植物生态学报 ›› 2020, Vol. 44 ›› Issue (5): 515-525.DOI: 10.17521/cjpe.2019.0317
所属专题: 全球变化与生态系统
收稿日期:
2019-11-22
接受日期:
2020-02-25
出版日期:
2020-05-20
发布日期:
2020-04-30
通讯作者:
周旭辉
基金资助:
ZHOU Gui-Yao, ZHOU Ling-Yan, SHAO Jun-Jiong, ZHOU Xu-Hui*()
Received:
2019-11-22
Accepted:
2020-02-25
Online:
2020-05-20
Published:
2020-04-30
Contact:
ZHOU Xu-Hui
Supported by:
摘要:
作为地球表层重要的组成部分, 陆地生态系统是人类生存和发展的重要场所。进入21世纪以来, 气候变化导致干旱事件发生的强度、频度和持续时间显著增加, 对陆地生态系统带来深远的影响, 严重制约甚至威胁人类社会的可持续发展。因此, 开展极端干旱对陆地生态系统影响的研究并评估其生态风险效应, 是当前全球变化领域研究的重点问题。该文从植物生理生态过程、生物地球化学循环、生物多样性以及生态系统结构和功能4个方面综述了极端干旱对陆地生态系统的影响, 并对当前的研究热点进行探讨, 深度剖析当前研究中存在的难点问题和未来可能的发展方向, 以期为未来开展干旱对陆地生态系统影响的观测与预测研究提供参考, 为在未来干旱影响下加强陆地生态系统风险评估和管理提供新思路。
周贵尧, 周灵燕, 邵钧炯, 周旭辉. 极端干旱对陆地生态系统的影响: 进展与展望. 植物生态学报, 2020, 44(5): 515-525. DOI: 10.17521/cjpe.2019.0317
ZHOU Gui-Yao, ZHOU Ling-Yan, SHAO Jun-Jiong, ZHOU Xu-Hui. Effects of extreme drought on terrestrial ecosystems: review and prospects. Chinese Journal of Plant Ecology, 2020, 44(5): 515-525. DOI: 10.17521/cjpe.2019.0317
图4 不同水热条件下的生物多样性。图片A到D分别由杨菁、周贵尧、陈志荣和刘慧颖提供。
Fig. 4 Biodiversity under different precipitation temperateness conditions. Photos from A to D were taken by YANG Jing, ZHOU Gui-Yao, CHEN Zhi-Rong and LIU Hui-Ying, respectively.
[1] | Anderegg WRL, Schwalm C, Biondi F, Camarero JJ, Koch G, Litvak M, Ogle K, Shaw JD, Shevliakova E, Williams AP, Wolf A, Ziaco E, Pacala S (2015). Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science, 349, 528-532. |
[2] | Bai YF, Han XG, Wu JG, Chen ZZ, Li LH (2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 431, 181-184. |
[3] | Bardgett R, van der Putten W (2014). Belowground biodiversity and ecosystem functioning. Nature, 515, 505-511. |
[4] | Beier C, Beierkuhnlein C, Wohlgemuth T, Penuelas J, Emmett B, Körner C, Boeck H, Christensen J, Leuzinger S, Janssens A, Hansen K (2012). Precipitation manipulation experiments—Challenges and recommendations for the future. Ecology Letters, 15, 899-911. |
[5] |
Bevan S, Los S, North P (2014). Response of vegetation to the 2003 European drought was mitigated by height. Biogeosciences, 11, 2897-2908.
DOI URL |
[6] | Bond-Lamberty B, Bailey VL, Chen M, Gough C, Vargas R (2018). Globally rising soil heterotrophic respiration over recent decades. Nature, 560, 80-83. |
[7] | Bu X, Gu X, Zhou X, Zhang M, Guo Z, Zhang J, Zhou X, Chen X, Wang X (2018). Extreme drought slightly decreased soil labile organic C and N contents and altered microbial communities in a subtropical evergreen forest. Forest Ecology and Management, 429, 18-27. |
[8] |
Chapman N, Miller AJ, Lindsey K, Whalley W (2012). Roots, water, and nutrient acquisition: Let’s get physical. Trends in Plant Science, 17, 701-710.
URL PMID |
[9] |
Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend A, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival J, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana J, Sanz M, Schulze E, Vesala T, Valentini R (2005). Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437, 529-533.
URL PMID |
[10] | Eisenhauer N, Hines J, Isbell F, van der Plas F, Hobbie S, Kazanski C, Lehmann A, Liu M, Lochner A, Rillig M, Vogel M, Kally Worm A, Reich P (2018). Plant diversity maintains multiple soil functions in future environmental. eLife, 7, e41228. DOI: 10.7554/eLife.41228. |
[11] | Elmendorf SC, Henry GH, Hollister RD, Hollister RD, Fosaa AM, Gould WA, Hermanutz L, Hofgaard A, Jónsdóttir IS, Jorgenson JC, Lévesque E, Magnusson B, Molau U, Myers-Smith IH, Oberbauer SF, Rixen C, Tweedie CE, Walker MD (2015). Experiment, monitoring, and gradient methods used to infer climate change effects on plant communities yield consistent patterns. Proceedings of the National Academy of Sciences of United States of America, 112, 448-452. |
[12] | Fang JY, Zhu JL, Shi Y (2018). The responses of ecosystems to global warming. Chinese Science Bulletin, 63, 136-140. |
[ 方精云, 朱江玲, 石岳 (2018). 生态系统对全球变暖的响应. 科学通报, 63, 136-140.] | |
[13] | Fuchslueger L, Bahn M, Fritz K, Hasibeder R, Richter A (2014). Experimental drought reduces the transfer of recently fixed plant carbon to soil microbes and alters the bacterial community composition in a mountain meadow. New Phytologist, 201, 916-927. |
[14] | Fuentealba MP, Zhang J, Kenworthy K, Erickson J, Kruse J, Trenholm L (2015). Transpiration responses of warm- season turfgrass in relation to progressive soil drying. Scientia Horticulturae, 198, 249-253. |
[15] | Galbraith D, Levy PE, Sitch S, Huntingford C, Cox P, Williams M, Meir P (2010). Multiple mechanisms of Amazonian forest biomass losses in three dynamic global vegetation models under climate change. New Phytologist, 187, 647-665. |
[16] |
Garcia-Forner N, Biel C, Savé R, Martínez-Vilalta J (2017). Isohydric species are not necessarily more carbon limited than anisohydric species during drought. Tree Physiology, 37, 441-455.
URL PMID |
[17] | Gong CM, Ning PB, Wang GX, Liang ZS (2009). A review of adaptable variations and evolution of photo synthetic carbon assimilation pathway in C3 and C4 plants. Chinese Journal of Plant Ecology, 33, 206-221. |
[ 龚春梅, 宁蓬勃, 王根轩, 梁宗锁 (2009). C3和C4植物光合途径的适应性变化和进化. 植物生态学报, 33, 206-221.] | |
[18] | Hu XP, Wang SG, Xu PP, Shang KZ (2014). Analysis on causes of continuous drought in Southwest China during 2009-2013. Meteorological Monthly, 40, 1216-1229. |
[ 胡学平, 王式功, 许平平, 尚可政 (2014). 2009-2013年中国西南地区连续干旱的成因分析. 气象, 40, 1216-1229.] | |
[19] | Hu ZM, Shi H, Cheng KL, Wang YP, Piao SL, Li Y, Zhang L, Xia JY, Zhou L, Yuan WP, Running S, Li LH, Hao YB, He NP, Yu Q, Yu GR (2018). Joint structural and physiological control on the interannual variation in productivity in a temperate grassland: a data-model comparison. Global Change Biology, 24, 2965-2979. |
[20] | IPCC (Intergovernmental Panel on Climate Change) (2013). Climate Change 2013: the Physical Science Basis. Cambridge University Press, Cambridge, UK. |
[21] | Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996). A global analysis of root distributions for terrestrial biomes. Oecologia, 108, 389-411. |
[22] | Klein T (2014). The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. Functional Ecology, 28, 1313-1320. |
[23] | Knapp AK, Hoover DL, Wilcox KR, Avolio ML, Koerner SE, La Pierre KJ, Loik ME, Luo YQ, Sala OE, Smith MD (2015). Characterizing differences in precipitation regimes of extreme wet and dry years: implications for climate change experiments. Global Change Biology, 21, 2624-2633. |
[24] | Li F, Bond-Lamberty B, Levis S (2014). Quantifying the role of fire in the Earth system—Part 2: Impact on the net carbon balance of global terrestrial ecosystems for the 20th century. Biogeosciences, 11, 1345-1360. |
[25] | Luo YQ, Jiang LF, Niu SL, Zhou XH (2017). Nonlinear responses of land ecosystems to variation in precipitation. New Phytologist, 214, 5-7. |
[26] | Ma ZQ, Guo DL, Xu XL, Lu MZ, Bardgett RD, Eissenstat DM, McCormack ML, Hedin LO (2018). Evolutionary history resolves global organization of root functional traits. Nature, 555, 94-97. |
[27] | Maestre FT, Eldridge DJ, Soliveres S, Kéfi S, Delgado- Baquerizo MF, Bowker MA, García-Palacios PG, Gaitán J, Gallardo A, Lázaro R, Berdugo M (2016). Structure and functioning of dryland ecosystems in a changing world. Annual Review of Ecology Evolution and Systematics, 47, 215-237. |
[28] | Mahfouf JF, Ciret C, Ducharne A, Irannejad P, Noilhana J, Shao Y, Thornton P, Xue Y, Yang ZL (1996). Analysis of transpiration results from the RICE and PILPS workshop. Global and Planetary Change, 13, 73-88. |
[29] | Martínez-Vilalta JM, Poyatos R, Aguadé D, Retana J, Mencuccini M (2014). A new look at water transport regulation in plants. New Phytologist, 204, 105-115. |
[30] |
McDowell NG, Sevanto S (2010). The mechanisms of carbon starvation: How, when, or does it even occur at all? New Phytologist, 186, 264-266.
URL PMID |
[31] | McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008). Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytologist, 178, 719-739. |
[32] | Mcintyre PJ, Thorne JH, Dolanc CR, Flint AL, Kelly M, Ackerly DD (2015). Twentieth-century shifts in forest structure in California: denser forests, smaller trees, and increased dominance of oaks. Proceedings of the National Academy of Sciences of the United States of America, 112, 1458-1463. |
[33] | Melillo JM, Butler S, Johnson J, Mohan J, Steudler P, Lux H, Burrows E, Bowles F, Smith R, Scott L, Vario C, Hill T, Burton A, Zhou YM, Tang J (2011). Soil warming, carbon- nitrogen interactions, and forest carbon budgets. Proceedings of the National Academy of Sciences of the United States of America, 108, 9508-9512. |
[34] | Mencuccini M, Minunno F, Salmon Y, Martínez-Vilalta J, Hölttä T (2015). Coordination of physiological traits involved in drought-induced mortality of woody plants. New Phytologist, 208, 396-409. |
[35] | Miyashita K, Tanakamaru S, Maitani T, Kimura K (2005). Recovery responses of photosynthesis, transpiration, and stomatal conductance in kidney bean following drought stress. Environmental and Experimental Botany, 53, 205-214. |
[36] | Nie YY, Zhou GY, Shao JJ, Zhou LY, Liu RQ, Zhai DP, Zhou XH (2017). Effects of simulating drought on soil microbial biomass and community structure in subtropical forest. Journal of Fudan University(Natural Science), 56, 97-105. |
[ 聂园园, 周贵尧, 邵钧炯, 周灵燕, 刘瑞强, 翟德苹, 周旭辉 (2017). 模拟干旱对亚热带森林土壤微生物生物量及群落结构的影响. 复旦大学学报(自然科学版), 56, 97-105.] | |
[37] | Pérez-Ramos IM, Volaire F, Fattet M, Blanchard A, Roumet C (2013). Tradeoffs between functional strategies for resource use and drought-survival in Mediterranean rangeland species. Environmental and Experimental Botany, 87, 126-136. |
[38] |
Piao SL, Fang JY, Ciais P, Peylin P, Huang Y, Sitch S (2009). The carbon balance of terrestrial ecosystems in China. Nature, 458, 1009-1013.
URL PMID |
[39] |
Posch S, Bennett LT (2009). Photosynthesis, photochemistry and antioxidative defence in response to two drought severities and with re-watering in Allocasuarina luehmannii. Plant Biology, 11, 83-93.
URL PMID |
[40] | Potter C, Klooster S, Carvalho CR, Genovese VB, Torregrosa A, Dungan J, Bobo M, Coughlan J (2001). Modeling seasonal and interannual variability in ecosystem carbon cycling for the Brazilian Amazon region. Journal of Geophysical Research, 106, 10423-10446. |
[41] | Reichstein M, Bahn M, Ciais P, Frank D, Mahecha MD, Seneviratne SI, Zscheischler J, Beer C, Buchmann N, Frank DC, Papale D, Rammig A, Smith P, Thonicke K, Velde M, Vicca S, Walz A, Wattenbach M (2013). Climate extremes and the carbon cycle. Nature, 500, 287-295. |
[42] | Rillig MC, Ryo M, Lehmann A, Aguilar-Trigueros CA, Buchert S, Wulf A, Iwasaki A, Roy J, Yang GW (2019). The role of multiple global change factors in driving soil functions and microbial biodiversity. Science, 366, 886-890 |
[43] | Rowland L, Da Costa ACL, Galbraith DR, Oliveira RS, Binks OJ, Oliveira AAR, Pullen AM, Doughty PCE, Metcalfe DB, Vasconcelos SS, Ferreira LV, Malhi Y, Grace J, Mencuccini M, Meir P (2015). Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature, 528, 119-122. |
[44] | Schlesinger WH, Dietze MC, Jackson RB, Phillips RP, Rhoades CC, Rustad LE, Vose JM (2016). Forest biogeochemistry in response to drought. Global Change Biology, 22, 2318-2328. |
[45] |
Sperry JS, Love DM (2015). What plant hydraulics can tell us about responses to climate-change droughts. New Phytologist, 207, 14-27.
DOI URL PMID |
[46] |
Taylor PG, Cleveland CC, Wieder WR, Sullivan BW, Doughty CE, Dobrowski SZ, Townsend AR (2017). Temperature and rainfall interact to control carbon cycling in tropical forests. Ecology Letters, 20, 779-788.
URL PMID |
[47] | Tron S, Perona P, Gorla L, Schwarz M, Laio F, Ridolfi L (2015). The signature of randomness in riparian plant root distributions. Geophysical Research Letters, 42, 7098-7106. |
[48] |
Warren JM, Hanson PJ, Iversen CM, Kumar J, Walker AP, Wullschleger SD (2015). Root structural and functional dynamics in terrestrial biosphere models—Evaluation and recommendations. New Phytologist, 205, 59-78.
URL PMID |
[49] | Xu W, Ma ZY, Jin X, He JS (2016). Biodiversity and ecosystem multifunctionality: advances and perspectives. Biodiversity Science, 24, 55-71. |
[ 徐炜, 马致远, 井新, 贺金生 (2016). 生物多样性与生态系统多功能性: 进展与展望. 生物多样性, 24, 55-71.] | |
[50] |
Xu ZZ, Zhou GS, Shimizu H (2010). Plant responses to drought and rewatering. Plant Signaling and Behavior, 5, 649-654.
URL PMID |
[51] | Yan Y, Xiao F, Du Y, Ling F, Li XD, Li YZ (2012). Monitoring droughts in the five provinces along the middle-lower reaches of the Yangtze River during spring/summer 2011 using AVCI. Resources and Environment in the Yangtze Basin, 21, 1154-1159. |
[ 严翼, 肖飞, 杜耘, 凌峰, 李晓冬, 李元征 (2012). 利用植被状态指数距平监测2011年长江中下游5省春、夏干旱. 长江流域资源与环境, 21, 1154-1159.] | |
[52] | Yin JJ, Bauerle TL (2017). A global analysis of plant recovery performance from water stress. Oikos, 126, 1377-1388. |
[53] |
Yuan WP, Cai WW, Chen Y, Liu SG, Dong WJ, Zhang HC, Yu GR, Chen ZQ, He HL, Guo WD, Liu D, Liu SM, Xiang WH, Xie ZH, Zhao ZH, Zhou GM (2016). Severe summer heatwave and drought strongly reduced carbon uptake in Southern China. Scientific Reports, 6, 18813. DOI: 10.1038/srep18813.
DOI URL PMID |
[54] | Zhang RH, Zheng YJ, Ma GS, Zhang XH, Lu HD, Shi JT, Xue JQ (2011). Effects of drought stress on photosynthetic traits and protective enzyme activity in maize seeding. Acta Ecologica Sinica, 31, 1303-1311. |
[ 张仁和, 郑友军, 马国胜, 张兴华, 路海东, 史俊通, 薛吉全 (2011). 干旱胁迫对玉米苗期叶片光合作用和保护酶的影响. 生态学报, 31, 1303-1311.] | |
[55] |
Zhao MS, Running SW (2010). Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329, 940-943.
URL PMID |
[56] | Zhou GY, Luo Q, Chen YJ, Hu JQ, He M, Gao J, Zhou LY, Liu HY, Zhou XH (2019a). Interactive effects of grazing and global change factors on soil and ecosystems respiration in grassland ecosystems. Journal of Applied Ecology, 56, 2007-2019. |
[57] | Zhou GY, Luo Q, Chen YJ, He M, Zhou LY, Frank D, He YH, Fu YL, Zhang BC, Zhou XH (2019b). Effects of livestock grazing on grassland carbon storage and release override impacts associated with global climate change. Global Change Biology, 25, 1119-1132. |
[58] |
Zhou GY, Zhou XH, He YH, Shao JJ, Hu ZH, Liu RQ, Zhou HM, Bai SH (2017). Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: a meta-analysis. Global Change Biology, 23, 1167-1179.
DOI URL PMID |
[59] | Zhou GY, Zhou XH, Nie YY, Bai SH, Zhou LY, Shao JJ, Cheng WS, Wang J, Hu FQ, Fu YL (2018). Drought-induced changes in root biomass largely result from altered root morphological traits: evidence from a synthesis of global field trials. Plant, Cell & Environment, 41, 2589-2599. |
[60] | Zhou SG, Duursma RA, Medlyn BE, Kelly JWE, Prentice IC (2013). How should we model plant responses to drought? An analysis of stomatal and non-stomatal responses to water stress. Agricultural and Forest Meteorology, 182, 204-214. |
[61] | Zhou XH, Talley M, Luo YQ (2009). Biomass, litter, and soil respiration along a precipitation gradient in southern Great Plains. Ecosystems, 12, 1369-1380. |
[1] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[2] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[3] | 张中扬, 宋希强, 任明迅, 张哲. 附生维管植物生境营建作用的生态学功能[J]. 植物生态学报, 2023, 47(7): 895-911. |
[4] | 杨佳绒, 戴冬, 陈俊芳, 吴宪, 刘啸林, 刘宇. 丛枝菌根真菌多样性对植物群落构建和稀有种维持的研究进展[J]. 植物生态学报, 2023, 47(6): 745-755. |
[5] | 张琦, 冯可, 常智慧, 何双辉, 徐维启. 灌丛化对林草交错带植物和土壤微生物的影响[J]. 植物生态学报, 2023, 47(6): 770-781. |
[6] | 冯可, 刘冬梅, 张琦, 安菁, 何双辉. 旅游干扰对松山油松林土壤微生物多样性及群落结构的影响[J]. 植物生态学报, 2023, 47(4): 584-596. |
[7] | 李耀琪, 王志恒. 植物功能生物地理学的研究进展与展望[J]. 植物生态学报, 2023, 47(2): 145-169. |
[8] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[9] | 马和平, 王瑞红, 屈兴乐, 袁敏, 慕金勇, 李金航. 不同生境对藏东南地面生苔藓多样性和生物量的影响[J]. 植物生态学报, 2022, 46(5): 552-560. |
[10] | 韩聪, 刘鹏, 母艳梅, 原媛, 郝少荣, 田赟, 查天山, 贾昕. 黑沙蒿灌丛生态系统碳平衡对昼夜非对称增温的响应[J]. 植物生态学报, 2022, 46(12): 1473-1485. |
[11] | 臧永新, 马剑英, 周晓兵, 陶冶, 尹本丰, 沙亚古丽•及格尔, 张元明. 极端干旱和降水对沙垄不同坡向坡位短命植物地上生产力的影响[J]. 植物生态学报, 2022, 46(12): 1537-1550. |
[12] | 田佳玉, 王彬, 张志明, 林露湘. 光谱多样性在植物多样性监测与评估中的应用[J]. 植物生态学报, 2022, 46(10): 1129-1150. |
[13] | 李孝龙, 周俊, 彭飞, 钟宏韬, Hans LAMBERS. 植物养分捕获策略随成土年龄的变化及生态学意义[J]. 植物生态学报, 2021, 45(7): 714-727. |
[14] | 孙浩哲, 王襄平, 张树斌, 吴鹏, 杨蕾. 阔叶红松林不同演替阶段凋落物产量及其稳定性的影响因素[J]. 植物生态学报, 2021, 45(6): 594-605. |
[15] | 姜鑫, 牛克昌. 青藏高原禾草混播对土壤微生物多样性的影响[J]. 植物生态学报, 2021, 45(5): 539-551. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19