exposed to a global warming manipulation in the Rocky Mountains, Colorado, USA. New Phytologist, 162, 331-341.
DOI URL |
[25] |
Majdi H, Öhrvik J (2004). Interactive effects of soil warming and fertilization on root production, mortality, and longevity in a Norway spruce stand in Northern Sweden. Global Change Biology, 10, 182-188.
DOI URL |
[26] |
Malhotra A, Brice DJ, Childs J, Graham JD, Hobbie EA, van der Stel H, Feron SC, Hanson PJ, Iversen CM (2020). Peatland warming strongly increases fine-root growth. Proceedings of the National Academy of Sciences of the United States of America, 117, 17627-17634.
DOI PMID |
[27] | Mao JH, Xing YJ, Yan GY, Wang QG (2018). A meta-analysis of the response of terrestrial plant biomass allocation to simulated N deposition. Acta Ecologica Sinica, 38, 3183-3194. |
[ 毛晋花, 邢亚娟, 闫国永, 王庆贵 (2018). 陆生植物生物量分配对模拟氮沉降响应的Meta分析. 生态学报, 38, 3183-3194.] | |
[28] | Niu SL, Han XG, Ma KP, Wan SQ (2007). Field facilities in global warming and terrestrial ecosystem research. Journal of Plant Ecology (Chinese Version), 31, 262-271. |
[ 牛书丽, 韩兴国, 马克平, 万师强 (2007). 全球变暖与陆地生态系统研究中的野外增温装置. 植物生态学报, 31, 262-271.] | |
[29] |
Niu SL, Sherry RA, Zhou XH, Wan SQ, Luo YQ (2010). Nitrogen regulation of the climate-carbon feedback: evidence from a long-term global change experiment. Ecology, 91, 3261-3273.
DOI URL |
[30] |
Parmesan C (2007). Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Global Change Biology, 13, 1860-1872.
DOI URL |
[31] |
Rustad L, Campbell J, Marion G, Norby R, Mitchell M, Hartley A, Cornelissen J, Gurevitch J, GCTE-NEWS (2001). A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia, 126, 543-562.
DOI PMID |
[32] | Song J, Wan SQ, Piao SL, Knapp AK, Classen AT, Vicca S, Ciais P, Hovenden MJ, Leuzinger S, Beier C, Kardol P, Xia JY, Liu Q, Ru JY, Zhou ZX, et al. (2019). A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nature Ecology & Evolution, 3, 1309-1320. |
[33] |
Sun T, Mao ZJ, Han YY (2013). Slow decomposition of very fine roots and some factors controlling the process: a 4-year experiment in four temperate tree species. Plant and Soil, 372, 445-458.
DOI URL |
[34] |
Tokida T, Adachi M, Cheng WG, Nakajima Y, Fumoto T, Matsushima M, Nakamura H, Okada M, Sameshima R, Hasegawa T (2011). Methane and soil CO2 production from current-season photosynthates in a rice paddy exposed to elevated CO2 concentration and soil temperature. Global Change Biology, 17, 3327-3337.
DOI URL |
[35] | Usami T, Lee J, Oikawa T (2001). Interactive effects of increased temperature and CO2 on the growth of Quercus myrsinaefolia saplings. Plant, Cell & Environment, 24, 1007-1019. |
[36] |
Volder A, Edwards EJ, Evans JR, Robertson BC, Schortemeyer M, Gifford RM (2004). Does greater night-time, rather than constant warming alter growth of managed pasture under ambient and elevated atmospheric CO2? New Phytologist, 162, 397-411.
DOI URL |
[37] |
Wan SQ, Norby RJ, Pregitzer KS, Ledford J, O’Neill EG (2004). CO2 enrichment and warming of the atmosphere enhance both productivity and mortality of maple tree fine roots. New Phytologist, 162, 437-446.
DOI URL |
[38] |
Wang J, Defrenne C, McCormack ML, Yang L, Tian D, Luo Y, Hou E, Yan T, Li Z, Bu W, Chen Y, Niu S (2021). Fine- root functional trait responses to experimental warming: a global meta-analysis. New Phytologist, 230, 1856-1867.
DOI URL |
[39] | Wei X, Liu Y, Chen HB (2008). Anatomical and functional heterogeneity among different root orders of Phellodendron amurense. Journal of Plant Ecology (Chinese Version), 32, 1238-1247. |
[ 卫星, 刘颖, 陈海波 (2008). 黄波罗不同根序的解剖结构及其功能异质性. 植物生态学报, 32, 1238-1247.] | |
[40] |
Xu GP, Hu YG, Wang SP, Zhang ZH, Chang XF, Duan JC, Luo CY, Chao ZG, Su AL, Lin QY, Li YN, Du MY (2010). Effects of litter quality and climate change along an elevation gradient on litter mass loss in an alpine meadow ecosystem on the Tibetan Plateau. Plant Ecology, 209, 257-268.
DOI URL |
[41] | Xu XF, Tian HQ, Wan SQ (2007). Climate warming impacts on carbon cycling in terrestrial ecosystems. Journal of Plant Ecology (Chinese Version), 31, 175-188. |
[ 徐小锋, 田汉勤, 万师强 (2007). 气候变暖对陆地生态系统碳循环的影响. 植物生态学报, 31, 175-188.] | |
[42] | Yan H, Dong XL, Zhang SR (2014). Coarse root biomass distribution characteristics in a Chinese subtropical evergreen broadleaved forest. Chinese Science Bulletin, 59, 2416-2425. |
[ 闫慧, 董心亮, 张守仁 (2014). 古田山亚热带常绿阔叶林粗根生物量分布特征. 科学通报, 59, 2416-2425.] | |
[43] | Yang B, Wang JC, Zhang YB (2010). Effect of long-term warming on growth and biomass allocation of Abies faxoniana seedlings. Acta Ecologica Sinica, 30, 5994-6000. |
[ 杨兵, 王进闯, 张远彬 (2010). 长期模拟增温对岷江冷杉幼苗生长与生物量分配的影响. 生态学报, 30, 5994-6000.] | |
[44] | Ye WM, Xiong DC, Yang ZJ, Zhu YG, Zhang QF, Liu XF, Lin WS, Xu C, Zhang J, Yang YS (2019). Effect of soil warming on growth and photosynthetic characteristics of Cunninghamia lanceolata saplings. Acta Ecologica Sinica, 39, 2501-2509. |
[ 叶旺敏, 熊德成, 杨智杰, 朱益广, 张秋芳, 刘小飞, 林伟盛, 胥超, 张景, 杨玉盛 (2019). 模拟增温对杉木幼树生长和光合特性的影响. 生态学报, 39, 2501-2509.] | |
[45] |
Yin CY, Pu XZ, Xiao QY, Zhao CZ, Liu Q (2014). Effects of night warming on spruce root around non-growing season vary with branch order and month. Plant and Soil, 380, 249-263.
DOI URL |
[46] | Yin HJ, Lai T, Cheng XY, Jiang XM, Liu Q (2008). Warming effects on growth and physiology of seedlings of Betula albo-sinensis and Abies faxoniana under two contrasting light conditions in subalpine coniferous forest of western Sichuan, China. Journal of Plant Ecology (Chinese Version), 32, 1072-1083. |
[ 尹华军, 赖挺, 程新颖, 蒋先敏, 刘庆 (2008). 增温对川西亚高山针叶林内不同光环境下红桦和岷江冷杉幼苗生长和生理的影响. 植物生态学报, 32, 1072-1083.] | |
[47] | Yu H, Luedeling E, Xu J (2010). Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 107, 22151-22156. |
[48] |
Zamin TJ, Bret-Harte MS, Grogan P (2014). Evergreen shrubs dominate responses to experimental summer warming and fertilization in Canadian mesic low arctic tundra. Journal of Ecology, 102, 749-766.
DOI URL |
[49] |
Zhang TA, Chen HYH, Ruan HH (2018). Global negative effects of nitrogen deposition on soil microbes. The ISME Journal, 12, 1817-1825.
DOI URL |
[50] | Zhang XQ, Wu KH (2001). Fine-root production and turnover for forest ecosystems. Scientia Silvae Sinicae, 37(3), 126-138. |
[ 张小全, 吴可红 (2001). 森林细根生产和周转研究. 林业科学, 37(3), 126-138.] | |
[51] |
Zhao JX, Li RC, Li X, Tian LH (2017). Environmental controls on soil respiration in alpine meadow along a large altitudinal gradient on the central Tibetan Plateau. Catena, 159, 84-92.
DOI URL |
[52] |
Zhong ZM, Shen ZX, Fu G (2016). Response of soil respiration to experimental warming in a highland barley of the Tibet. SpringerPlus, 5, 137. DOI: 10.1186/s40064-016-1761-0.
DOI URL |
[53] |
Zhou YM, Tang JW, Melillo JM, Butler S, Mohan JE (2011). Root standing crop and chemistry after six years of soil warming in a temperate forest. Tree Physiology, 31, 707-717.
DOI URL |
[54] |
Zhu B, Chen Y (2020). Techniques and methods for field warming manipulation experiments in terrestrial ecosystems. Chinese Journal of Plant Ecology, 44, 330-339.
DOI URL |
[ 朱彪, 陈迎 (2020). 陆地生态系统野外增温控制实验的技术与方法. 植物生态学报, 44, 330-339.] | |
[55] |
Zomer RJ, Trabucco A, Bossio DA, Verchot LV (2008). Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agriculture, Ecosystem and Environment, 126, 67-80.
DOI URL |
[1] | 邓蓓 王晓锋 廖君. 环境胁迫影响三峡库区消落带草本和木本植物生理生态特征的整合分析[J]. 植物生态学报, 2024, 48(5): 623-637. |
[2] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[3] | 郭敏, 罗林, 梁进, 王彦杰, 赵春章. 冻融变化对西南亚高山森林优势种云杉和华西箭竹根区土壤理化性质与酶活性的影响[J]. 植物生态学报, 2023, 47(6): 882-894. |
[4] | 吴霖升, 张永光, 章钊颖, 张小康, 吴云飞. 日光诱导叶绿素荧光遥感及其在陆地生态系统监测中的应用[J]. 植物生态学报, 2022, 46(10): 1167-1199. |
[5] | 冯兆忠, 袁相洋, 李品, 尚博, 平琴, 胡廷剑, 刘硕. 地表臭氧浓度升高对陆地生态系统影响的研究进展[J]. 植物生态学报, 2020, 44(5): 526-542. |
[6] | 冯兆忠, 李品, 张国友, 李征珍, 平琴, 彭金龙, 刘硕. 二氧化碳浓度升高对陆地生态系统的影响: 问题与展望[J]. 植物生态学报, 2020, 44(5): 461-474. |
[7] | 冯兆忠, 徐彦森, 尚博. FACE实验技术和方法回顾及其在全球变化研究中的应用[J]. 植物生态学报, 2020, 44(4): 340-349. |
[8] | 葛体达, 王东东, 祝贞科, 魏亮, 魏晓梦, 吴金水. 碳同位素示踪技术及其在陆地生态系统碳循环研究中的应用与展望[J]. 植物生态学报, 2020, 44(4): 360-372. |
[9] | 朱彪, 陈迎. 陆地生态系统野外增温控制实验的技术与方法[J]. 植物生态学报, 2020, 44(4): 330-339. |
[10] | 李旭, 吴婷, 程严, 谭钠丹, 蒋芬, 刘世忠, 褚国伟, 孟泽, 刘菊秀. 南亚热带常绿阔叶林4个树种对增温的生理生态适应能力比较[J]. 植物生态学报, 2020, 44(12): 1203-1214. |
[11] | 黄玫, 王娜, 王昭生, 巩贺. 磷影响陆地生态系统碳循环过程及模型表达方法[J]. 植物生态学报, 2019, 43(6): 471-479. |
[12] | 闫鹏飞, 展鹏飞, 肖德荣, 王燚, 余瑞, 刘振亚, 王行. 模拟增温及分解界面对茭草凋落物分解速率及叶际微生物结构和功能的影响[J]. 植物生态学报, 2019, 43(2): 107-118. |
[13] | 宋小艳, 王根绪, 冉飞, 杨燕, 张莉, 肖瑶. 东北大兴安岭演替初期泰加林灌草层典型植物开花物候与生长对模拟暖干化气候的响应[J]. 植物生态学报, 2018, 42(5): 539-549. |
[14] | 岑宇, 王成栋, 张震, 任侠, 刘美珍, 杨帆. 河北省天然草地生物量和碳密度空间分布格局[J]. 植物生态学报, 2018, 42(3): 265-276. |
[15] | 张鑫, 邢亚娟, 闫国永, 王庆贵. 细根对降水变化响应的meta分析[J]. 植物生态学报, 2018, 42(2): 164-172. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19