植物生态学报 ›› 2020, Vol. 44 ›› Issue (9): 916-925.DOI: 10.17521/cjpe.2020.0018
所属专题: 全球变化与生态系统; 青藏高原植物生态学:植物-土壤-微生物; 土壤呼吸
赵河聚1,2, 岳艳鹏1,2, 贾晓红1,2,*(), 成龙1,2, 吴波1,2, 李元寿3, 周虹1,2, 赵雪彬4
收稿日期:
2020-01-17
修回日期:
2020-06-15
出版日期:
2020-09-20
发布日期:
2020-07-31
通讯作者:
*贾晓红(jiaxiaohong@caf.ac.cn)基金资助:
ZHAO He-Ju1,2, YUE Yan-Peng1,2, JIA Xiao-Hong1,2,*(), CHENG Long1,2, WU Bo1,2, LI Yuan-Shou3, ZHOU Hong1,2, ZHAO Xue-Bin4
Received:
2020-01-17
Revised:
2020-06-15
Online:
2020-09-20
Published:
2020-07-31
Contact:
JIA Xiao-Hong
Supported by:
摘要:
生物土壤结皮是高寒沙区重要的地表覆盖类型, 研究增温对高寒地区生物土壤结皮-土壤系统呼吸的影响, 能够为准确评估高寒生态系统中生物土壤结皮对气候变化的响应和反馈提供一定的参考。该文以人工植被恢复区的苔藓和藻类结皮为研究对象, 采用开顶式被动增温装置(OTC)进行模拟增温, 观测增温条件下苔藓和藻类结皮-土壤系统呼吸速率的日动态和生长季动态, 探讨增温对其CO2释放量和温度敏感性的影响。研究结果显示, 增温未改变苔藓和藻类结皮-土壤系统呼吸速率的日动态和生长季动态特征, 均呈“单峰”曲线, 日动态峰值出现在13:00左右, 生长季动态峰值出现在8月左右; 增温改变了生物土壤结皮-土壤系统呼吸速率的日动态峰值。相对干旱年份(2017), 适度增温增加了两类生物土壤结皮-土壤系统生长季累积CO2释放量, 过高幅度增温, 两类生物土壤结皮-土壤系统CO2释放量的增加程度降低; 相对湿润年份(2018), 增温幅度越高, 两类生物土壤结皮-土壤系统CO2释放量增加程度越大。两种类型生物土壤结皮-土壤系统呼吸速率与温度间的关系均可用指数函数较好地描述, 相对干旱年份, 增温幅度越高, 苔藓和藻类结皮-土壤呼吸的温度敏感性越小, 变化范围分别为1.47-1.61和1.60-1.95; 相对湿润年份, 增温幅度越高, 温度敏感性越大, 变化范围分别为1.44-1.68和1.44-1.76。该研究表明, 全球气候变暖很大程度地增强了高寒生态系统中生物土壤结皮-土壤系统的呼吸作用, 因此在准确评估高寒生态系统碳循环过程时, 应充分考虑气候变暖对该区广泛分布的生物土壤结皮所产生的影响。
赵河聚, 岳艳鹏, 贾晓红, 成龙, 吴波, 李元寿, 周虹, 赵雪彬. 模拟增温对高寒沙区生物土壤结皮-土壤系统呼吸的影响. 植物生态学报, 2020, 44(9): 916-925. DOI: 10.17521/cjpe.2020.0018
ZHAO He-Ju, YUE Yan-Peng, JIA Xiao-Hong, CHENG Long, WU Bo, LI Yuan-Shou, ZHOU Hong, ZHAO Xue-Bin. Effects of simulated warming on biological soil crust-soil system respiration in alpine sandy lands. Chinese Journal of Plant Ecology, 2020, 44(9): 916-925. DOI: 10.17521/cjpe.2020.0018
结皮类型 Crust type | 盖度 Coverage (%) | 厚度 Thickness (cm) | 生物量 Biomass (mg·cm-2) |
---|---|---|---|
藻类结皮 Algae crust | >51 | 1.01 ± 0.01 | 3.69 ± 0.21 |
苔藓结皮 Moss crust | >41 | 1.49 ± 0.06 | 4.65 ± 0.25 |
表1 研究区生物土壤结皮主要特征(平均值±标准误差)
Table 1 Main characteristics of biological soil crust in the study area (mean ± SE)
结皮类型 Crust type | 盖度 Coverage (%) | 厚度 Thickness (cm) | 生物量 Biomass (mg·cm-2) |
---|---|---|---|
藻类结皮 Algae crust | >51 | 1.01 ± 0.01 | 3.69 ± 0.21 |
苔藓结皮 Moss crust | >41 | 1.49 ± 0.06 | 4.65 ± 0.25 |
年份 Year | 总降水量 Total precipitation (mm) | 增长率 Growth rate (%) |
---|---|---|
近30年平均 Average over the last 30 years | 246.3 | - |
2017 | 226.7 | -8 |
2018 | 372.4 | 51 |
表2 高寒沙区生长季内降水事件统计
Table 2 Statistics of precipitation events during the growing season in alpine sandy lands
年份 Year | 总降水量 Total precipitation (mm) | 增长率 Growth rate (%) |
---|---|---|
近30年平均 Average over the last 30 years | 246.3 | - |
2017 | 226.7 | -8 |
2018 | 372.4 | 51 |
图1 不同规格开顶式被动增温装置(OTC)内苔藓和藻类结皮下0-5 cm层土壤温度变化。A, 苔藓结皮-土壤系统(TX)。B, 藻类结皮-土壤系统(ZL)。CK为对照组, OTC1、OTC2、OTC3为不同增温处理。
Fig. 1 Changes of soil temperature (0-5 cm) under moss and algae crusts in open top chamber (OTC) a passive warming device with different specifications. A, Moss crust-soil system (TX). B, Algae crust-soil system (ZL). CK means control group; OTC1, OTC2, OTC3 represent different warming treatments.
图2 不同规格开顶式被动增温装置(OTC)内苔藓和藻类结皮下0-5 cm层土壤温度增温幅度。TX, 苔藓结皮-土壤系统; ZL, 藻类结皮-土壤系统。
Fig. 2 Increase in soil temperature (0-5 cm) under moss and algae crusts in open top chamber (OTC) a passive warming device with different specifications. TX, moss crust-soil system; ZL, algae crust-soil system.
图3 模拟增温下生物土壤结皮-土壤系统呼吸速率日动态。A, 苔藓结皮-土壤系统(TX)。B, 藻类结皮-土壤系统(ZL)。CK为对照组, OTC1、OTC2、OTC3为不同增温处理。
Fig. 3 Daily dynamics of respiration rate of the biological soil crust-soil system under simulated warming. A, Moss crust-soil system (TX). B, Algae crust-soil system (ZL). CK means control group; OTC1, OTC2, OTC3 represent different warming treatments.
图4 模拟增温下生物土壤结皮-土壤系统呼吸速率生长季动态(平均值±标准误差)。A, 苔藓结皮-土壤系统(TX)。B, 藻类结皮-土壤系统(ZL)。CK为对照组, OTC1、OTC2、OTC3为不同增温处理。
Fig. 4 Growing season dynamics of respiration rate of the biological soil crust-soil system under simulated warming (mean ± SE). A, Moss crust-soil system (TX). B, Algae crust-soil system (ZL). CK means control group; OTC1, OTC2, OTC3 represent different warming treatments.
类型 Type | 年份 Year | CO2释放量 CO2 emission (g·m-2) | |||
---|---|---|---|---|---|
CK (CV, %) | OTC1 (CV, %) | OTC2 (CV, %) | OTC3 (CV, %) | ||
苔藓 Moss | 2017 | 120.71 (31.62) | 239.69 (27.64) | 223.83 (30.83) | 207.96 (34.96) |
2018 | 386.97 (30.91) | 430.63 (33.54) | 442.82 (32.31) | 481.35 (33.53) | |
藻类 Algae | 2017 | 79.03 (51.98) | 115.87 (53.15) | 105.86 (56.54) | 94.94 (56.39) |
2018 | 236.80 (46.93) | 272.71 (45.30) | 285.90 (43.74) | 308.64 (42.13) |
表3 模拟增温下生物土壤结皮-土壤系统生长季累积CO2释放量
Table 3 Cumulative CO2 emission from the biological soil crust-soil system in the growing season under simulated warming treatments
类型 Type | 年份 Year | CO2释放量 CO2 emission (g·m-2) | |||
---|---|---|---|---|---|
CK (CV, %) | OTC1 (CV, %) | OTC2 (CV, %) | OTC3 (CV, %) | ||
苔藓 Moss | 2017 | 120.71 (31.62) | 239.69 (27.64) | 223.83 (30.83) | 207.96 (34.96) |
2018 | 386.97 (30.91) | 430.63 (33.54) | 442.82 (32.31) | 481.35 (33.53) | |
藻类 Algae | 2017 | 79.03 (51.98) | 115.87 (53.15) | 105.86 (56.54) | 94.94 (56.39) |
2018 | 236.80 (46.93) | 272.71 (45.30) | 285.90 (43.74) | 308.64 (42.13) |
类型 Type | 处理 Treatment | 2017 | 2018 | ||||||
---|---|---|---|---|---|---|---|---|---|
回归方程 Regression equation | R2 | Q10 | p | 回归方程 Regression equation | R2 | Q10 | p | ||
苔藓 Moss | CK | y = 0.389e0.0489x | 0.36** | 1.61 | 0.001 | y = 1.131e0.0364x | 0.37** | 1.44 | 0.000 |
OTC1 | y = 0.612e0.0422x | 0.37** | 1.53 | 0.008 | y = 1.163e0.0419x | 0.51** | 1.52 | 0.001 | |
OTC2 | y = 0.546e0.0405x | 0.53** | 1.50 | 0.000 | y = 0.901e0.047x | 0.45** | 1.60 | 0.000 | |
OTC3 | y = 0.502e0.0385x | 0.66** | 1.47 | 0.000 | y = 1.009e0.0519x | 0.58** | 1.68 | 0.009 | |
藻类 Algae | CK | y = 0.103e0.0667x | 0.76** | 1.95 | 0.001 | y = 0.615e0.0363x | 0.33** | 1.44 | 0.000 |
OTC1 | y = 0.090e0.064x | 0.35** | 1.90 | 0.005 | y = 0.554e0.0445x | 0.27** | 1.56 | 0.004 | |
OTC2 | y = 0.149e0.0501x | 0.66** | 1.65 | 0.000 | y = 0.361e0.0519x | 0.40** | 1.68 | 0.000 | |
OTC3 | y = 0.204e0.0467x | 0.31** | 1.60 | 0.000 | y = 0.522e0.0567x | 0.49** | 1.76 | 0.000 |
表4 模拟增温下生物土壤结皮-土壤系统呼吸速率与0-5 cm层土壤温度间的回归关系及温度敏感性(Q10)比较
Table 4 Regression relationship between respiration rate of the biological soil crust-soil system and soil temperature in the 0-5 cm layer under simulated warming and comparison of temperature sensitivity (Q10) among different treatments
类型 Type | 处理 Treatment | 2017 | 2018 | ||||||
---|---|---|---|---|---|---|---|---|---|
回归方程 Regression equation | R2 | Q10 | p | 回归方程 Regression equation | R2 | Q10 | p | ||
苔藓 Moss | CK | y = 0.389e0.0489x | 0.36** | 1.61 | 0.001 | y = 1.131e0.0364x | 0.37** | 1.44 | 0.000 |
OTC1 | y = 0.612e0.0422x | 0.37** | 1.53 | 0.008 | y = 1.163e0.0419x | 0.51** | 1.52 | 0.001 | |
OTC2 | y = 0.546e0.0405x | 0.53** | 1.50 | 0.000 | y = 0.901e0.047x | 0.45** | 1.60 | 0.000 | |
OTC3 | y = 0.502e0.0385x | 0.66** | 1.47 | 0.000 | y = 1.009e0.0519x | 0.58** | 1.68 | 0.009 | |
藻类 Algae | CK | y = 0.103e0.0667x | 0.76** | 1.95 | 0.001 | y = 0.615e0.0363x | 0.33** | 1.44 | 0.000 |
OTC1 | y = 0.090e0.064x | 0.35** | 1.90 | 0.005 | y = 0.554e0.0445x | 0.27** | 1.56 | 0.004 | |
OTC2 | y = 0.149e0.0501x | 0.66** | 1.65 | 0.000 | y = 0.361e0.0519x | 0.40** | 1.68 | 0.000 | |
OTC3 | y = 0.204e0.0467x | 0.31** | 1.60 | 0.000 | y = 0.522e0.0567x | 0.49** | 1.76 | 0.000 |
[1] |
Allison SD, Treseder KK (2008). Warming and drying suppress microbial activity and carbon cycling in boreal forest soils.Global Change Biology, 14, 2898-2909.
DOI URL |
[2] |
Almagro M, López J, Querejeta JI, Martínez-Mena M (2009). Temperature dependence of soil CO2 efflux is strongly modulated by seasonal patterns of moisture availability in a Mediterranean ecosystem.Soil Biology & Biochemistry, 41, 594-605.
DOI URL |
[3] |
Bokhorst S, Bjerke JW, Melillo J, Callaghan TV, Phoenix GK (2010). Impacts of extreme winter warming events on litter decomposition in a sub-Arctic heathland.Soil Biology & Biochemistry, 42, 611-617.
DOI URL |
[4] |
Chen H, Zhu Q, Peng CH, Wu N, Wang YF, Fang XQ, Gao YH, Zhu D, Yang G, Tian JQ, Kang XM, Piao SL, Ouyang H, Xiang WH, Luo ZB, Jiang H, Song XZ, Zhang Y, Yu GR, Zhao XQ, Gong P, Yao TD, Wu JH (2013). The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau.Global Change Biology, 19, 2940-2955.
DOI URL |
[5] | Chen QS, Li LH, Han XG, Yan ZD, Wang YF, Zhang Y, Xiong XG, Chen SP, Zhang LX, Gao YZ, Tang F, Yang J, Dong YS (2004). Temperature sensitivity of soil respiration in relation to soil moisture in 11 communities of typical temperate steppe in Inner Mongolia.Acta Ecologica Sinica, 24, 831-836. |
[陈全胜, 李凌浩, 韩兴国, 阎志丹, 王艳芬, 张焱, 熊小刚, 陈世苹, 张丽霞, 高英志, 唐芳, 杨晶, 董云社 (2004). 典型温带草原群落土壤呼吸温度敏感性与土壤水分的关系. 生态学报, 24, 175-180.] | |
[6] | Chen ZF (2012). Effects of Simulated Warming and Nitrogen Addition on Gas Exchange in Desert Steppe Ecosystems. Master degree dissertation, Inner Mongolia Agricultural University, Hohhot. |
[陈志芳 (2012). 模拟增温和氮素添加对荒漠草原生态系统气体交换的影响. 硕士学位论文, 内蒙古农业大学, 呼和浩特.] | |
[7] |
Davidson EA, Janssens IA (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change.Nature, 440, 165-173.
DOI URL |
[8] |
Dore MHI (2005). Climate change and changes in global precipitation patterns: What do we know?Environment International, 31, 1167-1181.
DOI URL |
[9] | Eldridge DJ, Greene RSB (1994). Microbiotic soil crusts—A review of their roles in soil and ecological processes in the rangelands of Australia.Australian Journal of Soil Research, 32, 389-415. |
[10] | Feng W (2014). Photosynthetic Carbon Fixation of Biological Soil Crusts in MU US Desert and Their Impact on Soil Carbon Emission.PhD dissertation, Beijing Forestry University, Beijing. |
[冯薇 (2014). 毛乌素沙地生物结皮光合固碳过程及对土壤碳排放的影响. 博士学位论文, 北京林业大学, 北京.] | |
[11] | Fu W, Zhang XY, Zhao J, Du SL, Hou MT (2017). Effects of experimental warming on soil respiration during growing period in cropland in the black soil region of Northeast China.Chinese Journal of Ecology, 36, 601-608. |
[付微, 张兴义, 赵军, 杜书立, 侯美亭 (2017). 模拟增温对东北黑土农田作物生长季土壤呼吸的影响. 生态学杂志, 36, 601-608.] | |
[12] | Geng XD, Xu R, Wei D (2017). Response of greenhouse gases flux to multi-level warming in an alpine meadow of Tibetan Plateau.Ecology and Environment Sciences, 26, 445-452. |
[耿晓东, 旭日, 魏达 (2017). 多梯度增温对青藏高原高寒草甸温室气体通量的影响. 生态环境学报, 26, 445-452.] | |
[13] | Gu C, Jia XH, Wu B, Cheng L, Yang ZW, Yang DF, Zhao XB (2017). Effect of simulated precipitation on the carbon flux in biological-soil crusted soil in alpine sandy habitats.Acta Ecologica Sinica, 37, 4423-4433. |
[辜晨, 贾晓红, 吴波, 成龙, 杨占武, 杨德福, 赵雪彬 (2017). 高寒沙区生物土壤结皮覆盖土壤碳通量对模拟降水的响应. 生态学报, 37, 4423-4433.] | |
[14] |
Guan C, Zhang P, Li XR (2017). Responses of soil respiration with biocrust cover to water and temperature in the southeastern edge of Tengger Desert, Northwest China. Chinese Journal of Plant Ecology, 41, 301-310.
DOI URL |
[管超, 张鹏, 李新荣 (2017). 腾格里沙漠东南缘生物结皮土壤呼吸对水热因子变化的响应. 植物生态学报, 41, 301-310.]
DOI URL |
|
[15] |
Han GX, Zhou GS, Xu ZZ, Yang Y, Liu JL, Shi KQ (2007). Soil temperature and biotic factors drive the seasonal variation of soil respiration in a maize (Zea mays L.) agricultural ecosystem. Plant and Soil, 291, 15-26.
DOI URL |
[16] | Han HY (2014). Biological Soil Crust Carbon Emission and Its Effects on Soil Respiration Alpine in Alpine Sandy Land. PhD dissertation, Chinese Academy of Forestry, Beijing. |
[韩海燕 (2014). 高寒沙地生物结皮碳释放及其对土壤呼吸的影响. 博士学位论文, 中国林业科学研究院, 北京.] | |
[17] | IPCC (2013). Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[18] |
Janssens IA, Pilegaard K (2003). Large seasonal changes inQ10 of soil respiration in a beech forest. Global Change Biology, 9, 911-918.
DOI URL |
[19] |
Klimek B, Choczyński M, Juszkiewicz A (2009). Scots pine (Pinus sylvestris L.) roots and soil moisture did not affect soil thermal sensitivity. European Journal of Soil Biology, 45, 442-447.
DOI URL |
[20] |
Lan SB, Wu L, Zhang DL, Hu CX (2012). Successional stages of biological soil crusts and their microstructure variability in Shapotou region (China).Environmental Earth Sciences, 65, 77-88.
DOI URL |
[21] |
Leifeld J, Fuhrer J (2005). The temperature response of CO2 production from bulk soils and soil fractions is related to soil organic matter quality.Biogeochemistry, 75, 433-453.
DOI URL |
[22] | Li XR, Zhang YM, Zhao YG (2009). A study of biological soil crusts: recent development, trend and prospect.Advances in Earth Science, 24, 11-24. |
[李新荣, 张元明, 赵允格 (2009). 生物土壤结皮研究: 进展、前沿与展望. 地球科学进展, 24, 11-24.] | |
[23] |
Lin GH, Rygiewicz PT, Ehleringer JR, Johnson MG, Tingey DT (2001). Time-dependent responses of soil CO2 efflux components to elevated atmospheric [CO2] and temperature in experimental forest mesocosms.Plant and Soil, 229, 259-270.
DOI URL |
[24] | Liu DJ (2012). Responses of Soil Respiration of Prickly Prickles Community to Rainfall Increase in Extreme Arid Area. PhD dissertation, Chinese Academy of Forestry, Beijing. |
[刘殿君 (2012). 极端干旱区泡泡刺群落土壤呼吸对增雨的响应. 博士学位论文, 中国林业科学研究院, 北京.] | |
[25] | Liu HS, Liu HJ, Wang ZP, Xu M, Han XG, Li LH (2008). The temperature sensitivity of soil respiration.Progress in Geography, 27, 51-60. |
[26] |
Luo CY, Xu GP, Chao ZG, Wang SP, Lin XW, Hu YG, Zhang ZH, Duan JC, Chang XF, Su AL, Li YN, Zhao XQ, Du MY, Tang YH, Kimball B (2010). Effect of warming and grazing on litter mass loss and temperature sensitivity of litter and dung mass loss on the Tibetan Plateau.Global Change Biology, 16, 1606-1617.
DOI URL |
[27] |
Maestre FT, Escolar C, de Guevara ML, Quero JL, Lázaro R, Delgado-Baquerizo M, Ochoa V, Berdugo M, Gozalo B, Gallardo A (2013). Changes in biocrust cover drive carbon cycle responses to climate change in drylands.Global Change Biology, 19, 3835-3847.
DOI URL |
[28] |
Marilley L, Hartwig UA, Aragno M (1999). Influence of an elevated atmospheric CO2 content on soil and rhizosphere bacterial communities beneathLolium perenne and Trifolium repens under field conditions. Microbial Ecology, 38, 39-49.
DOI URL |
[29] |
McCulley RL, Boutton TW, Archer SR (2007). Soil respiration in a subtropical savanna parkland: response to water additions.Soil Science Society of America Journal, 71, 820-828.
DOI URL |
[30] | Niklińska M, Maryański M, Laskowski R (1999). Effect of temperature on humus respiration rate and nitrogen mineralization: implications for global climate change.Biogeochemistry, 44, 239-257. |
[31] | Pan XL, Lin B, Liu Q (2008). Effects of elevated temperature on soil organic carbon and soil respiration under subalpine coniferous forest in western Sichuan Province, China.Chinese Journal of Applied Ecology,19, 1637-1643. |
[潘新丽, 林波, 刘庆 (2008). 模拟增温对川西亚高山人工林土壤有机碳含量和土壤呼吸的影响. 应用生态学报, 19, 1637-1643.] | |
[32] | Qin Y, Yi SH, Li NJ, Ren SL, Wang XY, Chen JJ (2012). Advance in studies of carbon cycling on alpine grasslands of the Qinghai-Tibetan Plateau.Acta Prataculturae Sinica, 21, 275-285. |
[秦彧, 宜树华, 李乃杰, 任世龙, 王晓云, 陈建军 (2012). 青藏高原草地生态系统碳循环研究进展. 草业学报, 21, 275-285.]
DOI URL |
|
[33] |
Reichstein M, Subke JA, Angeli AC, Tenhunene JD (2005). Does the temperature sensitivity of decomposition of soil organic matter depend upon water content, soil horizon, or incubation time?Global Change Biology, 11, 1754-1767.
DOI URL |
[34] | Song B, Niu SL (2016). Global change and terrestrial carbon cycle: a review.Journal of Southwest University for Nationalities (Natural Science Edition), 42, 14-23. |
[宋冰, 牛书丽 (2016). 全球变化与陆地生态系统碳循环研究进展. 西南民族大学学报(自然科学版), 42, 14-23.] | |
[35] | Su YG, Wu L, Zhou ZB, Liu YB, Zhang YM (2013). Carbon flux in deserts depends on soil cover type: a case study in the Gurbantunggute desert, North China. Soil Biology & Biochemistry, 58, 332-340. |
[36] |
Wan SQ, Norby RJ, Ledford J, Norby RJ, Ledford J, Weltzin JF (2007). Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in a model old-field grassland.Global Change Biology, 13, 2411-2424.
DOI URL |
[37] | Wang Z, Zhao ML, Han GD, Gao FG, Han X (2012). Response of soil respiration to simulated warming and N addition in the desert steppe.Journal of Arid Land Resources and Environment, 26, 98-103. |
[王珍, 赵萌莉, 韩国栋, 高福光, 韩雄 (2012). 模拟增温及施氮对荒漠草原土壤呼吸的影响. 干旱区资源与环境, 26, 98-103.] | |
[38] |
Xia J, Han Y, Zhang Z, Zhang Z, Wan S (2009). Effects of diurnal warming on soil respiration are not equal to the summed effects of day and night warming in a temperate steppe.Biogeosciences, 6, 1361-1370.
DOI URL |
[39] |
Xiong P, Xu ZF, Lin B, Liu Q (2010). Short-term response of winter soil respiration to simulated warming in aPinus armandii plantation in the upper reaches of the Minjiang River, China. Chinese Journal of Plant Ecology,34, 1369-1376.
DOI URL |
[熊沛, 徐振锋, 林波, 刘庆 (2010). 岷江上游华山松林冬季土壤呼吸对模拟增温的短期响应. 植物生态学报, 34, 1369-1376.]
DOI URL |
|
[40] |
Xu BX, Hu YG, Zhang ZS, Chen YL, Zhang P, Li G (2014). Effects of experimental warming on CO2, CH4 and N2O fluxes of biological soil crust and soil system in a desert region.Chinese Journal of Plant Ecology, 38, 809-820.
DOI URL |
[徐冰鑫, 胡宜刚, 张志山, 陈永乐, 张鹏, 李刚 (2014). 模拟增温对荒漠生物土壤结皮-土壤系统CO2、CH4和N2O通量的影响. 植物生态学报, 38, 809-820.]
DOI URL |
|
[41] |
Xu M, Qi Y (2001). Spatial and seasonal variations ofQ10 determined by soil respiration measurements at a Sierra Nevadan Forest. Global Biogeochemical Cycles, 15, 687-696.
DOI URL |
[42] | Yang QP, Xu M, Liu HS, Wang JS, Liu LX, Chi YG, Zheng YP (2011). Impact factors and uncertainties of the temperature sensitivity of soil respiration.Acta Ecologica Sinica, 31, 2301-2311. |
[杨庆朋, 徐明, 刘洪升, 王劲松, 刘丽香, 迟永刚, 郑云普 (2011). 土壤呼吸温度敏感性的影响因素和不确定性. 生态学报, 31, 2301-2311.] | |
[43] | Yang Y, Huang M, Liu HS, Liu HJ (2011). The interrelation between temperature sensitivity and adaptability of soil respiration.Journal of Natural Resources, 26, 1811-1820. |
[杨毅, 黄玫, 刘洪升, 刘华杰 (2011). 土壤呼吸的温度敏感性和适应性研究进展. 自然资源学报, 26, 1811-1820.]
DOI URL |
|
[44] |
Yuste JC, Ma S, Baldocchi DD (2010). Plant-soil interactions and acclimation to temperature of microbial-mediated soil respiration may affect predictions of soil CO2 efflux.Biogeochemistry, 98, 127-138.
DOI URL |
[45] |
Zhao JX, Luo TX, Wei HX, Deng ZH, Li X, Li RC, Tang YH (2019). Increased precipitation offsets the negative effect of warming on plant biomass and ecosystem respiration in a Tibetan alpine steppe.Agricultural and Forest Meteorology, 279, 107761. DOI: 10.1016/j.agrformet.2019.107761.
DOI URL |
[1] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[2] | 索南吉, 李博文, 吕汪汪, 王文颖, 拉本, 陆徐伟, 宋扎磋, 陈程浩, 苗琪, 孙芳慧, 汪诗平. 增温增水情景下钉柱委陵菜物候序列的变化及其抗冻性[J]. 植物生态学报, 2024, 48(2): 158-170. |
[3] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[4] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[5] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[6] | 郭敏, 罗林, 梁进, 王彦杰, 赵春章. 冻融变化对西南亚高山森林优势种云杉和华西箭竹根区土壤理化性质与酶活性的影响[J]. 植物生态学报, 2023, 47(6): 882-894. |
[7] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[8] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[9] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[10] | 钟楠蝶, 王力, 肖杰, 王琼. 增温条件下花粉来源对红雉凤仙花生殖成功的影响[J]. 植物生态学报, 2022, 46(4): 416-427. |
[11] | 张庆, 尹本丰, 李继文, 陆永兴, 荣晓莹, 周晓兵, 张丙昌, 张元明. 荒漠藓类植物死亡对表层土壤酶活性的影响[J]. 植物生态学报, 2022, 46(3): 350-361. |
[12] | 田磊, 朱毅, 李欣, 韩国栋, 任海燕. 不同降水条件下内蒙古荒漠草原主要植物物候对长期增温和氮添加的响应[J]. 植物生态学报, 2022, 46(3): 290-299. |
[13] | 丛楠, 张扬建, 朱军涛. 北半球中高纬度地区近30年植被春季物候温度敏感性[J]. 植物生态学报, 2022, 46(2): 125-135. |
[14] | 韩聪, 刘鹏, 母艳梅, 原媛, 郝少荣, 田赟, 查天山, 贾昕. 黑沙蒿灌丛生态系统碳平衡对昼夜非对称增温的响应[J]. 植物生态学报, 2022, 46(12): 1473-1485. |
[15] | 靳川, 李鑫豪, 蒋燕, 徐铭泽, 田赟, 刘鹏, 贾昕, 查天山. 黑沙蒿光合能量分配组分在生长季的相对变化与调控机制[J]. 植物生态学报, 2021, 45(8): 870-879. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19