植物生态学报 ›› 2020, Vol. 44 ›› Issue (5): 515-525.DOI: 10.17521/cjpe.2019.0317
所属专题: 全球变化与生态系统
收稿日期:
2019-11-22
接受日期:
2020-02-25
出版日期:
2020-05-20
发布日期:
2020-04-30
通讯作者:
周旭辉
基金资助:
ZHOU Gui-Yao, ZHOU Ling-Yan, SHAO Jun-Jiong, ZHOU Xu-Hui*()
Received:
2019-11-22
Accepted:
2020-02-25
Online:
2020-05-20
Published:
2020-04-30
Contact:
ZHOU Xu-Hui
Supported by:
摘要:
作为地球表层重要的组成部分, 陆地生态系统是人类生存和发展的重要场所。进入21世纪以来, 气候变化导致干旱事件发生的强度、频度和持续时间显著增加, 对陆地生态系统带来深远的影响, 严重制约甚至威胁人类社会的可持续发展。因此, 开展极端干旱对陆地生态系统影响的研究并评估其生态风险效应, 是当前全球变化领域研究的重点问题。该文从植物生理生态过程、生物地球化学循环、生物多样性以及生态系统结构和功能4个方面综述了极端干旱对陆地生态系统的影响, 并对当前的研究热点进行探讨, 深度剖析当前研究中存在的难点问题和未来可能的发展方向, 以期为未来开展干旱对陆地生态系统影响的观测与预测研究提供参考, 为在未来干旱影响下加强陆地生态系统风险评估和管理提供新思路。
周贵尧, 周灵燕, 邵钧炯, 周旭辉. 极端干旱对陆地生态系统的影响: 进展与展望[J]. 植物生态学报, 2020, 44(5): 515-525.
ZHOU Gui-Yao, ZHOU Ling-Yan, SHAO Jun-Jiong, ZHOU Xu-Hui. Effects of extreme drought on terrestrial ecosystems: review and prospects[J]. Chin J Plant Ecol, 2020, 44(5): 515-525.
图4 不同水热条件下的生物多样性。图片A到D分别由杨菁、周贵尧、陈志荣和刘慧颖提供。
Fig. 4 Biodiversity under different precipitation temperateness conditions. Photos from A to D were taken by YANG Jing, ZHOU Gui-Yao, CHEN Zhi-Rong and LIU Hui-Ying, respectively.
[1] | Anderegg WRL, Schwalm C, Biondi F, Camarero JJ, Koch G, Litvak M, Ogle K, Shaw JD, Shevliakova E, Williams AP, Wolf A, Ziaco E, Pacala S (2015). Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science, 349, 528-532. |
[2] | Bai YF, Han XG, Wu JG, Chen ZZ, Li LH (2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 431, 181-184. |
[3] | Bardgett R, van der Putten W (2014). Belowground biodiversity and ecosystem functioning. Nature, 515, 505-511. |
[4] | Beier C, Beierkuhnlein C, Wohlgemuth T, Penuelas J, Emmett B, Körner C, Boeck H, Christensen J, Leuzinger S, Janssens A, Hansen K (2012). Precipitation manipulation experiments—Challenges and recommendations for the future. Ecology Letters, 15, 899-911. |
[5] |
Bevan S, Los S, North P (2014). Response of vegetation to the 2003 European drought was mitigated by height. Biogeosciences, 11, 2897-2908.
DOI URL |
[6] | Bond-Lamberty B, Bailey VL, Chen M, Gough C, Vargas R (2018). Globally rising soil heterotrophic respiration over recent decades. Nature, 560, 80-83. |
[7] | Bu X, Gu X, Zhou X, Zhang M, Guo Z, Zhang J, Zhou X, Chen X, Wang X (2018). Extreme drought slightly decreased soil labile organic C and N contents and altered microbial communities in a subtropical evergreen forest. Forest Ecology and Management, 429, 18-27. |
[8] |
Chapman N, Miller AJ, Lindsey K, Whalley W (2012). Roots, water, and nutrient acquisition: Let’s get physical. Trends in Plant Science, 17, 701-710.
URL PMID |
[9] |
Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend A, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival J, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana J, Sanz M, Schulze E, Vesala T, Valentini R (2005). Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437, 529-533.
URL PMID |
[10] | Eisenhauer N, Hines J, Isbell F, van der Plas F, Hobbie S, Kazanski C, Lehmann A, Liu M, Lochner A, Rillig M, Vogel M, Kally Worm A, Reich P (2018). Plant diversity maintains multiple soil functions in future environmental. eLife, 7, e41228. DOI: 10.7554/eLife.41228. |
[11] | Elmendorf SC, Henry GH, Hollister RD, Hollister RD, Fosaa AM, Gould WA, Hermanutz L, Hofgaard A, Jónsdóttir IS, Jorgenson JC, Lévesque E, Magnusson B, Molau U, Myers-Smith IH, Oberbauer SF, Rixen C, Tweedie CE, Walker MD (2015). Experiment, monitoring, and gradient methods used to infer climate change effects on plant communities yield consistent patterns. Proceedings of the National Academy of Sciences of United States of America, 112, 448-452. |
[12] | Fang JY, Zhu JL, Shi Y (2018). The responses of ecosystems to global warming. Chinese Science Bulletin, 63, 136-140. |
[ 方精云, 朱江玲, 石岳 (2018). 生态系统对全球变暖的响应. 科学通报, 63, 136-140.] | |
[13] | Fuchslueger L, Bahn M, Fritz K, Hasibeder R, Richter A (2014). Experimental drought reduces the transfer of recently fixed plant carbon to soil microbes and alters the bacterial community composition in a mountain meadow. New Phytologist, 201, 916-927. |
[14] | Fuentealba MP, Zhang J, Kenworthy K, Erickson J, Kruse J, Trenholm L (2015). Transpiration responses of warm- season turfgrass in relation to progressive soil drying. Scientia Horticulturae, 198, 249-253. |
[15] | Galbraith D, Levy PE, Sitch S, Huntingford C, Cox P, Williams M, Meir P (2010). Multiple mechanisms of Amazonian forest biomass losses in three dynamic global vegetation models under climate change. New Phytologist, 187, 647-665. |
[16] |
Garcia-Forner N, Biel C, Savé R, Martínez-Vilalta J (2017). Isohydric species are not necessarily more carbon limited than anisohydric species during drought. Tree Physiology, 37, 441-455.
URL PMID |
[17] | Gong CM, Ning PB, Wang GX, Liang ZS (2009). A review of adaptable variations and evolution of photo synthetic carbon assimilation pathway in C3 and C4 plants. Chinese Journal of Plant Ecology, 33, 206-221. |
[ 龚春梅, 宁蓬勃, 王根轩, 梁宗锁 (2009). C3和C4植物光合途径的适应性变化和进化. 植物生态学报, 33, 206-221.] | |
[18] | Hu XP, Wang SG, Xu PP, Shang KZ (2014). Analysis on causes of continuous drought in Southwest China during 2009-2013. Meteorological Monthly, 40, 1216-1229. |
[ 胡学平, 王式功, 许平平, 尚可政 (2014). 2009-2013年中国西南地区连续干旱的成因分析. 气象, 40, 1216-1229.] | |
[19] | Hu ZM, Shi H, Cheng KL, Wang YP, Piao SL, Li Y, Zhang L, Xia JY, Zhou L, Yuan WP, Running S, Li LH, Hao YB, He NP, Yu Q, Yu GR (2018). Joint structural and physiological control on the interannual variation in productivity in a temperate grassland: a data-model comparison. Global Change Biology, 24, 2965-2979. |
[20] | IPCC (Intergovernmental Panel on Climate Change) (2013). Climate Change 2013: the Physical Science Basis. Cambridge University Press, Cambridge, UK. |
[21] | Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996). A global analysis of root distributions for terrestrial biomes. Oecologia, 108, 389-411. |
[22] | Klein T (2014). The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. Functional Ecology, 28, 1313-1320. |
[23] | Knapp AK, Hoover DL, Wilcox KR, Avolio ML, Koerner SE, La Pierre KJ, Loik ME, Luo YQ, Sala OE, Smith MD (2015). Characterizing differences in precipitation regimes of extreme wet and dry years: implications for climate change experiments. Global Change Biology, 21, 2624-2633. |
[24] | Li F, Bond-Lamberty B, Levis S (2014). Quantifying the role of fire in the Earth system—Part 2: Impact on the net carbon balance of global terrestrial ecosystems for the 20th century. Biogeosciences, 11, 1345-1360. |
[25] | Luo YQ, Jiang LF, Niu SL, Zhou XH (2017). Nonlinear responses of land ecosystems to variation in precipitation. New Phytologist, 214, 5-7. |
[26] | Ma ZQ, Guo DL, Xu XL, Lu MZ, Bardgett RD, Eissenstat DM, McCormack ML, Hedin LO (2018). Evolutionary history resolves global organization of root functional traits. Nature, 555, 94-97. |
[27] | Maestre FT, Eldridge DJ, Soliveres S, Kéfi S, Delgado- Baquerizo MF, Bowker MA, García-Palacios PG, Gaitán J, Gallardo A, Lázaro R, Berdugo M (2016). Structure and functioning of dryland ecosystems in a changing world. Annual Review of Ecology Evolution and Systematics, 47, 215-237. |
[28] | Mahfouf JF, Ciret C, Ducharne A, Irannejad P, Noilhana J, Shao Y, Thornton P, Xue Y, Yang ZL (1996). Analysis of transpiration results from the RICE and PILPS workshop. Global and Planetary Change, 13, 73-88. |
[29] | Martínez-Vilalta JM, Poyatos R, Aguadé D, Retana J, Mencuccini M (2014). A new look at water transport regulation in plants. New Phytologist, 204, 105-115. |
[30] |
McDowell NG, Sevanto S (2010). The mechanisms of carbon starvation: How, when, or does it even occur at all? New Phytologist, 186, 264-266.
URL PMID |
[31] | McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008). Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytologist, 178, 719-739. |
[32] | Mcintyre PJ, Thorne JH, Dolanc CR, Flint AL, Kelly M, Ackerly DD (2015). Twentieth-century shifts in forest structure in California: denser forests, smaller trees, and increased dominance of oaks. Proceedings of the National Academy of Sciences of the United States of America, 112, 1458-1463. |
[33] | Melillo JM, Butler S, Johnson J, Mohan J, Steudler P, Lux H, Burrows E, Bowles F, Smith R, Scott L, Vario C, Hill T, Burton A, Zhou YM, Tang J (2011). Soil warming, carbon- nitrogen interactions, and forest carbon budgets. Proceedings of the National Academy of Sciences of the United States of America, 108, 9508-9512. |
[34] | Mencuccini M, Minunno F, Salmon Y, Martínez-Vilalta J, Hölttä T (2015). Coordination of physiological traits involved in drought-induced mortality of woody plants. New Phytologist, 208, 396-409. |
[35] | Miyashita K, Tanakamaru S, Maitani T, Kimura K (2005). Recovery responses of photosynthesis, transpiration, and stomatal conductance in kidney bean following drought stress. Environmental and Experimental Botany, 53, 205-214. |
[36] | Nie YY, Zhou GY, Shao JJ, Zhou LY, Liu RQ, Zhai DP, Zhou XH (2017). Effects of simulating drought on soil microbial biomass and community structure in subtropical forest. Journal of Fudan University(Natural Science), 56, 97-105. |
[ 聂园园, 周贵尧, 邵钧炯, 周灵燕, 刘瑞强, 翟德苹, 周旭辉 (2017). 模拟干旱对亚热带森林土壤微生物生物量及群落结构的影响. 复旦大学学报(自然科学版), 56, 97-105.] | |
[37] | Pérez-Ramos IM, Volaire F, Fattet M, Blanchard A, Roumet C (2013). Tradeoffs between functional strategies for resource use and drought-survival in Mediterranean rangeland species. Environmental and Experimental Botany, 87, 126-136. |
[38] |
Piao SL, Fang JY, Ciais P, Peylin P, Huang Y, Sitch S (2009). The carbon balance of terrestrial ecosystems in China. Nature, 458, 1009-1013.
URL PMID |
[39] |
Posch S, Bennett LT (2009). Photosynthesis, photochemistry and antioxidative defence in response to two drought severities and with re-watering in Allocasuarina luehmannii. Plant Biology, 11, 83-93.
URL PMID |
[40] | Potter C, Klooster S, Carvalho CR, Genovese VB, Torregrosa A, Dungan J, Bobo M, Coughlan J (2001). Modeling seasonal and interannual variability in ecosystem carbon cycling for the Brazilian Amazon region. Journal of Geophysical Research, 106, 10423-10446. |
[41] | Reichstein M, Bahn M, Ciais P, Frank D, Mahecha MD, Seneviratne SI, Zscheischler J, Beer C, Buchmann N, Frank DC, Papale D, Rammig A, Smith P, Thonicke K, Velde M, Vicca S, Walz A, Wattenbach M (2013). Climate extremes and the carbon cycle. Nature, 500, 287-295. |
[42] | Rillig MC, Ryo M, Lehmann A, Aguilar-Trigueros CA, Buchert S, Wulf A, Iwasaki A, Roy J, Yang GW (2019). The role of multiple global change factors in driving soil functions and microbial biodiversity. Science, 366, 886-890 |
[43] | Rowland L, Da Costa ACL, Galbraith DR, Oliveira RS, Binks OJ, Oliveira AAR, Pullen AM, Doughty PCE, Metcalfe DB, Vasconcelos SS, Ferreira LV, Malhi Y, Grace J, Mencuccini M, Meir P (2015). Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature, 528, 119-122. |
[44] | Schlesinger WH, Dietze MC, Jackson RB, Phillips RP, Rhoades CC, Rustad LE, Vose JM (2016). Forest biogeochemistry in response to drought. Global Change Biology, 22, 2318-2328. |
[45] |
Sperry JS, Love DM (2015). What plant hydraulics can tell us about responses to climate-change droughts. New Phytologist, 207, 14-27.
DOI URL PMID |
[46] |
Taylor PG, Cleveland CC, Wieder WR, Sullivan BW, Doughty CE, Dobrowski SZ, Townsend AR (2017). Temperature and rainfall interact to control carbon cycling in tropical forests. Ecology Letters, 20, 779-788.
URL PMID |
[47] | Tron S, Perona P, Gorla L, Schwarz M, Laio F, Ridolfi L (2015). The signature of randomness in riparian plant root distributions. Geophysical Research Letters, 42, 7098-7106. |
[48] |
Warren JM, Hanson PJ, Iversen CM, Kumar J, Walker AP, Wullschleger SD (2015). Root structural and functional dynamics in terrestrial biosphere models—Evaluation and recommendations. New Phytologist, 205, 59-78.
URL PMID |
[49] | Xu W, Ma ZY, Jin X, He JS (2016). Biodiversity and ecosystem multifunctionality: advances and perspectives. Biodiversity Science, 24, 55-71. |
[ 徐炜, 马致远, 井新, 贺金生 (2016). 生物多样性与生态系统多功能性: 进展与展望. 生物多样性, 24, 55-71.] | |
[50] |
Xu ZZ, Zhou GS, Shimizu H (2010). Plant responses to drought and rewatering. Plant Signaling and Behavior, 5, 649-654.
URL PMID |
[51] | Yan Y, Xiao F, Du Y, Ling F, Li XD, Li YZ (2012). Monitoring droughts in the five provinces along the middle-lower reaches of the Yangtze River during spring/summer 2011 using AVCI. Resources and Environment in the Yangtze Basin, 21, 1154-1159. |
[ 严翼, 肖飞, 杜耘, 凌峰, 李晓冬, 李元征 (2012). 利用植被状态指数距平监测2011年长江中下游5省春、夏干旱. 长江流域资源与环境, 21, 1154-1159.] | |
[52] | Yin JJ, Bauerle TL (2017). A global analysis of plant recovery performance from water stress. Oikos, 126, 1377-1388. |
[53] |
Yuan WP, Cai WW, Chen Y, Liu SG, Dong WJ, Zhang HC, Yu GR, Chen ZQ, He HL, Guo WD, Liu D, Liu SM, Xiang WH, Xie ZH, Zhao ZH, Zhou GM (2016). Severe summer heatwave and drought strongly reduced carbon uptake in Southern China. Scientific Reports, 6, 18813. DOI: 10.1038/srep18813.
DOI URL PMID |
[54] | Zhang RH, Zheng YJ, Ma GS, Zhang XH, Lu HD, Shi JT, Xue JQ (2011). Effects of drought stress on photosynthetic traits and protective enzyme activity in maize seeding. Acta Ecologica Sinica, 31, 1303-1311. |
[ 张仁和, 郑友军, 马国胜, 张兴华, 路海东, 史俊通, 薛吉全 (2011). 干旱胁迫对玉米苗期叶片光合作用和保护酶的影响. 生态学报, 31, 1303-1311.] | |
[55] |
Zhao MS, Running SW (2010). Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329, 940-943.
URL PMID |
[56] | Zhou GY, Luo Q, Chen YJ, Hu JQ, He M, Gao J, Zhou LY, Liu HY, Zhou XH (2019a). Interactive effects of grazing and global change factors on soil and ecosystems respiration in grassland ecosystems. Journal of Applied Ecology, 56, 2007-2019. |
[57] | Zhou GY, Luo Q, Chen YJ, He M, Zhou LY, Frank D, He YH, Fu YL, Zhang BC, Zhou XH (2019b). Effects of livestock grazing on grassland carbon storage and release override impacts associated with global climate change. Global Change Biology, 25, 1119-1132. |
[58] |
Zhou GY, Zhou XH, He YH, Shao JJ, Hu ZH, Liu RQ, Zhou HM, Bai SH (2017). Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: a meta-analysis. Global Change Biology, 23, 1167-1179.
DOI URL PMID |
[59] | Zhou GY, Zhou XH, Nie YY, Bai SH, Zhou LY, Shao JJ, Cheng WS, Wang J, Hu FQ, Fu YL (2018). Drought-induced changes in root biomass largely result from altered root morphological traits: evidence from a synthesis of global field trials. Plant, Cell & Environment, 41, 2589-2599. |
[60] | Zhou SG, Duursma RA, Medlyn BE, Kelly JWE, Prentice IC (2013). How should we model plant responses to drought? An analysis of stomatal and non-stomatal responses to water stress. Agricultural and Forest Meteorology, 182, 204-214. |
[61] | Zhou XH, Talley M, Luo YQ (2009). Biomass, litter, and soil respiration along a precipitation gradient in southern Great Plains. Ecosystems, 12, 1369-1380. |
[1] | 李晟, William J. McShea, 王大军, 申小莉, 卜红亮, 官天培, 王放, 古晓东, 张晓峰, 廖灏泓. 西南山地红外相机监测网络建设进展[J]. 生物多样性, 2020, 28(9): 1049-1058. |
[2] | 贾丁, 李沛芸, 赵翔, 程琛, 肖凌云, 吕植. 三江源红外相机社区监测平台概述[J]. 生物多样性, 2020, 28(9): 1104-1109. |
[3] | 刘炎林, 宋大昭, 刘蓓蓓, 夏凡, 陈月龙, 王一晴, 黄巧雯. 中国猫科动物红外相机监测平台介绍: 民间环保机构的数据整合[J]. 生物多样性, 2020, 28(9): 1067-1074. |
[4] | 王天明, 冯利民, 杨海涛, 鲍蕾, 王红芳, 葛剑平. 东北虎豹生物多样性红外相机监测平台概述[J]. 生物多样性, 2020, 28(9): 1059-1066. |
[5] | William J.McShea, 申小莉, 刘芳, 王天明, 肖治术, 李晟. 中国的野生动物红外相机监测需要统一的标准[J]. 生物多样性, 2020, 28(9): 1125-1131. |
[6] | 王东, 万雅琼, 汪世钊, 陈佳萍, 吴彤, 李佳琦, 连新明. 基于红外相机技术调查长江正源沱沱河流域鸟兽多样性[J]. 生物多样性, 2020, 28(9): 1132-1140. |
[7] | 尚素琴, 吴兴波, 王召龙, 彭鹤年, 周惠丽, 张红勇, 白映禄. 兴隆山国家级自然保护区不同生境的蝴蝶群落结构与种-多度分布[J]. 生物多样性, 2020, 28(8): 983-992. |
[8] | 王群, 郭志祥, 李进斌, 王凯博, 吴文伟, 浦恩堂, 马方舟, 何成兴. 云南哀牢山、无量山国家级自然保护区蝴蝶种群动态及多样性[J]. 生物多样性, 2020, 28(8): 921-930. |
[9] | 赵莹, 申小莉, 李晟, 张雁云, 彭任华, 马克平. 声景生态学研究进展和展望[J]. 生物多样性, 2020, 28(7): 806-820. |
[10] | 吴杨, 潘玉雪, 张博雅, 戴逢斌, 田瑜. IPBES框架下的生物多样性和生态系统服务区域评估及政策经验[J]. 生物多样性, 2020, 28(7): 913-919. |
[11] | 李婷婷, 张西美. 全球变化背景下内蒙古草原土壤微生物多样性维持机制研究进展[J]. 生物多样性, 2020, 28(6): 749-758. |
[12] | 冯继广, 朱彪. 氮磷添加对树木生长和森林生产力影响的研究进展[J]. 植物生态学报, 2020, 44(6): 583-597. |
[13] | 李佳佳 樊妙春 上官周平. 植物根系分泌物主要生态功能研究进展[J]. 植物学报, 2020, 55(6): 0-0. |
[14] | 王新阳, 靳程, 黄力, 周礼华, 郑明铭, 钱深华, 杨永川. 中国佛教寺庙植物多样性和佛教树种替代[J]. 生物多样性, 2020, 28(6): 668-677. |
[15] | 郑甲佳, 黄松宇, 贾昕, 田赟, 牟钰, 刘鹏, 查天山. 中国森林生态系统土壤呼吸温度敏感性空间变异特征及影响因素[J]. 植物生态学报, 2020, 44(6): 687-698. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2018 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19