植物生态学报 ›› 2020, Vol. 44 ›› Issue (4): 360-372.DOI: 10.17521/cjpe.2019.0208
所属专题: 稳定同位素生态学; 生态学研究的方法和技术; 生物地球化学; 微生物生态学; 碳循环
葛体达1,*(),王东东1,2,祝贞科1,魏亮1,2,魏晓梦1,2,吴金水1,2
收稿日期:
2019-08-06
接受日期:
2019-10-14
出版日期:
2020-04-20
发布日期:
2020-01-03
通讯作者:
葛体达
基金资助:
GE Ti-Da1,*(),WANG Dong-Dong1,2,ZHU Zhen-Ke1,WEI Liang1,2,WEI Xiao-Meng1,2,WU Jin-Shui1,2
Received:
2019-08-06
Accepted:
2019-10-14
Online:
2020-04-20
Published:
2020-01-03
Contact:
GE Ti-Da
Supported by:
摘要:
碳同位素示踪技术具有高度的专一性和灵敏度, 经过几十年的发展, 形成了一系列成熟的标记方法, 在陆地生态系统碳循环过程的研究中已得到广泛应用。目前, 自然丰度法、与13C贫化示踪技术结合的自由空气中气体浓度增加(FACE)实验、脉冲与连续标记法以及碳同位素高丰度底物富集标记法是研究陆地生态系统碳循环过程常用的碳同位素示踪方法; 通过将长期定位实验和室内模拟实验结合, 量化光合碳在植物-土壤系统的传输与分配特征, 明确植物光合碳对土壤有机质的来源、稳定化过程的影响及其微生物驱动机制; 阐明土壤碳动态变化(迁移与转化)和新碳与老碳对土壤碳库储量的相对贡献, 评估有机碳输入、转化与稳定的生物与非生物微观界面过程机制。然而, 生态系统碳循环受气候、植被、人为活动等多因素影响, 碳同位素技术需要结合质谱、光谱技术实现原位示踪, 结合分子生物学技术阐明其微生物驱动机制, 从而构建灵敏、准确、多尺度、多方位的同位素示踪技术体系。因此, 该文以稳定碳同位素为主, 综述了碳同位素示踪技术的原理、分析方法和在陆地生态系统碳循环过程中的应用进展, 归纳总结了碳同位素示踪技术结合原位检测技术和分子生物学技术的研究进展和应用前景, 并对碳同位素示踪技术存在的问题进行了分析和展望。
葛体达, 王东东, 祝贞科, 魏亮, 魏晓梦, 吴金水. 碳同位素示踪技术及其在陆地生态系统碳循环研究中的应用与展望. 植物生态学报, 2020, 44(4): 360-372. DOI: 10.17521/cjpe.2019.0208
GE Ti-Da, WANG Dong-Dong, ZHU Zhen-Ke, WEI Liang, WEI Xiao-Meng, WU Jin-Shui. Tracing technology of carbon isotope and its applications to studies of carbon cycling in terrestrial ecosystem. Chinese Journal of Plant Ecology, 2020, 44(4): 360-372. DOI: 10.17521/cjpe.2019.0208
图1 碳同位素示踪技术及其与其他技术的耦合应用。
Fig. 1 Coupled application of carbon isotope tracing technology and other technologies. DNA/RNA-SIP, DNA/RNA-Stable isotope probing; FISH, fluorescence in situ hybridization; NanoSIMS, nano-scale secondary ion mass spectrometry; PLFA, phospholipid fatty acid. SOM, soil organic matter.
脉冲标记 Pulse labeling | 连续标记 Continuous labeling | |
---|---|---|
1. 标记持续时间 Labeling duration | 短(小时或天) Very short (hours or days) | 植物生长的全部时期 Entire duration of plant growth |
2. CO2输入的同位素组成变化 Changes in the isotopic composition of the CO2 input | 时间短而丰度高 Short time and high abundance | 时间长(不一定需要高丰度); 长期持续富集 Long time (not necessarily high abundance), constant enrichment over a long period |
3. 应用 Application | 简单 Simple | 复杂 Complicated |
4. 成本 Cost | 便宜 Cheap | 昂贵 Expensive |
5. 目的 Aim | 不同生长阶段植物-土壤系统的C流动力学 Dynamics of C flow in the plant, soil, and CO2 at various growth stages | 可以达到脉冲标记的所有目的 All the aims of pulse labeling can be achieved |
地下C分配 Belowground C allocation | 植物C在CO2, 微生物生物量碳(MBC), 可溶性有机质(DOM)和土壤有机质(SOM)等中的分配 Partitioning of plant derived C in CO2, microbial biomass C (MBC), dissolved organic matter (DOM), soil organic matter (SOM), etc. | |
净C同化 Net C assimilation | 植物C分配的季节动态 Seasonal dynamics of plant C partitioning | |
植物根系和土壤呼吸 Root-soil respiration | 根际激发效应 Rhizosphere-priming effects | |
新同化C的命运(分配和运输) Fate of newly assimilated C | ||
C转移速度 Speed of C transfer | ||
6. C输入到土壤中 C input into the soil | 在特定的植物生长阶段 At specific plant development stages | 在植物生长的整个时期 Over the whole growth period |
7. 缺点 Disadvantage | 特定生长阶段不能代表整个生长时期, 同位素丰度在植物整株中分布不均匀 A specific growth stage cannot be transferred for the whole growth period, isotope abundance is unequal across plant parts | 需要特殊设备长期标记植物 Requires special equipment for exposing the plant over a long period |
同位素丰度随时间变化 Isotope abundance in pools change over time | 为保证空气湿度, 需要良好的温度控制和空气循环系统 Temperature control and good air circulation are necessary to maintain air humidity |
表1 脉冲和连续标记在根际沉积碳(C)输入土壤应用中的比较
Table 1 Comparison of pulse and continuous labeling method in the study of rhizosphere deposition carbon (C) input to soil
脉冲标记 Pulse labeling | 连续标记 Continuous labeling | |
---|---|---|
1. 标记持续时间 Labeling duration | 短(小时或天) Very short (hours or days) | 植物生长的全部时期 Entire duration of plant growth |
2. CO2输入的同位素组成变化 Changes in the isotopic composition of the CO2 input | 时间短而丰度高 Short time and high abundance | 时间长(不一定需要高丰度); 长期持续富集 Long time (not necessarily high abundance), constant enrichment over a long period |
3. 应用 Application | 简单 Simple | 复杂 Complicated |
4. 成本 Cost | 便宜 Cheap | 昂贵 Expensive |
5. 目的 Aim | 不同生长阶段植物-土壤系统的C流动力学 Dynamics of C flow in the plant, soil, and CO2 at various growth stages | 可以达到脉冲标记的所有目的 All the aims of pulse labeling can be achieved |
地下C分配 Belowground C allocation | 植物C在CO2, 微生物生物量碳(MBC), 可溶性有机质(DOM)和土壤有机质(SOM)等中的分配 Partitioning of plant derived C in CO2, microbial biomass C (MBC), dissolved organic matter (DOM), soil organic matter (SOM), etc. | |
净C同化 Net C assimilation | 植物C分配的季节动态 Seasonal dynamics of plant C partitioning | |
植物根系和土壤呼吸 Root-soil respiration | 根际激发效应 Rhizosphere-priming effects | |
新同化C的命运(分配和运输) Fate of newly assimilated C | ||
C转移速度 Speed of C transfer | ||
6. C输入到土壤中 C input into the soil | 在特定的植物生长阶段 At specific plant development stages | 在植物生长的整个时期 Over the whole growth period |
7. 缺点 Disadvantage | 特定生长阶段不能代表整个生长时期, 同位素丰度在植物整株中分布不均匀 A specific growth stage cannot be transferred for the whole growth period, isotope abundance is unequal across plant parts | 需要特殊设备长期标记植物 Requires special equipment for exposing the plant over a long period |
同位素丰度随时间变化 Isotope abundance in pools change over time | 为保证空气湿度, 需要良好的温度控制和空气循环系统 Temperature control and good air circulation are necessary to maintain air humidity |
[1] |
Apostel C, Dippold M, Kuzyakov Y (2015). Biochemistry of hexose and pentose transformations in soil analyzed by position-specific labeling and 13C-PLFA . Soil Biology & Biochemistry, 80, 199-208.
DOI URL |
[2] |
Arslan A, Zapata F, Kumarasinghe KS (1999). Carbon isotope discrimination as indicator of water-use efficiency of spring wheat as affected by salinity and gypsum addition. Communications in Soil Science and Plant Analysis, 30, 2681-2693.
DOI URL |
[3] |
Atere CT, Ge TD, Zhu ZK, Tong CL, Jones DL, Shibistova O, Guggenberger G, Wu JS (2017). Rice rhizodeposition and carbon stabilisation in paddy soil are regulated via drying- rewetting cycles and nitrogen fertilisation. Biology and Fertility Soils, 53, 407-417.
DOI URL |
[4] |
Bai E, Boutton TW, Liu F, Wu XB, Archer SR (2012). Spatial patterns of soil δ 13C reveal grassland-to-woodland successional processes . Organic Geochemistry, 42, 1512-1518.
DOI URL |
[5] | Balesdent J, Mariotti A (1996). Measurement of soil organic matter turnover using 13C natural abundance//Boutton TW, Yamasaki SI. Mass Spectrometry of Soils. Marcel Dekker , New York. 83-111. |
[6] |
Bernoux M, Cerri CC, Neill C, de Moraes JFL (1998). The use of stable carbon isotopes for estimating soil organic matter turnover rates. Geoderma, 82, 43-58.
DOI URL |
[7] |
Berry D, Stecher B, Schintlmeister A, Reichert J, Brugiroux S, Wild B, Wanek W, Richter A, Rauch I, Decker T, Loy A, Wagner M (2013). Host-compound foraging by intestinal microbiota revealed by single-cell stable isotope probing. Proceedings of the National Academy of Sciences of the United States of America, 110, 4720-4725.
URL PMID |
[8] |
Blagodatskaya E, Yuyukina T, Blagodatsky S, Kuzyakov Y (2011a). Three-source-partitioning of microbial biomass and of CO2 efflux from soil to evaluate mechanisms of priming effects. Soil Biology & Biochemistry, 43, 778-786.
DOI URL |
[9] |
Blagodatskaya E, Yuyukina T, Blagodatsky S, Kuzyakov Y (2011b). Turnover of soil organic matter and of microbial biomass under C3-C4 vegetation change: consideration of 13C fractionation and preferential substrate utilization . Soil Biology & Biochemistry, 43, 159-166.
DOI URL |
[10] |
Blagodatskaya Е, Kuzyakov Y (2008). Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biology and Fertility of Soils, 45, 115-131.
DOI URL |
[11] |
Blaser M, Conrad R (2016). Stable carbon isotope fractionation as tracer of carbon cycling in anoxic soil ecosystems. Current Opinion in Biotechnology, 41, 122-129.
DOI URL PMID |
[12] |
Bradford MA, Fierer N, Jackson RB, Maddox TR, Reynolds JF (2008). Nonlinear root-derived carbon sequestration across a gradient of nitrogen and phosphorous deposition in experimental mesocosms. Global Change Biology, 14, 1113-1124.
DOI URL |
[13] |
Canadell JG, Pitelka LF, Ingram JSI (1995). The effects of elevated [CO2] on plant-soil carbon below-ground: a summary and synthesis. Plant and Soil, 187, 391-400.
DOI URL |
[14] | Cao YC, Sun GQ, Han Y, Sun DL, Wang X (2008). Determination of nitrogen, carbon and oxygen stable isotope ratios in N2O, CH4, and CO2 at natural abundance levels by mass spectrometer. Acta Pedologica Sinica, 45, 249-258. |
[ 曹亚澄, 孙国庆, 韩勇, 孙德玲, 王曦 (2008). 大气浓度下N2O、CH4和CO2中氮、碳和氧稳定同位素比值的质谱测定. 土壤学报, 45, 249-258.] | |
[15] | Chen SP, Bai YF, Han XG (2002). Applications of stable carbon isotope techniques to ecological research. Acta Phytoecologica Sinica, 26, 549-560. |
[ 陈世苹, 白永飞, 韩兴国 (2002). 稳定性碳同位素技术在生态学研究中的应用. 植物生态学报, 26, 549-560.] | |
[16] | Cheng WX (2009). Rhizosphere priming effect: its functional relationships with microbial turnover, evapotranspiration, and C-N budgets. Soil Biology & Biochemistry, 41, 1795-1801. |
[17] | Conley MM, Kimball BA, Brooks TJ, Pinter Jr. PJ, Hunsaker DJ, Wall GW, Adam NR, LaMorte RL, Matthias AD, Thompson TL, Leavitt SW, Ottman MJ, Cousins AB, Triggs JM (2001). CO2 enrichment increases water-use efficiency in sorghum. New Phytologist, 151, 407-412. |
[18] | Conrad R, Klose M, Claus P, Enrich-Prastb A (2010). Methanogenic pathway, 13C isotope fractionation, and archaeal community composition in the sediment of two clear- water lakes of Amazonia . Limnology and Oceanography, 55, 689-702. |
[19] | Conrad R, Klose M, Yuan Q, Lu YH, Chidthaisong A (2012). Stable carbon isotope fractionation, carbon flux partitioning and priming effects in anoxic soils during methanogenic degradation of straw and soil organic matter. Soil Biology & Biochemistry, 49, 193-199. |
[20] | Cotrufo MF, Soong JL, Horton AJ, Campbell EE, Haddix ML, Wall DH, Parton WJ (2015). Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nature Geoscience, 8, 776-779. |
[21] |
Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E (2013). The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Global Change Biology, 19, 988-995.
URL PMID |
[22] | Crow SE, Sulzma EW, Rugh WD, Bowden RD, Lajtha K (2006). Isotopic analysis of respired CO2 during decomposition of separated soil organic matter pools. Soil Biology & Biochemistry, 38, 3279-3291. |
[23] |
Dekas AE, Poretsky RS, Orphan VJ (2009). Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia. Science, 326, 422-426.
DOI URL |
[24] | Dorodnikov M, Kuzyakov Y, Fangmeier A, Wiesenberg GLB (2011). C and N in soil organic matter density fractions under elevated atmospheric CO2: turnover vs. stabilization. Soil Biology & Biochemistry, 43, 579-589. |
[25] |
Dumont MG, Radajewski SM, Miguez CB, McDonald IR, Murrell JC (2006). Identification of a complete methane monooxygenase operon from soil by combining stable isotope probing and metagenomic analysis. Environmental Microbiology, 8, 1240-1250.
URL PMID |
[26] | Ebdon JS, Petrovic AM, Dawson TE (1998). Relationship between carbon isotope discrimination, water use efficiency, and evapotranspiration in Kentucky bluegrass. Crop Science, 38, 157-162. |
[27] |
Ehleringer J, Pearcy RW (1983). Variation in quantum yield for CO2 uptake among C3 and C4 plants. Plant Physiology, 73, 555-559.
URL PMID |
[28] | Eiler JM, Clog M, Magyar P, Piasecki A, Sessions A, Stolper D, Deerberg M, Schlueter HJ, Schwieters J (2012). A high-resolution gas-source isotope ratio mass spectrometer. International Journal of Mass Spectrometry, 335, 45-56. |
[29] |
Epron D, Bahn M, Derrien D, Lattanzi FA, Pumpanen J, Gessler A, Högberg P, Maillard P, Dannoura M, Gérant D, Buchmannet N (2012). Pulse-labelling trees to study carbon allocation dynamics: a review of methods, current knowledge and future prospects. Tree Physiology, 32, 776-798.
URL PMID |
[30] | Fan FL, Yin C, Tang YJ, Li ZJ, Song AL, Wakelin SA, Zou J, Liang YC (2014). Probing potential microbial coupling of carbon and nitrogen cycling during decomposition of maize residue by 13C-DNA-SIP . Soil Biology & Biochemistry, 70, 12-21. |
[31] | Fernandez I, Mahieu N, Cadisch G (2003). Carbon isotopic fractionation during decomposition of plant materials of different quality. Global Biogeochemical Cycles, 17, 1075. DOI: 10.1029/2001gb001834. |
[32] | Garten Jr CT, Taylor Jr GE (1992). Foliar δ13C within a temperate deciduous forest: spatial, temporal, and species sources of variation. Oecologia, 90, 1-7. |
[33] | Ge TD, Li BZ, Zhu ZK, Hu YJ, Yuan HZ, Dorodnikov M, Jones DL, Wu JS, Kuzyakov Y (2017). Rice rhizodeposition and its utilization by microbial groups depends on N fertilization. Biology and Fertility of Soils, 53, 37-48. |
[34] | Ge Y, He JZ, Zheng YM, Zhang LM, Zhu YG (2006). Stable isotope probing and its applications in microbial ecology. Acta Ecologica Sinica, 26, 1574-1582. |
[ 葛源, 贺纪正, 郑袁明, 张丽梅, 朱永官 (2006). 稳定性同位素探测技术在微生物生态学研究中的应用. 生态学报, 26, 1574-1582.] | |
[35] |
Griepentrog M, Eglinton TI, Hagedorn F, Schmidt MWI, Wiesenberg GLB (2015). Interactive effects of elevated CO2 and nitrogen deposition on fatty acid molecular and isotope composition of above- and belowground tree biomass and forest soil fractions. Global Change Biology, 21, 473-486.
DOI URL PMID |
[36] |
Guenet B, Camino-Serrano M, Ciais P, Tifafi M, Maignan F, Soong JL, Janssens IA (2018). Impact of priming on global soil carbon stocks. Global Change Biology, 24, 1873-1883.
URL PMID |
[37] | Hagedorn F, Hiltbrunner D, Streit K, Ekblad A, Lindahl B, Miltner A, Frey B, Handa IT, Hättenschwiler S (2013). Nine years of CO2 enrichment at the alpine treeline stimulates soil respiration but does not alter soil microbial communities. Soil Biology & Biochemistry, 57, 390-400. |
[38] | Hagedorn F, Spinnler D, Siegwolf R (2003). Increased N deposition retards mineralization of old soil organic matter. Soil Biology & Biochemistry, 35, 1683-1692. |
[39] | Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000). Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry, 48, 115-146. |
[40] | He Y (2016). Stectroscopy and Imaging Technology in Agriculture. Science Press, Beijing. |
[ 何勇 (2016). 光谱及成像技术在农业中的应用. 科学出版社, 北京.] | |
[41] | Herrmann AM, Ritz K, Nunan N, Clode PL, Pett-Ridge J, Kilburn MR, Murphy DV, O’Donnell AG, Stockdale EA (2007). Nano-scale secondary ion mass spectrometry—A new analytical tool in biogeochemistry and soil ecology: a review article. Soil Biology & Biochemistry, 39, 1835-1850. |
[42] | Hofmockel KS, Zak DR, Moran KK, Jastrow JD (2011). Changes in forest soil organic matter pools after a decade of elevated CO2 and O3. Soil Biology & Biochemistry, 43, 1518-1527. |
[43] | Holz M, Zarebanadkouki M, Carminati A, Kuzyakov Y (2019). Visualization and quantification of root exudation using 14C imaging: challenges and uncertainties . Plant and Soil, 437, 473-485. |
[44] |
Holz M, Zarebanadkouki M, Kuzyakov Y, Pausch J, Carminati A (2018). Root hairs increase rhizosphere extension and carbon input to soil. Annals of Botany, 121, 61-69.
URL PMID |
[45] |
Hungate BA, Mau RL, Schwartz E, Caporaso JG, Dijkstra P, van Gestel N, Koch BJ, Liu CM, McHugh TA, Marks JC, Morrissey EM, Price LB (2015). Quantitative microbial ecology through stable isotope probing. Applied Environmental Microbiology, 81, 7570-7581.
URL PMID |
[46] | Jin XX, Wang JK, Sun LJ, Wang S, Pei JB, An TT, Ding F, Gao XD, Xu YD (2017). Progress of carbon cycle in farmland and sequestration in soil aggregates revealed by stable 13C isotope . Soils, 49, 217-224. |
[ 金鑫鑫, 汪景宽, 孙良杰, 王帅, 裴久渤, 安婷婷, 丁凡, 高晓丹, 徐英德 (2017). 稳定 13C同位素示踪技术在农田土壤碳循环和团聚体固碳研究中的应用进展 . 土壤, 49, 217-224.] | |
[47] | Kemmitt SJ, Lanyon CV, Waite IS, Wen Q, Addiscott TM, Bird NRA, O’Donnell AG, Brookes PC (2008). Mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass—A new perspective. Soil Biology & Biochemistry, 40, 61-73. |
[48] | Kiem R, Knicker H, Körschens M, Kögel-Knabner I (2000). Refractory organic carbon in C-depleted arable soils, as studied by 13C NMR spectroscopy and carbohydrate analysis . Organic Geochemistry, 31, 655-668. |
[49] | Kimura M, Murase J, Lu YH (2004). Carbon cycling in rice field ecosystems in the context of input, decomposition and translocation of organic materials and the fates of their end products (CO2 and CH4). Soil Biology & Biochemistry, 36, 1399-1416. |
[50] |
Kingston JD, Hill A, Marino BD (1994). Isotopic evidence for neogene hominid paleoenvironments in the Kenya rift valley. Science, 264, 955-959.
DOI URL PMID |
[51] | Kušlienë G, Rasmussen J, Kuzyakov Y, Eriksen J (2014). Medium-term response of microbial community to rhizodeposits of white clover and ryegrass and tracing of active processes induced by 13C and 15N labelled exudates . Soil Biology & Biochemistry, 76, 22-33. |
[52] | Kuzyakov Y (2005). Theoretical background for partitioning of root and rhizomicrobial respiration by δ13C of microbial biomass. European Journal of Soil Biology, 41, 1-9. |
[53] |
Kuzyakov Y (2006). Sources of CO2 efflux from soil and review of partitioning methods. Soil Biology & Biochemistry, 38, 425-448.
DOI URL |
[54] |
Kuzyakov Y (2010). Priming effects: interactions between living and dead organic matter. Soil Biology & Biochemistry, 42, 1363-1371.
DOI URL |
[55] | Kuzyakov Y, Cheng WX (2001). Photosynthesis controls of rhizosphere respiration and organic matter decomposition. Soil Biology & Biochemistry, 33, 1915-1925. |
[56] |
Kuzyakov Y, Domanski G (2000). Carbon input by plants into the soil. Review. Journal of Plant Nutrition and Soil Science, 163, 421-431.
DOI URL |
[57] | Kuzyakov Y, Gavrichkova O (2010). Time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls. Global Change Biology, 16, 3386-3406. |
[58] | Leavitt SW, Paul EA, Kimball BA, Hendrey GR, Mauney JR, Rauschkolb R, Rogers H, Lewin KF, Nagy J, Pinter Jr PJ, Johnson HB (1994). Carbon isotope dynamics of free-air CO2-enriched cotton and soils. Agricultural and Forest Meteorology, 70, 87-101. |
[59] |
Lechene CP, Luyten Y, McMahon G, Distel DL (2007). Quantitative imaging of nitrogen fixation by individual bacteria within animal cells. Science, 317, 1563-1566.
URL PMID |
[60] |
Li MQ, Canniffe DP, Jackson PJ, Davison PA, FitzGerald S, Dickman MJ, Burgess JG, Hunter CN, Huang WE (2012). Rapid resonance Raman microspectroscopy to probe carbon dioxide fixation by single cells in microbial communities. The ISME Journal, 6, 875-885.
URL PMID |
[61] |
Liang C, Schimel JP, Jastrow JD (2017). The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2, 17105. DOI: 10.1038/nmicrobiol.2017.105.
DOI URL PMID |
[62] |
Liang JY, Zhou ZH, Huo CF, Shi Z, Cole JR, Huang L, Konstantinidis KT, Li XM, Liu B, Luo ZK, Penton CR, Schuur EAG, Tiedje JM, Wang YP, Wu LY, Xia JY, Zhou JZ, Luo YQ (2018). More replenishment than priming loss of soil organic carbon with additional carbon input. Nature Communications, 9, 3175. DOI: 10.1038/s41467-018-05667-7.
URL PMID |
[63] | Lin GH (2013). Stable Isotope Ecology. Higher Education Press, Beijing. |
[ 林光辉 (2013). 稳定同位素生态学. 高等教育出版社, 北京.] | |
[64] | Liu CB, Shen QP, Yang GY, Si XX, He P, Wang KM, Zhang HY, Liu ZH, Miao MM (2014). Determination of thermal decomposition products of glucose by thermal analysis combined with FTIR and GC-MS. Physical Testing and Chemical Analysis Part B: Chemical Analysis, 50, 1342-1347. |
[ 刘春波, 申钦鹏, 杨光宇, 司晓喜, 何沛, 王昆淼, 张宏宇, 刘志华, 缪明明 (2014). 热分析-傅里叶变换红外光谱-气相色谱-质谱联用测定葡萄糖的热分解产物. 理化检验: 化学分册, 50, 1342-1347.] | |
[65] | Liu YL, Ge TD, Ye J, Liu SL, Shibistova O, Wang P, Wang JK, Li Y, Guggenberger G, Kuzyakov Y, Wu JS (2019a). Initial utilization of rhizodeposits with rice growth in paddy soils: rhizosphere and N fertilization effects. Geoderma, 338, 30-39. |
[66] | Liu YL, Ge TD, Zhu ZK, Liu SL, Luo Y, Li Y, Wang P, Gavrichkova O, Xu XL, Wang JK, Wu JS, Guggenberger G, Kuzyakov Y (2019b). Carbon input and allocation by rice into paddy soils: a review. Soil Biology & Biochemistry, 133, 97-107. |
[67] |
Lu YH, Conrad R (2005). In situ stable isotope probing of methanogenic archaea in the rice rhizosphere. Science, 309, 1088-1090.
DOI URL PMID |
[68] | Lu YH, Watanabe A, Kimura M (2002a). Contribution of plant-derived carbon to soil microbial biomass dynamics in a paddy rice microcosm. Biology and Fertility of Soils, 36, 136-142. |
[69] | Lu YH, Watanabe A, Kimura M (2002b). Input and distribution of photosynthesized carbon in a flooded rice soil. Global Biogeochemical Cycles, 16, 321-328. |
[70] | Lu YH, Watanabe A, Kimura M (2003). Carbon dynamics of rhizodeposits, root- and shoot-residues in a rice soil. Soil Biology & Biochemistry, 35, 1223-1230. |
[71] | McLeod AR, Long SP (1999). Free-air carbon dioxide enrichment (FACE) in global change research: a review. Advances in Ecological Research, 28, 1-56. |
[72] |
Morrissey EM, Mau RL, Schwartz E, McHugh TA, Dijkstra P, Koch BJ, Marks JC, Hungate BA (2017). Bacterial carbon use plasticity, phylogenetic diversity and the priming of soil organic matter. The ISME Journal, 11, 1890-1899.
URL PMID |
[73] |
Musat N, Musat F, Weber PK, Pett-Ridge J (2016). Tracking microbial interactions with NanoSIMS. Current Opinion in Biotechnology, 41, 114-121.
URL PMID |
[74] |
Neufeld JD, Chen Y, Dumont MG, Murrell JC (2008). Marine methylotrophs revealed by stable-isotope probing, multiple displacement amplification and metagenomics. Environmental Microbiology, 10, 1526-1535.
URL PMID |
[75] |
Paul D, Skrzypek G, Fórizs I (2007). Normalization of measured stable isotopic compositions to isotope reference scales—A review. Rapid Communications in Mass Spectrometry, 21, 3006-3014.
DOI URL PMID |
[76] | Pausch J, Kuzyakov Y (2011). Photoassimilate allocation and dynamics of hotspots in roots visualized by 14C phosphor imaging . Journal of Plant Nutrition and Soil Science, 174, 12-19. |
[77] | Pendall E, Del Grosso S, King JY, LeCain DR, Milchunas DG, Morgan JA, Mosier AR, Ojima DS, Parton WA, Tans PP, White JWC (2003). Elevated atmospheric CO2 effects and soil water feedbacks on soil respiration components in a Colorado grassland. Global Biogeochemical Cycles, 17, 1046. |
[78] | Peñuelas J, Filella I, Terradas J (1999). Variability of plant nitrogen and water use in a 100-m transect of a subdesertic depression of the Ebro valley (Spain) characterized by leaf δ13C and δ15N. Acta Oecologica, 20, 119-123. |
[79] | Perveen N, Barot S, Maire V, Cotrufo MF, Shahzad T, Blagodatskaya E, Stewart CE, Ding WX, Siddiq MR, Dimassi B, Mary B, Fontaine S (2019). Universality of priming effect: an analysis using thirty five soils with contrasted properties sampled from five continents. Soil Biology & Biochemistry, 134, 162-171. |
[80] |
Phillips DL, Gregg JW (2003). Source partitioning using stable isotopes: coping with too many sources. Oecologia, 136, 261-269.
DOI URL PMID |
[81] |
Radajewski S, Ineson P, Parekh NR, Murrell JC (2000). Stable-isotope probing as a tool in microbial ecology. Nature, 403, 646-649.
URL PMID |
[82] | Ren SJ, Yu GR (2011). Carbon isotope composition (δ13C) of C3 plants and water use efficiency in China. Chinese Journal of Plant Ecology, 35, 119-124. |
[ 任书杰, 于贵瑞 (2011). 中国区域478种C3植物叶片碳稳定性同位素组成与水分利用效率. 植物生态学报, 35, 119-124.] | |
[83] | Rochette P, Flanagan LB, Gregorich EG (1999). Separating soil respiration into plant and soil components using analyses of the natural abundance of carbon-13. Soil Science Society of America Journal, 63, 1207-1213. |
[84] |
Rumpel C, Baumann K, Remusat L, Dignac MF, Barré P, Deldicque D, Glasser G, Lieberwirth I, Chabbi A (2015). Nanoscale evidence of contrasted processes for root-derived organic matter stabilization by mineral interactions depending on soil depth. Soil Biology & Biochemistry, 85, 82-88.
DOI URL |
[85] | Ruyters S, Nicol GW, Prosser JI, Lievens B, Smolders E (2013). Activity of the ammonia oxidising bacteria is responsible for zinc tolerance development of the ammonia oxidising community in soil: a stable isotope probing study. Soil Biology & Biochemistry, 58, 244-247. |
[86] | Six J, Carpentier A, van Kessel C, Merckx R, Harris D, Horwath WR, Lüscher A (2001). Impact of elevated CO2 on soil organic matter dynamics as related to changes in aggregate turnover and residue quality. Plant and Soil, 234, 27-36. |
[87] | Tian QX, He HB, Cheng WX, Zhang XD (2014). Pulse-dynamic and monotonic decline patterns of soil respiration in long term laboratory microcosms. Soil Biology & Biochemistry, 68, 329-336. |
[88] | Tieszen LL, Boutton TW (1989). Stable carbon isotopes in terrestrial ecosystem research//Rundel PW, Ehleringer JR, Nagy KA. Stable Isotopes in Ecological Research. Springer-Verlag, New York. 167-195. |
[89] | Vidal A, Remusat L, Watteau F, Derenne S, Quenea K (2016). Incorporation of 13C labelled shoot residues in Lumbricus terrestris casts: a combination of transmission electron microscopy and nanoscale secondary ion mass spectrometry. Soil Biology & Biochemistry, 93, 8-16. |
[90] |
Wang J, Chapman SJ, Yao HY (2016). Incorporation of 13C-labelled rice rhizodeposition into soil microbial communities under different fertilizer applications . Applied Soil Ecology, 101, 11-19.
DOI URL |
[91] | Webster EA, Chudek JA, Hopkins DW (1997). Fates of 13C from enriched glucose and glycine in an organic soil determined by solid-state NMR . Biology and Fertility of Soils, 25, 389-395. |
[92] | Werth M, Kuzyakov Y (2010). 13C fractionation at the root-microorganisms-soil interface: a review and outlook for partitioning studies . Soil Biology & Biochemistry, 42, 1372-1384. |
[93] |
Whitman T, Lehmann J (2015). A dualisotope approach to allow conclusive partitioning between three sources. Nature Communications, 6, 8708. DOI: 10.1038/ncomms9708.
DOI URL PMID |
[94] |
Wiesheu AC, Brejcha R, Mueller CW, Kögel-Knabner I, Elsner M, Niessner R, Ivleva NP (2018). Stable-isotope Raman microspectroscopy for the analysis of soil organic matter. Analytical and Bioanalytical Chemistry, 410, 923-931.
URL PMID |
[95] | Williams MA, Myrold DD, Bottomley PJ (2006). Carbon flow from 13C-labeled straw and root residues into the phospholipid fatty acids of a soil microbial community under field conditions . Soil Biology & Biochemistry, 38, 759-768. |
[96] | Xiao ML, Zang HD, Ge TD, Chen AL, Zhu ZK, Zhou P, Atere CT, Wu JS, Su YR, Kuzyakov Y (2019a). Effect of nitrogen fertilizer on rice photosynthate allocation and carbon input in paddy soil. European Journal of Soil Science, 70, 786-795. |
[97] | Xiao ML, Zang HD, Liu SL, Ye RZ, Zhu ZK, Su YR, Wu JS, Ge TD (2019b). Nitrogen fertilization alters the distribution and fates of photosynthesized carbon in rice-soil systems: a 13C-CO2 pulse labeling study . Plant and Soil, 445, 101-112. |
[98] | Yuan HZ, Li CY, Jian Y, Geng MM, Xu LW, Wang JR (2014). Stable isotope technique in the soil carbon cycling research of agricultural ecosystems. Journal of Isotopes, 27, 170-178. |
[ 袁红朝, 李春勇, 简燕, 耿梅梅, 许丽卫, 王久荣 (2014). 稳定同位素分析技术在农田生态系统土壤碳循环中的应用. 同位素, 27, 170-178.] | |
[99] |
Yuan HZ, Zhu ZK, Liu SL, Ge TD, Jing HZ, Li BZ, Liu Q, Lynn TM, Wu JS, Kuzyakov Y (2016). Microbial utilizetion of rice root exudates: 13C labeling and PLFA composition . Biology and Fertility of Soils, 52, 615-627.
DOI URL |
[100] | Zang HD, Xiao ML, Wang YD, Ling N, Wu JS, Ge TD, Kuzyakov Y (2019). Allocation of assimilated carbon in paddies depending on rice age, chase period and N fertilization: experiment with 13CO2 labelling and literature synthesis . Plant and Soil, 445, 113-123. |
[101] | Zhang L, Sun XY, Gao CD, Cao JX (2010). Applications of stable isotope ratio mass spectrometer in soil carbon cycle research. Analytical Instrumentation, 1, 18-23. |
[ 张林, 孙向阳, 高程达, 曹吉鑫 (2010). 稳定同位素比例质谱仪在土壤碳循环研究中的应用. 分析仪器, 1, 18-23.] | |
[102] |
Zhang R, Zhao Y, He HB, Zhang XD (2017). Investigation on effects of elevated atmospheric CO2 concentration on plant-soil system carbon cycling: based on stable isotopic technique. Chinese Journal of Applied Ecology, 28, 2379-2388.
DOI URL PMID |
[ 张蕊, 赵钰, 何红波, 张旭东 (2017). 基于稳定碳同位素技术研究大气CO2浓度升高对植物-土壤系统碳循环的影响. 应用生态学报, 28, 2379-2388.]
DOI URL PMID |
|
[103] | Zhang W, Liang C, Kao-Kniffin J, He HB, Xie HT, Zhang H, Zhang XD (2015). Differentiating the mineralization dynamics of the originally present and newly synthesized amino acids in soil amended with available carbon and nitrogen substrates. Soil Biology & Biochemistry, 85, 162-169. |
[104] |
Zhao ZW, Ge TD, Gunina A, Li YH, Zhu ZK, Peng PQ, Wu JS, Kuzyakov Y (2019). Carbon and nitrogen availability in paddy soil affects rice photosynthate allocation, microbial community composition, and priming: combining continuous 13C labeling with PLFA analysis . Plant and Soil, 445, 137-152.
DOI URL |
[105] |
Zhu ZK, Ge TD, Hu YJ, Zhou P, Wang TT, Shibistova O, Guggenberger G, Su YR, Wu JS (2017a). Fate of rice shoot and root residues, rhizodeposits, and microbial assimilated carbon in paddy soil-part 2: turnover and microbial utilization. Plant and Soil, 416, 243-257.
DOI URL |
[106] | Zhu ZK, Ge TD, Liu SL, Hu YJ, Ye RZ, Xiao ML, Tong CL, Kuzyakov Y, Wu JS (2018a). Rice rhizodeposits affect organic matter priming in paddy soil: the role of N fertilization and plant growth for enzyme activities, CO2 and CH4 emissions. Soil Biology & Biochemistry, 116, 369-377. |
[107] |
Zhu ZK, Ge TD, Luo Y, Liu SL, Xu XL, Tong CL, Shibistova O, Guggenberger G, Wu JS (2018b). Microbial stoichiometric flexibility regulates rice straw mineralizetion and its priming effect in paddy soil. Soil Biology & Biochemistry, 121, 67-76.
DOI URL |
[108] |
Zhu ZK, Ge TD, Xiao ML, Yuan HZ, Wang TT, Liu SL, Atere CT, Wu JS, Kuzyakov Y (2017b). Belowground carbon allocation and dynamics under rice cultivation depends on soil organic matter content. Plant and Soil, 410, 247-258.
DOI URL |
[109] | Zhu ZK, Shen BJ, Ge TD, Wang JR, Yuan HZ, Wu JS (2016). Biogeochemical processes underlying the input and turnover of crop assimilative carbon in farmland ecosystems. Acta Ecologica Sinica, 36, 5987-5997. |
[ 祝贞科, 沈冰洁, 葛体达, 王久荣, 袁红朝, 吴金水 (2016). 农田作物同化碳输入与周转的生物地球化学过程. 生态学报, 36, 5987-5997.] | |
[110] |
Zong C, Xu MX, Xu LJ, Wei T, Ma X, Zheng XS, Hu R, Ren B (2018). Surface-enhanced raman spectroscopy for bioanalysis: reliability and challenges. Chemical Reviews, 118, 4946-4980.
URL PMID |
[1] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[2] | 吴霖升, 张永光, 章钊颖, 张小康, 吴云飞. 日光诱导叶绿素荧光遥感及其在陆地生态系统监测中的应用[J]. 植物生态学报, 2022, 46(10): 1167-1199. |
[3] | 马书琴, 汪子微, 陈有超, 鲁旭阳. 藏北高寒草地土壤有机质化学组成对土壤蛋白酶和脲酶活性的影响[J]. 植物生态学报, 2021, 45(5): 516-527. |
[4] | 吕亚香, 戚智彦, 刘伟, 孙佳美, 潘庆民. 早春和夏季氮磷添加对内蒙古典型草原退化群落碳交换的影响[J]. 植物生态学报, 2021, 45(4): 334-344. |
[5] | 韩广轩, 李隽永, 屈文笛. 氮输入对滨海盐沼湿地碳循环关键过程的影响及机制[J]. 植物生态学报, 2021, 45(4): 321-333. |
[6] | 魏春雪, 杨璐, 汪金松, 杨家明, 史嘉炜, 田大栓, 周青平, 牛书丽. 实验增温对陆地生态系统根系生物量的影响[J]. 植物生态学报, 2021, 45(11): 1203-1212. |
[7] | 胡宗达, 刘世荣, 罗明霞, 胡璟, 刘兴良, 李亚非, 余昊, 欧定华. 川西亚高山不同演替阶段天然次生林土壤碳氮含量及酶活性特征[J]. 植物生态学报, 2020, 44(9): 973-985. |
[8] | 郑甲佳, 黄松宇, 贾昕, 田赟, 牟钰, 刘鹏, 查天山. 中国森林生态系统土壤呼吸温度敏感性空间变异特征及影响因素[J]. 植物生态学报, 2020, 44(6): 687-698. |
[9] | 夏建阳, 鲁芮伶, 朱辰, 崔二乾, 杜莹, 黄昆, 孙宝玉. 陆地生态系统过程对气候变暖的响应与适应[J]. 植物生态学报, 2020, 44(5): 494-514. |
[10] | 冯兆忠, 袁相洋, 李品, 尚博, 平琴, 胡廷剑, 刘硕. 地表臭氧浓度升高对陆地生态系统影响的研究进展[J]. 植物生态学报, 2020, 44(5): 526-542. |
[11] | 邢鹏, 李彪, 韩一萱, 顾秋锦, 万洪秀. 淡水生态系统对全球变化的响应: 研究进展与展望[J]. 植物生态学报, 2020, 44(5): 565-574. |
[12] | 周贵尧, 周灵燕, 邵钧炯, 周旭辉. 极端干旱对陆地生态系统的影响: 进展与展望[J]. 植物生态学报, 2020, 44(5): 515-525. |
[13] | 张扬建, 朱军涛, 沈若楠, 王荔. 放牧对草地生态系统影响的研究进展[J]. 植物生态学报, 2020, 44(5): 553-564. |
[14] | 冯兆忠, 李品, 张国友, 李征珍, 平琴, 彭金龙, 刘硕. 二氧化碳浓度升高对陆地生态系统的影响: 问题与展望[J]. 植物生态学报, 2020, 44(5): 461-474. |
[15] | 彭书时, 岳超, 常锦峰. 陆地生物圈模型的发展与应用[J]. 植物生态学报, 2020, 44(4): 436-448. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19