植物生态学报 ›› 2022, Vol. 46 ›› Issue (4): 428-439.DOI: 10.17521/cjpe.2020.0385
所属专题: 光合作用
张玉林1,2, 尹本丰1, 陶冶1, 李永刚1, 周晓兵1,*(), 张元明1,*(
)
收稿日期:
2020-11-23
接受日期:
2021-11-24
出版日期:
2022-04-20
发布日期:
2021-12-13
通讯作者:
周晓兵,张元明
作者简介:
*(Zhou XB, zhouxb@ms.xjb.ac.cn)
基金资助:
ZHANG Yu-Lin1,2, YIN Ben-Feng1, TAO Ye1, LI Yong-Gang1, ZHOU Xiao-Bing1,*(), ZHANG Yuan-Ming1,*(
)
Received:
2020-11-23
Accepted:
2021-11-24
Online:
2022-04-20
Published:
2021-12-13
Contact:
ZHOU Xiao-Bing,ZHANG Yuan-Ming
Supported by:
摘要:
早春降雨事件是影响荒漠短命植物生长的重要因子, 为了解古尔班通古特沙漠积雪完全融化后早春首次降雨时间及降雨量对短命植物光合生长的影响。该研究选取两种优势短命植物尖喙牻牛儿苗(Erodium oxyrhinchum)和琉苞菊(Centaurea pulchella)为研究对象, 设置3个首次降雨时间(积雪完全融化后第10、20和30天)和3个降雨水平(5、10和15 mm), 探究两物种的形态、生物量及光化学效率的响应差异。结果显示: 积雪完全融化后第10天进行首次降雨处理时, 随着首次降雨量的增加, 尖喙牻牛儿苗的叶面积和总生物量呈显著增加趋势, 最大光化学效率呈下降趋势。在第20和30天进行首次降雨处理时, 尖喙牻牛儿苗和琉苞菊的叶面积均呈显著增加趋势。在积雪完全融化后5 mm降雨处理时, 随着首次降雨时间的延迟, 尖喙牻牛儿苗和琉苞菊的最大光化学效率呈先下降后上升趋势; 10 mm降雨处理时, 尖喙牻牛儿苗的冠根比降低, 根长和总生物量呈先增加后下降趋势, 琉苞菊的根长呈显著增加趋势; 15 mm降雨处理时, 尖喙牻牛儿苗的叶面积、冠根比和最大光化学效率呈显著增加趋势; 琉苞菊的冠根比和最大光化学效率呈下降趋势, 总生物量呈显著增加趋势。尖喙牻牛儿苗和琉苞菊的根长分别与0-5 cm和5-10 cm土壤含水量呈显著正相关关系。这说明早春首次降雨量比首次降雨时间更能影响植株生长, 但不同物种对降雨格局变化的响应不一致, 这可能通过影响早春短命植物的形态特征, 进而影响早春荒漠生态系统的稳定性。
张玉林, 尹本丰, 陶冶, 李永刚, 周晓兵, 张元明. 早春首次降雨时间及降雨量对古尔班通古特沙漠两种短命植物形态特征与叶绿素荧光的影响. 植物生态学报, 2022, 46(4): 428-439. DOI: 10.17521/cjpe.2020.0385
ZHANG Yu-Lin, YIN Ben-Feng, TAO Ye, LI Yong-Gang, ZHOU Xiao-Bing, ZHANG Yuan-Ming. Effects of the first rainfall timing and amount on morphological characteristics and chlorophyll fluorescence of two ephemeral species in the Gurbantünggüt Desert, northwestern China. Chinese Journal of Plant Ecology, 2022, 46(4): 428-439. DOI: 10.17521/cjpe.2020.0385
图1 古尔班通古特沙漠积雪完全融化后首次降雨时间及降雨量对不同土层土壤含水量的影响(平均值±标准差)。降雨时间指积雪完全融化后的时间。不同小写字母表示相同首次降雨时间不同降雨量处理间土壤含水量的差异显著; 不同大写字母表示不同首次降雨时间相同降雨量处理间土壤含水量的差异显著(p < 0.05)。
Fig. 1 Effects of the first rainfall timing and amounts after snow melted completely on soil moisture content at different soil depths in the Gurbantünggüt Desert (mean ± SD). First rainfall time represent days after the snow melted completely. Different lowercase letters indicate the significant differences in the soil moisture content among different treatments of rainfall amounts at the same first rainfall timing. Different uppercase letters indicate the significant differences in the soil moisture content between different treatments of the first rainfall timing under the same rainfall amount (p < 0.05).
物种 Species | 处理 Treatment | df | RL | H | S/R | TB | LA | Fv/Fm | YII |
---|---|---|---|---|---|---|---|---|---|
尖喙牻牛儿苗 Erodium oxyrhinchum | R | 2 | 26.984** | 4.279* | 0.334 | 0.056 | 25.901** | 0.587 | 0.298 |
T | 2 | 14.872** | 4.283* | 0.191 | 0.118 | 7.399** | 3.748* | 5.881** | |
T × R | 4 | 24.044** | 2.207** | 0.031 | 0.091 | 2.358 | 3.488* | 0.938 | |
琉苞菊 Centaurea pulchella | R | 2 | 0.058 | 4.617* | 1.696 | 0.431 | 9.741** | 0.039 | 0.083 |
T | 2 | 0.312 | 3.235* | 0.983 | 1.427 | 0.994 | 4.417* | 0.852 | |
T × R | 4 | 0.462 | 5.249** | 0.369 | 1.000 | 0.573 | 0.976 | 0.476 |
表1 古尔班通古特沙漠积雪完全融化后首次降雨时间及降雨量对尖喙牻牛儿苗和琉苞菊的生长与光化学效率影响的双因素方差分析
Table 1 Two-way ANOVA analysis of effects of the first rainfall timing and amounts after snow melted completely on the growth and photochemical efficiency of the Erodium oxyrhinchum and Centaurea pulchella in the Gurbantünggüt Desert
物种 Species | 处理 Treatment | df | RL | H | S/R | TB | LA | Fv/Fm | YII |
---|---|---|---|---|---|---|---|---|---|
尖喙牻牛儿苗 Erodium oxyrhinchum | R | 2 | 26.984** | 4.279* | 0.334 | 0.056 | 25.901** | 0.587 | 0.298 |
T | 2 | 14.872** | 4.283* | 0.191 | 0.118 | 7.399** | 3.748* | 5.881** | |
T × R | 4 | 24.044** | 2.207** | 0.031 | 0.091 | 2.358 | 3.488* | 0.938 | |
琉苞菊 Centaurea pulchella | R | 2 | 0.058 | 4.617* | 1.696 | 0.431 | 9.741** | 0.039 | 0.083 |
T | 2 | 0.312 | 3.235* | 0.983 | 1.427 | 0.994 | 4.417* | 0.852 | |
T × R | 4 | 0.462 | 5.249** | 0.369 | 1.000 | 0.573 | 0.976 | 0.476 |
图2 古尔班通古特沙漠积雪完全融化后首次降雨时间及降雨量对尖喙牻牛儿苗和琉苞菊生长的影响(平均值±标准差)。降雨时间指积雪完全融化后的时间。不同小写字母表示相同首次降雨时间不同降雨量处理差异显著(p < 0.05); 不同大写字母表示不同首次降雨时间相同降雨量处理间差异显著(p < 0.05)。
Fig. 2 Effects of the first rainfall timing and amounts after snow melted completely on the growth of the Erodium oxyrhinchum and Centaurea pulchella in the Gurbantünggüt Desert (mean ± SD). First rainfall time represent days after the snow melted completely. Different lowercase letters indicate the significant differences among different treatments of rainfall amounts at the same first rainfall timing, different uppercase letters indicate the significant differences among different treatments of the first rainfall timing under the same rainfall amount (p < 0.05). S/R, shoot to root ratio.
图3 古尔班通古特沙漠积雪完全融化后首次降雨时间及降雨量对尖喙牻牛儿苗和琉苞菊的最大光化学效率和实际光化学效率的影响(平均值±标准差)。降雨时间指积雪完全融化后的时间。不同小写字母表示相同首次降雨时间不同降雨量处理差异显著(p < 0.05); 不同大写字母表示不同首次降雨时间相同降雨量处理间差异显著(p < 0.05)。
Fig. 3 Effects of the first rainfall timing and amounts after snow melted completely on the maximum photochemical efficiency (Fv/Fm) and actual photochemical efficiency (YII) of the Erodium oxyrhinchum and Centaurea pulchella in the Gurbantünggüt Desert (mean ± SD). First rainfall time represent days after the snow melted completely. Different lowercase letters indicate the significant differences among different treatments of rainfall amounts at the same first rainfall timing, different uppercase letters indicate the significant differences among different treatments of the first rainfall timing under the same rainfall amount (p < 0.05).
物种 Species | 指标 Index | SWC-1 | SWC-2 | SWC-3 | RL | H | S/R | TB | LA | Fv/Fm | YII |
---|---|---|---|---|---|---|---|---|---|---|---|
尖喙牻牛儿苗 Erodium oxyrrhynchum | SWC-1 | 1 | |||||||||
SWC-2 | 0.742 | 1 | |||||||||
SWC-3 | 0.234 | 0.220 | 1 | ||||||||
RL | 0.941 | 0.710 | 0.232 | 1 | |||||||
H | 0.302 | 0.335 | -0.189 | 0.509 | 1 | ||||||
S/R | 0.099 | -0.034 | -0.533 | 0.129 | -0.043 | 1 | |||||
TB | -0.132 | -0.217 | -0.549 | -0.053 | -0.025 | 0.689 | 1 | ||||
LA | -0.305 | -0.401 | -0.375 | -0.193 | 0.279 | 0.093 | -0.257 | 1 | |||
Fv/Fm | -0.169 | -0.277 | -0.399 | 0.010 | 0.628 | 0.301 | 0.076 | 0.749 | 1 | ||
YII | -0.137 | 0.036 | -0.602 | 0.019 | 0.569 | 0.268 | -0.011 | 0.795 | 0.736 | 1 | |
琉苞菊 Centaurea pulchella | SWC-1 | 1 | |||||||||
SWC-2 | -0.100 | 1 | |||||||||
SWC-3 | -0.579 | 0.268 | 1 | ||||||||
RL | -0.538 | 0.729 | 0.761 | 1 | |||||||
H | -0.044 | 0.877 | -0.089 | 0.503 | 1 | ||||||
S/R | -0.450 | -0.268 | 0.606 | 0.319 | -0.398 | 1 | |||||
TB | -0.065 | 0.130 | 0.455 | 0.435 | -0.008 | 0.363 | 1 | ||||
LA | -0.602 | 0.216 | 0.311 | 0.447 | 0.170 | 0.370 | -0.134 | 1 | |||
Fv/Fm | -0.498 | 0.704 | 0.347 | 0.768 | 0.684 | 0.270 | 0.113 | 0.749 | 1 | ||
YII | -0.433 | 0.150 | 0.164 | 0.330 | 0.288 | 0.475 | 0.103 | 0.795 | 0.736 | 1 |
表2 古尔班通古特沙漠中尖喙牻牛儿苗和琉苞菊的光合生长指标与土壤含水量的相关系数
Table 2 Correlation coefficients between the photosynthesis and growth of the Erodium oxyrhinchum and Centaurea pulchella and soil moisture at different soil depths in the Gurbantünggüt Desert
物种 Species | 指标 Index | SWC-1 | SWC-2 | SWC-3 | RL | H | S/R | TB | LA | Fv/Fm | YII |
---|---|---|---|---|---|---|---|---|---|---|---|
尖喙牻牛儿苗 Erodium oxyrrhynchum | SWC-1 | 1 | |||||||||
SWC-2 | 0.742 | 1 | |||||||||
SWC-3 | 0.234 | 0.220 | 1 | ||||||||
RL | 0.941 | 0.710 | 0.232 | 1 | |||||||
H | 0.302 | 0.335 | -0.189 | 0.509 | 1 | ||||||
S/R | 0.099 | -0.034 | -0.533 | 0.129 | -0.043 | 1 | |||||
TB | -0.132 | -0.217 | -0.549 | -0.053 | -0.025 | 0.689 | 1 | ||||
LA | -0.305 | -0.401 | -0.375 | -0.193 | 0.279 | 0.093 | -0.257 | 1 | |||
Fv/Fm | -0.169 | -0.277 | -0.399 | 0.010 | 0.628 | 0.301 | 0.076 | 0.749 | 1 | ||
YII | -0.137 | 0.036 | -0.602 | 0.019 | 0.569 | 0.268 | -0.011 | 0.795 | 0.736 | 1 | |
琉苞菊 Centaurea pulchella | SWC-1 | 1 | |||||||||
SWC-2 | -0.100 | 1 | |||||||||
SWC-3 | -0.579 | 0.268 | 1 | ||||||||
RL | -0.538 | 0.729 | 0.761 | 1 | |||||||
H | -0.044 | 0.877 | -0.089 | 0.503 | 1 | ||||||
S/R | -0.450 | -0.268 | 0.606 | 0.319 | -0.398 | 1 | |||||
TB | -0.065 | 0.130 | 0.455 | 0.435 | -0.008 | 0.363 | 1 | ||||
LA | -0.602 | 0.216 | 0.311 | 0.447 | 0.170 | 0.370 | -0.134 | 1 | |||
Fv/Fm | -0.498 | 0.704 | 0.347 | 0.768 | 0.684 | 0.270 | 0.113 | 0.749 | 1 | ||
YII | -0.433 | 0.150 | 0.164 | 0.330 | 0.288 | 0.475 | 0.103 | 0.795 | 0.736 | 1 |
[1] |
Anniwaer A, Su YG, Zhou XB, Zhang YM (2020). Impacts of snow on seed germination are independent of seed traits and plant ecological characteristics in a temperate desert of Central Asia. Journal of Arid Land, 12, 775-790.
DOI URL |
[2] | Arroyo MTK, Zedler PH, Fox MD (1995). Ecology and Biogeography of Mediterranean Ecosystems in Chile, California, and Australia. Springer Verlag, New York. 177-210. |
[3] | Bi JJ, Liu JD, Ye BX, Xie LJ (2008). Effects of drought stress on photosynthesis and chlorophyll fluorescence of the summer maize leaf. Meteorological and Environmental Sciences, 31, 10-15. |
[ 毕建杰, 刘建栋, 叶宝兴, 谢连杰 (2008). 干旱胁迫对夏玉米叶片光合及叶绿素荧光的影响. 气象与环境科学, 3, 10-15.] | |
[4] |
Boyer JS (1982). Plant productivity and environment. Science, 218, 443-448.
PMID |
[5] | Cai HX, Wu FZ, Yang WQ (2011). Effects of drought stress on the photosynthesis of Salix paraqplesia and Hippophae rhamnoides seedlings. Acta Ecologica Sinica, 31, 2430-2436. |
[ 蔡海霞, 吴福忠, 杨万勤 (2011). 干旱胁迫对高山柳(Salix paraqplesia)和沙棘(Hippophae rhamnoides)幼苗光合生理特征的影响. 生态学报, 31, 2430-2436.] | |
[6] |
Chen YF, Shi X, Zhang LW, Baskin JM, Baskin CC, Liu HL, Zhang DY (2019). Effects of increased precipitation on the life history of spring and autumn-germinated plants of the cold desert annual Erodium oxyrhynchum (Geraniaceae). AoB PLANTS, 11, plz004. DOI: 10.1093/aobpla/plz004.
DOI |
[7] |
Cheng XL, An SQ, Li B, Chen JQ, Lin GH, Liu YH, Luo YQ, Liu SR (2006). Summer rain pulse size and rainwater uptake by three dominant desert plants in a desertified grassland ecosystem in northwestern China. Plant Ecology, 184, 1-12.
DOI URL |
[8] | Duan GF, Shan LS, Li Y, Zhang ZZ, Zhang R (2016). Effects of changing precipitation patterns on seedling growth of Reaumuria soongarica. Acta Ecologica Sinica, 36, 6457-6464. |
[ 段桂芳, 单立山, 李毅, 张正中, 张荣 (2016). 降水格局变化对红砂幼苗生长的影响. 生态学报, 36, 6457-6464.] | |
[9] | Fan LL, Li YM, Terekhina N, Ma XX, Ma J (2019). Response of herbaceous plant quantity to different water input and meteorological factors in a cold desert. Arid Zone Research, 36, 139-146. |
[ 范连连, 李耀明, Nataliia Terekhina, 马学喜, 马杰 (2019). 冷荒漠草本植物数量特征对不同水分输入和气象因子的响应. 干旱区研究, 36, 139-146.] | |
[10] |
Fan LL, Ma J, Wu LF, Xu GQ, Li Y, Tang LS (2012). Response of the herbaceous layer to snow variability at the south margin of the Gurbantünggüt Desert of China. Chinese Journal of Plant Ecology, 36, 126-135.
DOI URL |
[ 范连连, 马健, 吴林峰, 徐贵青, 李彦, 唐立松 (2012). 古尔班通古特沙漠南缘草本层对积雪变化的响应. 植物生态学报, 36, 126-135.]
DOI |
|
[11] |
Feng W, Lindner H, Robbins NE, Dinneny JR (2016). Growing out of stress: the role of cell- and organ-scale growth control in plant water-stress responses. Plant Cell, 28, 1769-1782.
DOI URL |
[12] |
Ghassemi-Golezani K, Lotfi R (2015). The impact of salicylic acid and silicon on chlorophyll a fluorescence in mung bean under salt stress. Russian Journal of Plant Physiology, 62, 611-616.
DOI URL |
[13] | He J, Bao F, Wu B, Yao B, Zhao YM, Liu MH (2020). Response of chlorophyll fluorescence characteristics of a typical desert plant species Nitraria tangutorum to simulated rainfall enhancement. Journal of Northwest Forestry University, 35, 55-63. |
[ 何季, 鲍芳, 吴波, 姚斌, 赵英铭, 刘明虎 (2020). 典型荒漠植物白刺叶绿素荧光特性对模拟增雨的响应. 西北林学院学报, 35, 55-63.] | |
[14] | Huang PY (2002). Unirrigated Vegetation and Its Restoration in Arid Areas. Science Press, Beijing. |
[ 黄培祐 (2002). 干旱区免灌植被及其恢复. 科学出版社, 北京.] | |
[15] | Jiang CM, Yu GR (2010). A review on terrestrial plant acclimation to global environment change. Chinese Journal of Eco-Agriculture, 18, 215-222. |
[ 姜春明, 于贵瑞 (2010). 陆生植物对全球环境变化的适应. 中国生态农业学报, 18, 215-222.] | |
[16] | Li DX, Zhang DY, Zhang LW, Zhang QG, Liu HL (2020). Biological seed characteristics of spring-emergence and autumn-emergence Erodium oxyrrhynchum. Arid Zone Research, 37, 1562-1568. |
[ 李得新, 张道远, 张刘伟, 张巧关, 刘会良 (2020). 短命植物尖喙牻牛儿苗春萌和秋萌植株种子生物学特性研究. 干旱区研究, 37, 1562-1568.] | |
[17] | Li XL, Zhang JB, Dong X, Xin ZM, Duan RB, Luo FM, Li YH (2020). Effects of simulated precipitation addition on growth and root morphological characteristics of desert plant seedling. Acta Ecologica Sinica, 40, 3452-3461. |
[ 李新乐, 张景波, 董雪, 辛智鸣, 段瑞兵, 罗凤敏, 李永华 (2020). 模拟增雨对荒漠植物幼苗生长和根系形态的影响. 生态学报, 40, 3452-3461.] | |
[18] | Li Y, Liu Y, Zhang P, Yin YH (2008). Desert vegetation coverage changes and their impacts on sand-dust weather in Gurbantünggüt Desert//Chinese Meteorological Society. Proceedings of 2008 Annual Meeting of Chinese Meteorological Society. Chinese Meteorological Society, Beijing. |
[ 李杨, 刘艳, 张璞, 尹育红 (2008). 古尔班通古特沙漠NDVI时空变化及其与沙尘天气的关系//中国气象学会. 中国气象学会2008年年会论文集. 中国气象学会, 北京.] | |
[19] | Li Y, Mamtimin A, Liu Y, Zhang P, Ji CR (2010). Characteristics of snow cover and sand-dust events and their correlation in Gurbantünggüt Desert. Journal of Desert Research, 30, 961-967. |
[ 李杨, 艾力•买买提明, 刘艳, 张璞, 吉春容 (2010). 古尔班通古特沙漠积雪覆盖、沙尘天气特征及其相互关系. 中国沙漠, 30, 961-967.] | |
[20] | Lin XL, Xu ZZ, Wang YH, Zhou GS (2008). Modeling the responses of leaf photosynthetic parameters of Leymus chinensis to drought and rewatering. Acta Ecologica Sinica, 28, 4718-4724. |
[ 林祥磊, 许振柱, 王玉辉, 周广胜 (2008). 羊草(Leymus chinensis)叶片光合参数对干旱与复水的响应机理与模拟. 生态学报, 28, 4718-4724.] | |
[21] | Liu B, Chang XX, Li SB (2010). Rainfall patterns and pulse characteristics in desert regions of the Heihe River basin. Acta Ecologica Sinica, 30, 5194-5199. |
[ 刘冰, 常学向, 李守波 (2010). 黑河流域荒漠区降水格局及其脉动特征. 生态学报, 30, 5194-5199.] | |
[22] | Liu B, Zhao WZ (2009). Ecological adaptability of photosynthesis and water metabolism for Tamarix ramosissima and Nitraria sphaerocarpa in desert-oasis ecotone. Journal of Desert Research, 29, 101-107. |
[ 刘冰, 赵文智 (2009). 荒漠绿洲过渡带柽柳和泡泡刺光合作用及水分代谢的生态适应性. 中国沙漠, 29, 101-107.] | |
[23] |
Lloret F, Peñuelas J, Estiarte M (2004). Experimental evidence of reduced diversity of seedlings due to climate modification in a Mediterranean-type community. Global Change Biology, 10, 248-258.
DOI URL |
[24] |
Maestre FT, Reynolds JF (2007). Amount or pattern? Grassland responses to the heterogeneity and availability of two key resources. Ecology, 88, 501-511.
DOI URL |
[25] | Mao ZM, Zhang DM (1994). The conspectus of ephemeral flora in northern Xinjiang. Arid Zone Research, 11, 1-26. |
[ 毛祖美, 张佃民 (1994). 新疆北部早春短命植物区系纲要. 干旱区研究, 11, 1-26.] | |
[26] |
Meehl GA, Arblaster JM, Tebaldi C (2005). Understanding future patterns of increased precipitation intensity in climate model simulations. Geophysical Research Letters, 32, L18719. DOI: 10.1029/2005gl023680.
DOI |
[27] |
Neff JC, Townsend AR, Gleixner G, Lehman SJ, Turnbull J, Bowman WD (2002). Variable effects of nitrogen additions on the stability and turnover of soil carbon. Nature, 419, 915-917.
DOI URL |
[28] |
Seneviratne SI, Lüthi D, Litschi M, Schär C (2006). Land-atmosphere coupling and climate change in Europe. Nature, 443, 205-209.
DOI URL |
[29] | Shan LS, Li Y, Duan GF, Zhang ZZ, Zhang R, Chong PF (2016). Effects of simulated precipitation on seedling growth and biomass allocation in two tree species in the arid lands of northwest China. Arid Land Geography, 39, 1267-1274. |
[ 单立山, 李毅, 段桂芳, 张正中, 张荣, 种培芳 (2016). 模拟降雨变化对两种荒漠植物幼苗生长及生物量分配的影响. 干旱区地理, 39, 1267-1274.] | |
[30] | Shan LS, Li Y, Duan YN, Geng DM, Li ZY, Zhang R, Duan GF, Васильевич ЖA (2014). Response of root morphology and water use efficiency of Reaumuria soongarica to soil water change. Acta Botanica Boreali-Occidentalia Sinica, 34, 1198-1205. |
[ 单立山, 李毅, 段雅楠, 耿东梅, 李真银, 张荣, 段桂芳, Васильевич ЖА (2014). 红砂幼苗根系形态特征和水分利用效率对土壤水分变化的响应. 西北植物学报, 34, 1198-1205.] | |
[31] | Shan LS, Zhang XM, Wang YK, Wang H, Yan HN, Wei J, Xu H (2008). Influence of moisture on the growth and biomass allocation in Haloxylon ammodendron and Tamarix ramosissima seedlings in the shelterbelt along the Tarim Desert Highway, Xinjiang, China. Chinese Science Bulletin, 53, 93-101. |
[32] |
Sherry RA, Weng ES, Arnone III JA, Johnson DW, Schimel DS, Verburg PS, Wallace LL, Luo YQ (2008). Lagged effects of experimental warming and doubled precipitation on annual and seasonal aboveground biomass production in a tallgrass prairie. Global Change Biology, 14, 2923-2936.
DOI URL |
[33] |
Souza BD, Meiado MV, Rodrigues BM, Santos MG (2010). Water relations and chlorophyll fluorescence responses of two leguminous trees from the Caatinga to different watering regimes. Acta Physiologiae Plantarum, 32, 235-244.
DOI URL |
[34] | Sun Y, Zhang T, Tian CY, Li XL, Feng G (2009). Response of grass growth and productivity to enhanced water input in ephemeral desert grassland in Gurbantünggüt Desert. Acta Ecologica Sinica, 29, 1859-1868. |
[ 孙羽, 张涛, 田长彦, 李晓林, 冯固 (2009). 增加降水对荒漠短命植物当年牧草生长及群落结构的影响. 生态学报, 29, 1859-1868.] | |
[35] |
Walck JL, Hidayati SN, Dixon KW, Thompson K, Poschlod P (2011). Climate change and plant regeneration from seed. Global Change Biology, 17, 2145-2161.
DOI URL |
[36] | Wang FL, Chai CW, Zhao P, Tang WD, Fu GQ, Sun T, Xu BY (2021). Photosynthetic and chlorophyll fluorescence responses of three desert species to drought stress and evaluation of drought resistance. Acta Botanica Boreali- Occidentalia Sinica, 41, 1755-1765. |
[ 王方琳, 柴成武, 赵鹏, 唐卫东, 付贵全, 孙涛, 胥宝一 (2021). 3种荒漠植物光合及叶绿素荧光对干旱胁迫的响应及抗旱性评价. 西北植物学报, 41, 1755-1765.] | |
[37] | Wang SS, Zhang YM (2010). Morphological characters of Erodium oxyrhinchum diaspore. Chinese Journal of Ecology, 29, 855-861. |
[ 王莎莎, 张元明 (2010). 尖喙牻牛儿苗繁殖体外部形态特征. 生态学杂志, 29, 855-861.] | |
[38] | Wang XQ, Jiang J, Lei JQ, Zhao CJ (2004). Relationship between ephemeral plants distribution and soil moisture on longitudinal dune surface in Gurbantünggüt Desert. Chinese Journal of Applied Ecology, 15, 556-560. |
[ 王雪芹, 蒋进, 雷加强, 赵从举 (2004). 短命植物分布与沙垄表层土壤水分的关系——以古尔班通古特沙漠为例. 应用生态学报, 15, 556-560.] | |
[39] | Wang YQ, Tang LH, Luo NN, Wu YF (2016). Effect of simulated precipitation on the phenotypic plasticity of desert annual plant Hyalea pulchella. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 45, 700-705. |
[ 王永秋, 汤灵红, 罗那那, 吴燕峰 (2016). 模拟降水增加对荒漠一年生植物琉苞菊表型可塑性的影响. 福建农林大学学报(自然科学版), 45, 700-705.] | |
[40] |
Weltzin JF, Loik ME, Schwinning S, Williams DG, Fay PA, Haddad BM, Harte J, Huxman TE, Knapp AK, Lin GH, Pockman WT, Shaw RM, Small EE, Smith MD, Smith SD, et al. (2003). Assessing the response of terrestrial ecosystems to potential changes in precipitation. BioScience, 53, 941-952.
DOI URL |
[41] |
White TA, Campbell BD, Kemp PD, Hunt CL (2000). Sensitivity of three grassland communities to simulated extreme temperature and rainfall events. Global Change Biology, 6, 671-684.
DOI URL |
[42] | Wu K, Xu WX, Yang WK (2019). Impact of rainfall changes on plant community in Junggar desert. Research of Soil and Water Conservation, 26, 100-106. |
[ 吴珂, 徐文轩, 杨维康 (2019). 模拟短期降雨量变化对准噶尔荒漠植物群落的影响. 水土保持研究, 26, 100-106.] | |
[43] |
Xiao Y, Tao Y, Zhang YM (2014). Biomass allocation and leaf stoichiometric characteristics in four desert herbaceous plants during different growth periods in the Gurbantünggüt Desert, China. Chinese Journal of Plant Ecology, 38, 929-940.
DOI URL |
[ 肖遥, 陶冶, 张元明 (2014). 古尔班通古特沙漠4种荒漠草本植物不同生长期的生物量分配与叶片化学计量特征. 植物生态学报, 38, 929-940.]
DOI |
|
[44] |
Yin JF, Zhou XB, Yin BF, Li YG, Zhang YM (2021). Species dependent responses of root growth of herbaceous plants to snow cover changes in a temperate desert, Northwest China. Plant and Soil, 459, 249-260.
DOI URL |
[45] |
Yuan SF, Tang HP (2010). Patterns of ephemeral plant communities and their adaptations to temperature and precipitation regimes in Dzungaria Desert, Xinjiang. Biodiversity Science, 18, 346-354.
DOI URL |
[ 袁素芬, 唐海萍 (2010). 新疆准噶尔荒漠短命植物群落特征及其水热适应性. 生物多样性, 18, 346-354.]
DOI |
|
[46] | Yuan SF, Tang HP, Zhang HF (2015). On the relationships between intra-annual variation of ephemeral synusia and hydrothermal conditions. Arid Zone Research, 32, 941-946. |
[ 袁素芬, 唐海萍, 张宏锋 (2015). 短命植物层群落年内变化与水热条件的关系. 干旱区研究, 32, 941-946.] | |
[47] |
Zhang L, Zhang LW, Liu HL, Chen YF (2020). Effects of increased precipitation on growth of two ephemeral plants in the Gurbantünggüt Desert, China. Chinese Journal of Applied Ecology, 31, 9-16.
DOI PMID |
[ 张岚, 张玲卫, 刘会良, 陈艳锋 (2020). 降水增加对古尔班通古特沙漠两种短命植物生长的影响. 应用生态学报, 31, 9-16.]
PMID |
|
[48] | Zhang LY, Chen CD (2002). On the general characteristics of plant diversity of Gurbantunggut sandy desert. Acta Ecologica Sinica, 22, 1923-1932. |
[ 张立运, 陈昌笃 (2002). 论古尔班通古特沙漠植物多样性的一般特点. 生态学报, 22, 1923-1932.] | |
[49] | Zhou HF, Zhou BJ, Dai Q (2010). Observational analysis of rime condensation on plants over the Gurbantünggüt Desert in China. Advances in Water Science, 21, 56-62. |
[ 周宏飞, 周宝佳, 代琼 (2010). 古尔班通古特沙漠植物雾凇凝结特征. 水科学进展, 21, 56-62.] | |
[50] |
Zhou XB, Zhang YM, Ji XH, Downing A, Serpe M (2011). Combined effects of nitrogen deposition and water stress on growth and physiological responses of two annual desert plants in northwestern China. Environmental and Experimental Botany, 74, 1-8.
DOI URL |
[51] | Zhou XB, Zhang YM, Wang SS, Zhang BC (2010). Combined effects of simulated nitrogen deposition and drought stress on growth and photo-synthetic physiological responses of two annual desert plants in Junggar Basin, China. Chinese Journal of Plant Ecology, 34, 1394-1403. |
[ 周晓兵, 张元明, 王莎莎, 张丙昌 (2010). 模拟氮沉降和干旱对准噶尔盆地两种一年生荒漠植物生长和光合生理的影响. 植物生态学报, 34, 1394-1403.]
DOI |
[1] | 焦娟玉, 尹春英, 陈珂. 土壤水、氮供应对麻疯树幼苗光合特性的影响[J]. 植物生态学报, 2011, 35(1): 91-99. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19