植物生态学报 ›› 2022, Vol. 46 ›› Issue (12): 1537-1550.DOI: 10.17521/cjpe.2021.0473
所属专题: 全球变化与生态系统
臧永新1, 马剑英2,*(), 周晓兵1, 陶冶1, 尹本丰1, 沙亚古丽•及格尔1,3, 张元明1,*(
)
收稿日期:
2021-12-14
接受日期:
2022-06-26
出版日期:
2022-12-20
发布日期:
2023-01-13
通讯作者:
*马剑英(基金资助:
ZANG Yong-Xin1, MA Jian-Ying2,*(), ZHOU Xiao-Bing1, TAO Ye1, YIN Ben-Feng1, Shayaguli JIGEER1,3, ZHANG Yuan-Ming1,*(
)
Received:
2021-12-14
Accepted:
2022-06-26
Online:
2022-12-20
Published:
2023-01-13
Contact:
*MA Jian-Ying(Supported by:
摘要:
近年来, 干旱半干旱区极端干旱和极端降水事件出现的频次呈现增加的趋势, 深刻影响着生产力和碳循环过程。荒漠生态系统植被对降水变化响应敏感, 但短命植物层片地上生产力对极端干旱和极端降水的敏感性差异以及沙垄坡向坡位在其中的调节作用有待研究。该研究选择古尔班通古特沙漠南缘沙垄4个不同坡向坡位(西坡底部、西坡中部、东坡中部、东坡底部), 设置连续2年减少和增加65%生长季降水量的野外原位控制实验来模拟极端干旱和极端降水事件, 解析了短命植物层片地上生产力对极端干旱和极端降水的敏感性, 探讨了坡向坡位因素的协同效应以及降水变化驱动短命植物层片地上生产力的机制。结果表明: (1)整体而言, 短命植物层片地上生产力和生长季降水量的关系是非对称的, 且地上生产力对极端干旱的敏感性强于极端降水。(2)具体而言, 沙垄西坡底部、西坡中部和东坡底部短命植物层片地上生产力和生长季降水量表现为非线性饱和关系, 地上生产力增加的幅度随着降水量的增加而降低; 沙垄东坡中部共优种的存在改变了短命植物层片地上生产力与生长季降水量的关系, 使两者表现为正线性关系。(3)短命植物层片密度(所有物种的种群密度之和)对地上生产力的影响最大, 表明极端干旱突破了短命植物生理死亡的阈值, 通过降低层片密度减少地上生产力; 极端降水则通过增加层片密度以克服分生组织的约束, 提高地上生产力。该研究可为极端气候事件频发背景下准确评估荒漠生态系统碳循环动态提供科学依据。
臧永新, 马剑英, 周晓兵, 陶冶, 尹本丰, 沙亚古丽•及格尔, 张元明. 极端干旱和降水对沙垄不同坡向坡位短命植物地上生产力的影响. 植物生态学报, 2022, 46(12): 1537-1550. DOI: 10.17521/cjpe.2021.0473
ZANG Yong-Xin, MA Jian-Ying, ZHOU Xiao-Bing, TAO Ye, YIN Ben-Feng, Shayaguli JIGEER, ZHANG Yuan-Ming. Effects of extreme drought and extreme precipitation on aboveground productivity of ephemeral plants across different slope positions along sand dunes. Chinese Journal of Plant Ecology, 2022, 46(12): 1537-1550. DOI: 10.17521/cjpe.2021.0473
图1 研究区域和实验设计示意图。
Fig. 1 Study site and experimental design. BE, bottom of sand dune facing east; BW, bottom of sand dune facing west; ME, middle of sand dune facing east; MW, middle of sand dune facing west.
图2 古尔班通古特沙漠南缘近100年短命植物生长季降水量的概率分布(A)以及极端干旱和降水处理对沙垄不同坡向坡位生长季平均土壤含水量(B)(平均值±标准误)的影响。BE, 东坡底部; BW, 西坡底部; ME, 东坡中部; MW, 西坡中部。不同小写字母代表同一坡向坡位不同降水处理间有显著差异(p < 0.05); 不同大写字母代表同一降水处理不同坡向坡位间有显著差异(p < 0.05)。
Fig. 2 Probability distribution of ephemeral plants growing season precipitation during the last 100 years for the southern edge of the Gurbantünggüt Desert (A) and effects of extreme drought and precipitation treatments on mean growing season soil water content (B)(mean ± SE). BE, bottom of sand dune facing east; BW, bottom of sand dune facing west; ME, middle of sand dune facing east; MW, middle of sand dune facing west. Different lowercase letters indicates significant differences between precipitation treatments of same slope position (p < 0.05); different uppercase letters indicate significant differences between different slope positions in the same precipitation treatment (p < 0.05).
效应 Effect | 土壤含水量 SWC | ANPP敏感性 ANPP sensitivity | ||
---|---|---|---|---|
df | F | df | F | |
降水处理 P | 2 | 53.15** | 1 | 3.05 |
坡向坡位 Sp | 3 | 5.54* | 3 | 1.31 |
年份 Y | 1 | 49.59** | 1 | 8.53** |
降水处理×坡向坡位 P × Sp | 6 | 43.65** | 3 | 0.52 |
降水处理×年 P × Y | 2 | 0.38 | 1 | 0.22 |
坡向坡位×年 Sp × Y | 3 | 1.75 | 3 | 0.48 |
降水处理×坡向坡位×年 P × Sp × Y | 6 | 0.89 | 3 | 0.32 |
表1 降水处理、沙垄不同坡向坡位、年份及其交互作用对土壤含水量和短命植物层片地上净初级生产力(ANPP)敏感性影响的广义线性混合模型
Table 1 Generalized linear mixed model results for the effects of precipitation change (P), sand dune slope positions (Sp), year (Y), and their interactive effects on soil water content (SWC) and sensitivity of aboveground net primary productivity (ANPP) of ephemeral plants
效应 Effect | 土壤含水量 SWC | ANPP敏感性 ANPP sensitivity | ||
---|---|---|---|---|
df | F | df | F | |
降水处理 P | 2 | 53.15** | 1 | 3.05 |
坡向坡位 Sp | 3 | 5.54* | 3 | 1.31 |
年份 Y | 1 | 49.59** | 1 | 8.53** |
降水处理×坡向坡位 P × Sp | 6 | 43.65** | 3 | 0.52 |
降水处理×年 P × Y | 2 | 0.38 | 1 | 0.22 |
坡向坡位×年 Sp × Y | 3 | 1.75 | 3 | 0.48 |
降水处理×坡向坡位×年 P × Sp × Y | 6 | 0.89 | 3 | 0.32 |
图3 沙垄不同坡向坡位短命植物层片地上净初级生产力(ANPP)对极端干旱和降水处理的敏感性(平均值±标准误)。
Fig. 3 Sensitivity of aboveground net primary productivity (ANPP) of four sand dune slope positions to extreme drought and precipitation treatments (mean ± SE). BE, bottom of sand dune facing east; BW, bottom of sand dune facing west; ME, middle of sand dune facing east; MW, middle of sand dune facing west.
图4 研究区整体和沙垄不同坡向坡位短命植物层片地上净初级生产力(ANPP)与生长季降水量的关系(平均值±标准误)。
Fig. 4 Relationship between growing season precipitation and aboveground net primary productivity (ANPP) of ephemeral plants in all and four sand dune slope positions (mean ± SE). BE, bottom of sand dune facing east; BW, bottom of sand dune facing west; ME, middle of sand dune facing east; MW, middle of sand dune facing west.
沙垄不同坡向坡位 Sand dune slope positions | 拟合公式 Fitting function | R2 | AIC |
---|---|---|---|
西坡底部 BW | y = 41.6 - 31.2exp(-(x - 39.8)/81.3) | 0.98 | 4.47 |
y = 6.79 + 0.28x | 0.93 | 5.76 | |
西坡中部 MW | y = 30.6 - 22.7exp(-(x - 20.0)/55.5) | 0.94 | 6.83 |
y = 2.04 + 0.23x | 0.90 | 12.98 | |
东坡中部 ME | y = 46.1 - 24.4exp(-(x - 26.3)/57.5) | 0.86 | 10.32 |
y = 14.8 + 0.25x | 0.95 | 9.25 | |
东坡底部 BE | y = 70.5 - 39.7exp(-(x - 91.9)/218.0) | 0.86 | 5.53 |
y = 11.86 + 0.17x | 0.78 | 6.75 | |
全部 All | y = 51.4 - 31.8exp(-(x - 20.1)/81.3) | 0.71 | 68.91 |
y = 10.7 + 0.2x | 0.44 | 78.70 |
表2 研究区整体和沙垄不同坡向坡位短命植物层片地上净初级生产力(ANPP)与生长季降水量的拟合函数
Table 2 Fitting function of growing season precipitation and aboveground net primary productivity (ANPP) in all and four sand dune slope positions
沙垄不同坡向坡位 Sand dune slope positions | 拟合公式 Fitting function | R2 | AIC |
---|---|---|---|
西坡底部 BW | y = 41.6 - 31.2exp(-(x - 39.8)/81.3) | 0.98 | 4.47 |
y = 6.79 + 0.28x | 0.93 | 5.76 | |
西坡中部 MW | y = 30.6 - 22.7exp(-(x - 20.0)/55.5) | 0.94 | 6.83 |
y = 2.04 + 0.23x | 0.90 | 12.98 | |
东坡中部 ME | y = 46.1 - 24.4exp(-(x - 26.3)/57.5) | 0.86 | 10.32 |
y = 14.8 + 0.25x | 0.95 | 9.25 | |
东坡底部 BE | y = 70.5 - 39.7exp(-(x - 91.9)/218.0) | 0.86 | 5.53 |
y = 11.86 + 0.17x | 0.78 | 6.75 | |
全部 All | y = 51.4 - 31.8exp(-(x - 20.1)/81.3) | 0.71 | 68.91 |
y = 10.7 + 0.2x | 0.44 | 78.70 |
图5 沙垄东坡中部不同降水处理条件下尖喙牻牛儿苗和琉苞菊的地上净初级生产力(ANPP)(A)以及所占优势物种地上生产力的比例(B)(平均值±标准误)。*表示尖喙牻牛儿苗和琉苞菊ANPP有显著差异。
Fig. 5 Effects of precipitation treatments on the aboveground net primary productivity (ANPP) of dominant species Erodium oxyrhinchum and Centaurea pulchella (A) and its percentage of ANPP (B) in the middle of sand dune facing east (mean ± SE). * indicates significant differences (p < 0.05) between the ANPP of E. oxyrhinchum and C. pulchella.
图6 沙垄不同坡向坡土壤含水量对短命植物层片地上净初级生产力(ANPP)影响的结构方程模型。结构方程模型考虑了短命植物层片结构影响ANPP的所有可能途径。实线表示正效应, 虚线表示负效应。线条的粗细与影响强度成正比关系。*, p < 0.05; **, p < 0.01。RMSEA, 近似误差均方根。R2表示模型中各因变量方差所占的比例。
Fig. 6 A structural equation model (SEM) representing the effects of soil water content (SWC) on above-ground net primary production (ANPP) in all and four sand dune slope positions. The SEM considered all plausible pathways through which plant traits influence ANPP. Solid lines represent the positive paths, dashed lines indicate negative paths. Line width is proportional to the strength of the relationship. BE, bottom of sand dune facing east; BW, bottom of sand dune facing west; ME, middle of sand dune facing east; MW, middle of sand dune facing west. *, p < 0.05; **, p < 0.01. RMSEA, root mean square error of approximation. R2 represents the proportion of the variance for each dependent variable in the model.
[1] |
Ahlström A, Raupach MR, Schurgers G, Smith B, Arneth A, Jung M, Reichstein M, Canadell JG, Friedlingstein P, Jain AK, Kato E, Poulter B, Sitch S, Stocker BD, Viovy N, et al. (2015). The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science, 348, 895-899.
DOI PMID |
[2] |
Bai YF, Wu JG, Xing Q, Pan QM, Huang JH, Yang DL, Han XG (2008). Primary production and rain use efficiency across a precipitation gradient on the Mongolia Plateau. Ecology, 89, 2140-2153.
PMID |
[3] |
Bai YX, Michalet R, She WW, Qiao YG, Liu L, Miao C, Qin SG, Zhang YQ (2021). Contrasting responses of different functional groups stabilize community responses to a dominant shrub under global change. Journal of Ecology, 109, 1676-1689.
DOI URL |
[4] |
Barbeta A, Mejía-Chang M, Ogaya R, Voltas J, Dawson TE, Peñuelas J (2015). The combined effects of a long-term experimental drought and an extreme drought on the use of plant-water sources in a Mediterranean forest. Global Change Biology, 21, 1213-1225.
DOI PMID |
[5] | Chen CD, Zhang LY, Hu WK (1983). The basic characteristics of plant communities, flora and their distribution in the sandy district of Gurbantungut. Acta Phytoecologica et Geobotanica Sinica, 7, 89-99. |
[ 陈昌笃, 张立运, 胡文康 (1983). 古尔班通古特沙漠的沙地植物群落、区系及其分布的基本特征. 植物生态学与地植物学丛刊, 7, 89-99.] | |
[6] |
Craven D, Isbell F, Manning P, Connolly J, Bruelheide H, Ebeling A, Roscher C, van Ruijven J, Weigelt A, Wilsey B, Beierkuhnlein C, de Luca E, Griffin JN, Hautier Y, Hector A, et al. (2016). Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought. Philosophical Transactions of the Royal Society B: Biological Sciences, 371, 20150277. DOI: 10.1098/rstb.2015.0277.
DOI URL |
[7] |
de Boeck HJ, Bloor JMG, Aerts R, Bahn M, Beier C, Emmett BA, Estiarte M, Grünzweig JM, Halbritter AH, Holub P, Jentsch A, Klem K, Kreyling J, Kröel-Dulay G, Larsen KS, et al. (2020). Understanding ecosystems of the future will require more than realistic climate change experiments—A response to Korell et al. Global Change Biology, 26, e6-e7.
DOI |
[8] |
de Dios Miranda J, Padilla FM, Lázaro R, Pugnaire FI (2009). Do changes in rainfall patterns affect semiarid annual plant communities? Journal of Vegetation Science, 20, 269-276.
DOI URL |
[9] |
Ding JX, Fan LL, Cao YF, Liu M, Ma J, Li Y, Tang LS (2016). Spatial distribution of the herbaceous layer and its relationship to soil physical-chemical properties in the southern margin of the Gurbantonggut Desert, northwestern China. Acta Ecologica Sinica, 36, 327-332.
DOI URL |
[10] |
Eskelinen A, Harrison SP (2015). Resource colimitation governs plant community responses to altered precipitation. Proceedings of the National Academy of Sciences of the United States of America, 112, 13009-13014.
DOI PMID |
[11] |
Fan LL, Tang LS, Wu LF, Ma J, Li Y (2014). The limited role of snow water in the growth and development of ephemeral plants in a cold desert. Journal of Vegetation Science, 25, 681-690.
DOI URL |
[12] |
Felton AJ, Knapp AK, Smith MD (2021). Precipitation- productivity relationships and the duration of precipitation anomalies: an underappreciated dimension of climate change. Global Change Biology, 27, 1127-1140.
DOI URL |
[13] |
Felton AJ, Smith MD (2017). Integrating plant ecological responses to climate extremes from individual to ecosystem levels. Philosophical Transactions of the Royal Society B: Biological Sciences, 372, 20160142. DOI: 10.1098/rstb.2016.0142.
DOI URL |
[14] |
Felton AJ, Zavislan-Pullaro S, Smith MD (2019). Semiarid ecosystem sensitivity to precipitation extremes: weak evidence for vegetation constraints. Ecology, 100, e02572. DOI: 10.1002/ecy.2572.
DOI |
[15] |
Haberl H, Erb KH, Krausmann F (2014). Human appropriation of net primary production: patterns, trends, and planetary boundaries. Annual Review of Environment and Resources, 39, 363-391.
DOI URL |
[16] | Hooper D, Coughlan J, Mullen MR (2008). Structural equation modeling: guidelines for determining model fit. The Electronic Journal of Business Research Methods, 6, 53-60. |
[17] |
Hooper DU, Chapin III FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005). Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs, 75, 3-35.
DOI URL |
[18] |
Hoover DL, Duniway MC, Belnap J (2015). Pulse-drought atop press-drought: unexpected plant responses and implications for dryland ecosystems. Oecologia, 179, 1211-1221.
DOI PMID |
[19] | Hu ZM, Guo Q, Li SG, Piao SL, Knapp AK, Ciais P, Li XR, Yu GR (2018). Shifts in the dynamics of productivity signal ecosystem state transitions at the biome-scale. Ecology Letters, 21, 1457-1466. |
[20] |
Huang G, Li Y (2015). Phenological transition dictates the seasonal dynamics of ecosystem carbon exchange in a desert steppe. Journal of Vegetation Science, 26, 337-347.
DOI URL |
[21] |
Huang JP, Yu HP, Dai AG, Wei Y, Kang LT (2017). Drylands face potential threat under 2 °C global warming target. Nature Climate Change, 7, 417-422.
DOI URL |
[22] |
Huxman TE, Smith MD, Fay PA, Knapp AK, Shaw MR, Loik ME, Smith SD, Tissue DT, Zak JC, Weltzin JF, Pockman WT, Sala OE, Haddad BM, Harte J, Koch GW, et al. (2004). Convergence across biomes to a common rain-use efficiency. Nature, 429, 651-654.
DOI |
[23] | IPCC (2001). Climate Change 2001: the Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York. |
[24] | IPCC (2018). Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. World Meteorological Organization, Geneva, Switzerland. |
[25] |
Isbell F, Reich PB, Tilman D (2013). Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proceedings of the National Academy of Sciences of the United States of America, 110, 11911-11916.
DOI PMID |
[26] |
Jentsch A, Kreyling J, Elmer M, Gellesch E, Glaser B, Grant K, Hein R, Lara M, Mirzae H, Nadler SE, Nagy L, Otieno D, Pritsch K, Rascher U, Schädler M, et al. (2011). Climate extremes initiate ecosystem-regulating functions while maintaining productivity. Journal of Ecology, 99, 689-702.
DOI URL |
[27] | Ji F, Fan ZL, Zhao GH (1995). Comparison of the physical-chemical characteristics of aeolian soils in the taklamakan desert and the Gurbantonggute Desert. Arid Zone Research, 12, 19-25. |
[ 季方, 樊自立, 赵贵海 (1995). 新疆两大沙漠风沙土土壤理化特性对比分析. 干旱区研究, 12, 19-25.] | |
[28] |
Knapp AK, Avolio ML, Beier C, Carroll CJW, Collins SL, Dukes JS, Fraser LH, Griffin-Nolan RJ, Hoover DL, Jentsch A, Loik ME, Phillips RP, Post AK, Sala OE, Slette IJ, et al. (2017a). Pushing precipitation to the extremes in distributed experiments: recommendations for simulating wet and dry years. Global Change Biology, 23, 1774-1782.
DOI URL |
[29] |
Knapp AK, Ciais P, Smith MD (2017b). Reconciling inconsistencies in precipitation-productivity relationships: implications for climate change. New Phytologist, 214, 41-47.
DOI URL |
[30] |
Knapp AK, Fay PA, Blair JM, Collins SL, Smith MD, Carlisle JD, Harper CW, Danner BT, Lett MS, McCarron JK (2002). Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science, 298, 2202-2205.
DOI PMID |
[31] |
Knapp AK, Hoover DL, Wilcox KR, Avolio ML, Koerner SE la Pierre KJ, Loik ME, Luo YQ, Sala OE, Smith MD (2015). Characterizing differences in precipitation regimes of extreme wet and dry years: implications for climate change experiments. Global Change Biology, 21, 2624-2633.
DOI PMID |
[32] |
Knapp AK, Smith MD (2001). Variation among biomes in temporal dynamics of aboveground primary production. Science, 291, 481-484.
DOI PMID |
[33] | Liu H, Zhou HF, Liu X (2015). Analysis of soil moisture migration on sand dune under the condition of heavy rainfall. Journal of Soil and Water Conservation, 29(2), 157-162. |
[ 刘昊, 周宏飞, 刘翔 (2015). 强降雨条件下沙丘土壤水分运移特征分析. 水土保持学报, 29(2), 157-162.] | |
[34] |
Liu R, Cieraad E, Li Y, Ma J (2016). Precipitation pattern determines the inter-annual variation of herbaceous layer and carbon fluxes in a phreatophyte-dominated desert ecosystem. Ecosystems, 19, 601-614.
DOI URL |
[35] |
Liu R, Pan LP, Jenerette GD, Wang QX, Cieraad E, Li Y (2012). High efficiency in water use and carbon gain in a wet year for a desert halophyte community. Agricultural and Forest Meteorology, 162-163, 127-135.
DOI URL |
[36] | Liu XP, Zhang TH, Zhao HL, Yue GY (2006). Infiltration and redistribution process of rainfall in desert mobile sand dune. Journal of Hydraulic Engineering, 37(2), 166-171. |
[ 刘新平, 张铜会, 赵哈林, 岳广阳 (2006). 流动沙丘降雨入渗和再分配过程. 水利学报, 37(2), 166-171.] | |
[37] |
Luo WT, Griffin-Nolan RJ, Ma W, Liu B, Zuo XA, Xu C, Yu Q, Luo YH, Mariotte P, Smith MD, Collins SL, Knapp AK, Wang ZW, Han XG (2021). Plant traits and soil fertility mediate productivity losses under extreme drought in C3 grasslands. Ecology, 102, e03465. DOI: 10.1002/ECY.3465.
DOI |
[38] |
Luo YQ, Gerten D, Le Maire G, Parton WJ, Weng ES, Zhou XH, Keough C, Beier C, Ciais P, Cramer W, Dukes JS, Emmett B, Hanson PJ, Knapp A, Linder S, et al. (2008). Modeled interactive effects of precipitation, temperature, and [CO2] on ecosystem carbon and water dynamics in different climatic zones. Global Change Biology, 14, 1986-1999.
DOI URL |
[39] |
Ma QH, Liu XD, Li YB, Li L, Yu HY, Qi M, Zhou GS, Xu ZZ (2020). Nitrogen deposition magnifies the sensitivity of desert steppe plant communities to large changes in precipitation. Journal of Ecology, 108, 598-610.
DOI URL |
[40] |
Ma SM, Zhou TJ, Dai AG, Han ZY (2015). Observed changes in the distributions of daily precipitation frequency and amount over China from 1960 to 2013. Journal of Climate, 28, 6960-6978.
DOI URL |
[41] |
Ma ZY, Liu HY, Mi ZR, Zhang ZH, Wang YH, Xu W, Jiang L, He JS (2017). Climate warming reduces the temporal stability of plant community biomass production. Nature Communications, 8, 15378. DOI: 10.1038/ncomms15378.
DOI PMID |
[42] |
Melillo JM, McGuire AD, Kicklighter DW, Moore B, Vorosmarty CJ, Schloss AL (1993). Global climate change and terrestrial net primary production. Nature, 363, 234-240.
DOI |
[43] |
Meng B, Li JQ, Maurer GE, Zhong SZ, Yao Y, Yang XC, Collins SL, Sun W (2021). Nitrogen addition amplifies the nonlinear drought response of grassland productivity to extended growing-season droughts. Ecology, 102, e03483. DOI: 10.1002/ECY.3483.
DOI |
[44] |
Muraina TO, Xu C, Yu Q, Yang YD, Jing MH, Jia XT, Jaman MS, Dam Q, Knapp AK, Collins SL, Luo YQ, Luo WT, Zuo XA, Xin XP, Han XG, et al. (2021). Species asynchrony stabilises productivity under extreme drought across Northern China grasslands. Journal of Ecology, 109, 1665-1675.
DOI URL |
[45] |
Niu SL, Luo YQ, Li DJ, Cao SH, Xia JY, Li JW, Smith MD (2014). Plant growth and mortality under climatic extremes: an overview. Environmental and Experimental Botany, 98, 13-19.
DOI URL |
[46] |
Noy-Meir I (1973). Desert ecosystems: environment and producers. Annual Review of Ecology and Systematics, 4, 25-51.
DOI URL |
[47] |
Ogle K, Reynolds JF (2004). Plant responses to precipitation in desert ecosystems: integrating functional types, pulses, thresholds, and delays. Oecologia, 141, 282-294.
PMID |
[48] |
Piao SL, Ciais P, Huang Y, Shen ZH, Peng SS, Li JS, Zhou LP, Liu HY, Ma YC, Ding YH, Friedlingstein P, Liu CZ, Tan K, Yu YQ, Zhang TY, et al. (2010). The impacts of climate change on water resources and agriculture in China. Nature, 467, 43-51.
DOI |
[49] |
Reichmann LG, Sala OE, Peters DPC (2013). Precipitation legacies in desert grassland primary production occur through previous-year tiller density. Ecology, 94, 435-443.
PMID |
[50] |
Sala OE, Gherardi LA, Reichmann L, Jobbágy E, Peters D (2012). Legacies of precipitation fluctuations on primary production: theory and data synthesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 3135-3144.
DOI URL |
[51] |
Sala OE, Lauenroth WK, Parton WJ (1992). Long-term soil water dynamics in the shortgrass steppe. Ecology, 73, 1175-1181.
DOI URL |
[52] |
Sala OE, Parton WJ, Joyce LA, Lauenroth WK (1988). Primary production of the central grassland region of the United States. Ecology, 69, 40-45.
DOI URL |
[53] |
Schwinning S, Sala OE (2004). Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia, 141, 211-220.
PMID |
[54] |
Smith MD (2011a). The ecological role of climate extremes: current understanding and future prospects. Journal of Ecology, 99, 651-655.
DOI URL |
[55] |
Smith MD (2011b). An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. Journal of Ecology, 99, 656-663.
DOI URL |
[56] |
Smith MD, Knapp AK, Collins SL (2009). A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology, 90, 3279-3289.
DOI PMID |
[57] |
Smith MD, Wilcox KR, Power SA, Tissue DT, Knapp AK (2017). Assessing community and ecosystem sensitivity to climate change—Toward a more comparative approach. Journal of Vegetation Science, 28, 235-237.
DOI URL |
[58] | Song J, Wan SQ, Piao SL, Knapp AK, Classen AT, Vicca S, Ciais P, Hovenden MJ, Leuzinger S, Beier C, Kardol P, Xia JY, Liu Q, Ru JY, Zhou ZX, et al. (2019). A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nature Ecology & Evolution, 3, 1309-1320. |
[59] |
Song L, Luo WT, Ma W, He P, Liang XS, Wang ZW (2020). Extreme drought effects on nonstructural carbohydrates of dominant plant species in a meadow grassland. Chinese Journal of Plant Ecology, 44, 669-676.
DOI |
[ 宋琳, 雒文涛, 马望, 何鹏, 梁潇洒, 王正文 (2020). 极端干旱对草甸草原优势植物非结构性碳水化合物的影响. 植物生态学报, 44, 669-676.]
DOI |
|
[60] |
Steiger JH (2007). Understanding the limitations of global fit assessment in structural equation modeling. Personality and Individual Differences, 42, 893-898.
DOI URL |
[61] |
Swain DL, Langenbrunner B, Neelin JD, Hall A (2018). Increasing precipitation volatility in twenty-first-century California. Nature Climate Change, 8, 427-433.
DOI |
[62] |
Tao Y, Zhou XB, Zhang SH, Lu HY, Shao HB (2020). Soil nutrient stoichiometry on linear sand dunes from a temperate desert in Central Asia. Catena, 195, 104847. DOI: 10.1016/j.catena.2020.104847.
DOI URL |
[63] |
Tilman D (1996). Biodiversity: population versus ecosystem stability. Ecology, 77, 350-363.
DOI URL |
[64] |
Tilman D, Isbell F, Cowles JM (2014). Biodiversity and ecosystem functioning. Annual Review of Ecology, Evolution, and Systematics, 45, 471-493.
DOI URL |
[65] |
van Wijk MT (2011). Understanding plant rooting patterns in semi-arid systems: an integrated model analysis of climate, soil type and plant biomass. Global Ecology and Biogeography, 20, 331-342.
DOI URL |
[66] |
Venail P, Gross K, Oakley TH, Narwani A, Allan E, Flombaum P, Isbell F, Joshi J, Reich PB, Tilman D, Ruijven J, Cardinale BJ (2015). Species richness, but not phylogenetic diversity, influences community biomass production and temporal stability in a re-examination of 16 grassland biodiversity studies. Functional Ecology, 29, 615-626.
DOI URL |
[67] | Wang XQ, Jiang J, Lei JQ, Zhao CJ (2004). Relationship between ephemeral plants distribution and soil moisture on longitudinal dune surface in Gurbantonggut desert. Chinese Journal of Applied Ecology, 15, 556-560. |
[ 王雪芹, 蒋进, 雷加强, 赵从举 (2004). 短命植物分布与沙垄表层土壤水分的关系——以古尔班通古特沙漠为例. 应用生态学报, 15, 556-560.] | |
[68] |
Weltzin JF, Loik ME, Schwinning S, Williams DG, Fay PA, Haddad BM, Harte J, Huxman TE, Knapp AK, Lin GH, Pockman WT, Shaw MR, Small EE, Smith MD, Smith SD, et al. (2003). Assessing the response of terrestrial ecosystems to potential changes in precipitation. BioScience, 53, 941-952.
DOI URL |
[69] |
Wilcox KR, Blair JM, Smith MD, Knapp AK (2016). Does ecosystem sensitivity to precipitation at the site-level conform to regional-scale predictions? Ecology, 97, 561-568.
PMID |
[70] |
Wilcox KR, Tredennick AT, Koerner SE, Grman E, Hallett LM, Avolio ML, La Pierre KJ, Houseman GR, Isbell F, Johnson DS, Alatalo JM, Baldwin AH, Bork EW, Boughton EH, Bowman WD, et al. (2017). Asynchrony among local communities stabilises ecosystem function of metacommunities. Ecology Letters, 20, 1534-1545.
DOI PMID |
[71] |
Wu DH, Ciais P, Viovy N, Knapp AK, Wilcox K, Bahn M, Smith MD, Vicca S, Fatichi S, Zscheischler J, He Y, Li XY, Ito A, Arneth A, Harper A, et al. (2018). Asymmetric responses of primary productivity to altered precipitation simulated by ecosystem models across three long-term grassland sites. Biogeosciences, 15, 3421-3437.
DOI URL |
[72] |
Wu X, Zheng XJ, Li Y, Xu GQ (2019). Varying responses of two Haloxylon species to extreme drought and groundwater depth. Environmental and Experimental Botany, 158, 63-72.
DOI URL |
[73] |
Xu GQ, McDowell NG, Li Y (2016). A possible link between life and death of a xeric tree in desert. Journal of Plant Physiology, 194, 35-44.
DOI URL |
[74] | Xu H, Li Y, Xu GQ, Zou T (2007). Ecophysiological response and morphological adjustment of two Central Asian desert shrubs towards variation in summer precipitation. Plant, Cell & Environment, 30, 399-409. |
[75] |
Xu ZW, Ren HY, Li MH, van Ruijven J, Han XG, Wan SQ, Li H, Yu Q, Jiang Y, Jiang L (2015). Environmental changes drive the temporal stability of semi-arid natural grasslands through altering species asynchrony. Journal of Ecology, 103, 1308-1316.
DOI URL |
[76] |
Yahdjian L, Sala OE (2002). A rainout shelter design for intercepting different amounts of rainfall. Oecologia, 133, 95-101.
DOI PMID |
[77] |
Yahdjian L, Sala OE (2006). Vegetation structure constrains primary production response to water availability in the Patagonian steppe. Ecology, 87, 952-962.
PMID |
[78] |
Yin JF, Zhou XB, Yin BF, Li YG, Zhang YM (2021). Species-dependent responses of root growth of herbaceous plants to snow cover changes in a temperate desert, Northwest China. Plant and Soil, 459, 249-260.
DOI |
[79] |
Zang YX, Ma JY, Zhou XB, Tao Y, Yin BF, Zhang YM (2021). Extreme precipitation increases the productivity of a desert ephemeral plant community in Central Asia, but there is no slope position effect. Journal of Vegetation Science, 32, e13077. DOI: 10.1111/JVS.13077.
DOI |
[80] |
Zang YX, Min XJ, de Dios VR, Ma JY, Sun W (2020). Extreme drought affects the productivity, but not the composition, of a desert plant community in Central Asia differentially across microtopographies. Science of the Total Environment, 717, 137251. DOI: 10.1016/j.scitotenv.2020.137251.
DOI URL |
[81] |
Zhang B, Zhu JJ, Liu HM, Pan QM (2014). Effects of extreme rainfall and drought events on grassland ecosystems. Chinese Journal of Plant Ecology, 38, 1008-1018.
DOI |
[ 张彬, 朱建军, 刘华民, 潘庆民 (2014). 极端降水和极端干旱事件对草原生态系统的影响. 植物生态学报, 38, 1008-1018.]
DOI |
|
[82] |
Zhang JY, Li JY, Xiao R, Zhang JJ, Wang D, Miao RH, Song HQ, Liu YZ, Yang ZL, Liu MZ (2021). The response of productivity and its sensitivity to changes in precipitation: a meta-analysis of field manipulation experiments. Journal of Vegetation Science, 32, e12954. DOI: 10.1111/JVS.12954.
DOI |
[1] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[2] | 祖姆热提•于苏甫江, 董正武, 成鹏, 叶茂, 刘隋赟昊, 李生宇, 赵晓英. 多枝柽柳水分利用策略对沙堆堆积过程的响应[J]. 植物生态学报, 2024, 48(1): 113-126. |
[3] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[4] | 代景忠, 白玉婷, 卫智军, 张楚, 辛晓平, 闫玉春, 闫瑞瑞. 羊草功能性状对施肥的动态响应[J]. 植物生态学报, 2023, 47(7): 943-953. |
[5] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[6] | 张玉林, 尹本丰, 陶冶, 李永刚, 周晓兵, 张元明. 早春首次降雨时间及降雨量对古尔班通古特沙漠两种短命植物形态特征与叶绿素荧光的影响[J]. 植物生态学报, 2022, 46(4): 428-439. |
[7] | 张庆, 尹本丰, 李继文, 陆永兴, 荣晓莹, 周晓兵, 张丙昌, 张元明. 荒漠藓类植物死亡对表层土壤酶活性的影响[J]. 植物生态学报, 2022, 46(3): 350-361. |
[8] | 丛楠, 张扬建, 朱军涛. 北半球中高纬度地区近30年植被春季物候温度敏感性[J]. 植物生态学报, 2022, 46(2): 125-135. |
[9] | 张义, 程杰, 苏纪帅, 程积民. 长期封育演替下典型草原植物群落生产力与多样性关系[J]. 植物生态学报, 2022, 46(2): 176-187. |
[10] | 侯宝林, 庄伟伟. 古尔班通古特沙漠一年生植物的氮吸收策略[J]. 植物生态学报, 2021, 45(7): 760-770. |
[11] | 汲玉河, 周广胜, 王树东, 王丽霞, 周梦子. 2000-2019年秦岭地区植被生态质量演变特征及 驱动力分析[J]. 植物生态学报, 2021, 45(6): 617-625. |
[12] | 王奕丹, 李亮, 刘琪璟, 马泽清. 亚热带6个典型树种吸收细根寿命与形态属性格局[J]. 植物生态学报, 2021, 45(4): 383-393. |
[13] | 范琳杰, 李成道, 李向义, Henry J. SUN, 林丽莎, 刘波. 极端干旱区沙土掩埋对凋落物分解速率及盐分含量动态的影响[J]. 植物生态学报, 2021, 45(2): 144-153. |
[14] | 徐小惠, 刁华杰, 覃楚仪, 郝杰, 申颜, 董宽虎, 王常慧. 华北盐渍化草地土壤净氮矿化速率对不同水平氮添加的响应[J]. 植物生态学报, 2021, 45(1): 85-95. |
[15] | 赵河聚, 岳艳鹏, 贾晓红, 成龙, 吴波, 李元寿, 周虹, 赵雪彬. 模拟增温对高寒沙区生物土壤结皮-土壤系统呼吸的影响[J]. 植物生态学报, 2020, 44(9): 916-925. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19