植物生态学报 ›› 2020, Vol. 44 ›› Issue (9): 905-915.DOI: 10.17521/cjpe.2020.0130
所属专题: 青藏高原植物生态学:种群生态学
王玉贤1, 侯盟1, 谢言言1, 刘左军2, 赵志刚1,*(), 路宁娜3
收稿日期:
2020-05-06
修回日期:
2020-07-23
出版日期:
2020-09-20
发布日期:
2020-08-10
通讯作者:
*赵志刚 (zhaozhg@lzu.edu.cn). ORCID: 赵志刚: 0000-0002-5252-4813基金资助:
WANG Yu-Xian1, HOU Meng1, XIE Yan-Yan1, LIU Zuo-Jun2, ZHAO Zhi-Gang1,*(), LU Ning-Na3
Received:
2020-05-06
Revised:
2020-07-23
Online:
2020-09-20
Published:
2020-08-10
Contact:
ZHAO Zhi-Gang
Supported by:
摘要:
花寿命指花保持开放且具有功能的时间长度, 是开花植物繁殖成功的一个重要功能性状。可塑性延长花寿命是植物在不利的传粉环境中保障繁殖的一种策略, 但延长花寿命也会增加繁殖成本。花寿命的可塑性变异不仅受传粉环境的影响, 而且还受资源分配权衡的影响。花寿命的理论模型指出, 植物的花寿命与花吸引特征之间存在资源分配权衡。为了研究在花粉限制环境中, 植物花寿命与花吸引特征之间的资源权衡及其对雌性适合度的相对重要性。该研究以青藏高原高寒草甸不同海拔(2 900和3 600 m)的11种开花植物为研究对象, 分析了不同植物群落中, 物种水平上: (1)花寿命与花吸引特征(花大小以及开花数目)之间的相关关系; (2)花寿命与花吸引特征对植物雌性适合度的相对贡献。结果表明, 无论是低海拔还是高海拔植物群落, 植物的花寿命与开花数目之间均存在权衡关系, 且长的花寿命增加了植物的雌性适合度。但在高海拔环境中, 植物的雌性适合度只与花寿命有关。这说明相对于低海拔植物, 花寿命对高海拔植物的雌性繁殖成功更为重要。
王玉贤, 侯盟, 谢言言, 刘左军, 赵志刚, 路宁娜. 青藏高原高寒草甸植物花寿命与花吸引特征的关系及其对雌性繁殖成功的影响. 植物生态学报, 2020, 44(9): 905-915. DOI: 10.17521/cjpe.2020.0130
WANG Yu-Xian, HOU Meng, XIE Yan-Yan, LIU Zuo-Jun, ZHAO Zhi-Gang, LU Ning-Na. Relationships of flower longevity with attractiveness traits and their effects on female fitness of alpine meadow plants on the Qinghai-Xizang Plateau, China. Chinese Journal of Plant Ecology, 2020, 44(9): 905-915. DOI: 10.17521/cjpe.2020.0130
|
Table 1 Mean plant height, flower size, flower number, flower longevity and seeds number of 16 research populations at low (2 900 m) and high (3 600 m) altitudes (mean土SE)
|
海拔 Altitude | 因素 Effect | 估计值±标准误差 Estimate ± SE | t | p |
---|---|---|---|---|
低海拔 Low altitude | 截距 Intercept | 3.98 ± 1.69 | 2.353 | 0.023 |
植株高度 Plant height (cm) | 0.07 ± 0.03 | 2.183 | 0.032 | |
Log (花大小) log (flower size) | 0.21 ± 0.28 | 0.751 | 0.454 | |
开花数目 Flower number | -0.25 ± 0.11 | -2.366 | 0.020 | |
高海拔 High altitude | 截距 Intercept | 2.85 ± 1.77 | 1.609 | 0.123 |
植株高度 Plant height (cm) | 0.06 ± 0.03 | 2.224 | 0.030 | |
Log (花大小) log (flower size) | 0.49 ± 0.24 | 2.038 | 0.046 | |
开花数目 Flower number | -0.14 ± 0.07 | -2.065 | 0.044 |
Table 2 Potential effects of plant height, flower size (log transform), and flower number on flower longevity of studied species in low (2 900 m) and high (3 600 m) altitude communities
海拔 Altitude | 因素 Effect | 估计值±标准误差 Estimate ± SE | t | p |
---|---|---|---|---|
低海拔 Low altitude | 截距 Intercept | 3.98 ± 1.69 | 2.353 | 0.023 |
植株高度 Plant height (cm) | 0.07 ± 0.03 | 2.183 | 0.032 | |
Log (花大小) log (flower size) | 0.21 ± 0.28 | 0.751 | 0.454 | |
开花数目 Flower number | -0.25 ± 0.11 | -2.366 | 0.020 | |
高海拔 High altitude | 截距 Intercept | 2.85 ± 1.77 | 1.609 | 0.123 |
植株高度 Plant height (cm) | 0.06 ± 0.03 | 2.224 | 0.030 | |
Log (花大小) log (flower size) | 0.49 ± 0.24 | 2.038 | 0.046 | |
开花数目 Flower number | -0.14 ± 0.07 | -2.065 | 0.044 |
图1 在低海拔植物群落中, 植物花寿命与植株高度(A)和开花数目(B)之间的关系。不同的点代表不同的个体, 不同颜色代表不同的物种。红线表示不同物种的平均响应。
Fig. 1 Scatterplots of the relationships between flower longevity and plant height (A), and flower number (B) at low altitude plant communities. Data points represent individuals, and each colored point represents different species. Red line indicates the mean response across species.
图2 在高海拔植物群落中, 花寿命与植株高度(A), 花大小(B)以及开花数目(C)之间的关系。不同的点代表不同的个体, 不同颜色代表不同的物种。红线表示不同物种的平均响应。
Fig. 2 Scatterplots of the relationships between flower longevity and plant height (A), log (flower size)(B), and flower number (C) at high altitude plant communities. Data points represent individuals, and each colored point represents different species. Red line indicates the mean response across species.
海拔 Altitude | 因素 Effect | 估计值±标准误差 Estimate ± SE | z | p |
---|---|---|---|---|
低海拔 Low altitude | 截距 Intercept | 1.62 ± 0.46 | 3.545 | 0.000 |
植株高度 Plant height (cm) | 0.01 ± 0.01 | 0.856 | 0.392 | |
Log (花大小) log (flower size) | 0.18 ± 0.08 | 2.319 | 0.020 | |
花寿命 Flower longevity (day) | 0.07 ± 0.03 | 2.213 | 0.027 | |
开花数目 Flower number | 0.01 ± 0.03 | 0.101 | 0.919 | |
高海拔 High altitude | 截距 Intercept | 1.89 ± 0.60 | 3.131 | 0.002 |
植株高度 Plant height (cm) | 0.01 ± 0.01 | 1.094 | 0.274 | |
Log (花大小) log (flower size) (mm2) | -0.03 ± 0.09 | -0.340 | 0.734 | |
花寿命 Flower longevity (day) | 0.16 ± 0.05 | 3.380 | 0.001 | |
开花数目 Flower number | -0.01 ± 0.03 | -0.200 | 0.841 |
Table 3 Effects of plant height, flower size (log transform), flower longevity and flower number on female fitness (seeds number) of studied species in low (2 900 m) and high (3 600 m) communities
海拔 Altitude | 因素 Effect | 估计值±标准误差 Estimate ± SE | z | p |
---|---|---|---|---|
低海拔 Low altitude | 截距 Intercept | 1.62 ± 0.46 | 3.545 | 0.000 |
植株高度 Plant height (cm) | 0.01 ± 0.01 | 0.856 | 0.392 | |
Log (花大小) log (flower size) | 0.18 ± 0.08 | 2.319 | 0.020 | |
花寿命 Flower longevity (day) | 0.07 ± 0.03 | 2.213 | 0.027 | |
开花数目 Flower number | 0.01 ± 0.03 | 0.101 | 0.919 | |
高海拔 High altitude | 截距 Intercept | 1.89 ± 0.60 | 3.131 | 0.002 |
植株高度 Plant height (cm) | 0.01 ± 0.01 | 1.094 | 0.274 | |
Log (花大小) log (flower size) (mm2) | -0.03 ± 0.09 | -0.340 | 0.734 | |
花寿命 Flower longevity (day) | 0.16 ± 0.05 | 3.380 | 0.001 | |
开花数目 Flower number | -0.01 ± 0.03 | -0.200 | 0.841 |
图3 在低海拔植物群落中, 植物雌性适合度(结籽数)与花大小(A)和花寿命(B)之间的关系。不同的点代表不同的个体, 不同颜色代表不同的物种。红线表示不同物种的平均响应。
Fig. 3 Scatterplots of the relationships between female fitness (seed number) and log (flower size)(A), and flower longevity (B) at low altitude plant communities. Data points represent individuals, and each colored point represents different species. Red line indicates the mean response across species.
图4 在高海拔植物群落中, 植物雌性适合度与花寿命之间的关系。不同的点代表不同的个体, 不同颜色代表不同的物种。红线表示不同物种的平均响应。
Fig. 4 Relationships between seed set and flower longevity at high altitude plant communities. Data points represent individuals, and each colored point represents different species. Red line indicates the mean response across species.
[1] |
Abdala-Roberts L, Parra-Tabla V, Navarro J ( 2007). Is floral longevity influenced by reproductive costs and pollination success in Cohniella ascendens (Orchidaceae)? Annals of Botany, 100, 1367-1371.
DOI URL PMID |
[2] |
Arista M, Ortiz PL ( 2007). Differential gender selection on floral size: an experimental approach using Cistus salvifolius. Journal of Ecology, 95, 973-982.
DOI URL |
[3] |
Arroyo MTK, Armesto JJ, Primack RB ( 1985). Community studies in pollination ecology in the high temperate Andes of central Chile II. Effect of temperature on visitation rates and pollination possibilities. Plant Systematics and Evolution, 149, 187-203.
DOI URL |
[4] |
Arroyo MTK, Armesto JJ, Villagran C ( 1981). Plant phenological patterns in the high Andean cordillera of central Chile. Journal of Ecology, 69, 205-223.
DOI URL |
[5] |
Arroyo MTK, Dudley LS, Jespersen G, Pacheco DA, Cavieres LA ( 2013). Temperature-driven flower longevity in a high-alpine species of Oxalis influences reproductive assurance. New Phytologist, 200, 1260-1268.
DOI URL |
[6] |
Ashman TL, Schoen DJ ( 1994). How long should flowers live? Nature, 371, 788-791.
DOI URL |
[7] | Ashman TL, Schoen DJ ( 1996). Floral longevity: fitness consequences and resource costs//Lloyd D, Barrett S. Floral Biology: Studies on Floral Evolution in Animal-Pollinated Plants. Springer, New York. 112-139. |
[8] |
Ashman TL, Schoen DJ ( 1997). The cost of floral longevity in Clarkia tembloriensis: an experimental investigation. Evolutionary Ecology, 11, 289-300.
DOI URL |
[9] |
Bauer AA, Clayton MK, Brunet J ( 2017). Floral traits influencing plant attractiveness to three bee species: consequences for plant reproductive success. American Journal of Botany, 104, 772-781.
DOI URL PMID |
[10] |
Blionis GJ, Vokou D ( 2001). Pollination ecology of Campanula species on Mt Olympus, Greece. Ecography, 24, 287-297.
DOI URL |
[11] |
Castro S, Silveira P, Navarro L ( 2008). Effect of pollination on floral longevity and costs of delaying fertilization in the out-crossing Polygala vayredae Costa (Polygalaceae). Annals of Botany, 102, 1043-1048.
DOI URL PMID |
[12] |
Dudash MR, Hassler C, Stevens PM, Fenster CB ( 2011). Experimental floral and inflorescence trait manipulations affect pollinator preference and function in a hummingbird- pollinated plant. American Journal of Botany, 98, 275-282.
DOI URL |
[13] |
Dukas R, Real LA ( 1993). Learning constraints and floral choice behaviour in bumble bees. Animal Behaviour, 46, 637-644.
DOI URL |
[14] |
Evanhoe L, Galloway LF ( 2002). Floral longevity in Campanula americana (Campanulaceae): a comparison of morphological and functional gender phases. American Journal of Botany, 89, 587-591.
DOI URL PMID |
[15] |
Galen C, Newport MEA ( 1987). Bumble bee behavior and selection on flower size in the sky pilot, Polemonium viscosum. Oecologia, 74, 20-23.
DOI URL PMID |
[16] |
Gao J, Xiong YZ, Huang SQ ( 2015). Effects of floral sexual investment and dichogamy on floral longevity. Journal of Plant Ecology, 8, 116-121.
DOI URL |
[17] |
Giblin DE ( 2005). Variation in floral longevity between populations of Campanula rotundifolia (Campanulaceae) in response to fitness accrual rate manipulation. American Journal of Botany, 92, 1714-1722.
DOI URL PMID |
[18] |
Goodwillie C, Sargent RD, Eckert CG, Elle E, Geber MA, Johnston MO, Kalisz S, Moeller DA, Ree RH, Vallejo- Marin M, Winn AA ( 2010). Correlated evolution of mating system and floral display traits in flowering plants and its implications for the distribution of mating system variation. New Phytologist, 185, 311-321.
DOI URL |
[19] |
Harder LD, Johnson SD ( 2009). Darwin’s beautiful contrivances: evolutionary and functional evidence for floral adaptation. New Phytologist, 183, 530-545.
DOI URL |
[20] | He YP, Fei SM, Liu JQ, Chen XM, Wang P, Jiang JM, He F ( 2005). A preliminary review of studies of alpine plant breeding system. Journal of Sichuan Forestry Science and Technology, 26(4), 43-49. |
[ 何亚平, 费世民, 刘建全, 陈秀明, 王鹏, 蒋俊明, 何飞 ( 2005). 高山植物繁育系统研究进展初探. 四川林业科技, 26(4), 43-49.] | |
[21] |
Hegland SJ, Totland Ø ( 2005). Relationships between species’ floral traits and pollinator visitation in a temperate grassland. Oecologia, 145, 586-594.
DOI URL |
[22] | Hu C, Liu ZJ, Wu GQ, Zhao ZG ( 2013). Floral characteristic and breeding system of Anemone obtusiloba. Acta Agrestia Sinica, 21, 783-788. |
[ 胡春, 刘左军, 伍国强, 赵志刚 ( 2013). 钝裂银莲花花部综合特征及其繁育系统. 草地学报, 21, 783-788.]
DOI URL |
|
[23] |
Itagaki T, Sakai S ( 2006). Relationship between floral longevity and sex allocation among flowers within inflorescences in Aquilegia buergeriana var. oxysepala (Ranunculaceae). American Journal of Botany, 93, 1320-1327.
DOI URL PMID |
[24] |
Karron JD, Mitchell RJ ( 2012). Effects of floral display size on male and female reproductive success in Mimulus ringens. Annals of Botany, 109, 563-570.
DOI URL |
[25] |
Lawrence Venable D ( 1992). Size-number trade-offs and the variation of seed size with plant resource status. The American Naturalist, 140, 287-304.
DOI URL |
[26] |
Lázaro A, Jakobsson A, Totland Ø ( 2013). How do pollinator visitation rate and seed set relate to species’ floral traits and community context? Oecologia, 173, 881-893.
DOI URL |
[27] | Meng JL ( 2010). Reproductive Strategies of Three Common Species of Ranunculaceae at Alpine Meadow in Qinghai Tibetan Plateau. PhD dissertation, Lanzhou University, Lanzhou. |
[ 孟金柳 ( 2010). 青藏高原高寒草甸3种常见毛茛科植物繁殖对策的研究. 博士学位论文, 兰州大学, 兰州.] | |
[28] | Muller I, Schmid B, Weiner J ( 2000). The effect of nutrient availability on biomass allocation patterns in 27 species of herbaceous plants. Perspectives in Plant Ecology, Evolution and Systematics, 3, 115-127. |
[29] |
Niu T, Chen LX, Zhou ZJ ( 2004). The characteristics of climate change over the Tibetan Plateau in the last 40 years and the detection of climatic jumps. Advances in Atmospheric Sciences, 21, 193-203.
DOI URL |
[30] |
Primack RB ( 1985). Longevity of individual flowers. Annual Review of Ecology and Systematics, 16, 15-37.
DOI URL |
[31] |
Rathcke BJ ( 2003). Floral longevity and reproductive assurance: seasonal patterns and an experimental test with Kalmia latifolia (Ericaceae). American Journal of Botany, 90, 1328-1332.
DOI URL PMID |
[32] |
Schoen DJ, Ashman TL ( 1995). The evolution of floral longevity: resource allocation to maintenance versus construction of repeated parts in modular organisms. Evolution, 49, 131-139.
DOI URL PMID |
[33] |
Spigler RB ( 2017). Plasticity of floral longevity and floral display in the self-compatible biennial Sabatia angularis (Gentianaceae): untangling the role of multiple components of pollination. Annals of Botany, 119, 167-176.
DOI URL PMID |
[34] |
Spigler RB, Woodard AJ ( 2019). Context-dependency of resource allocation trade-offs highlights constraints to the evolution of floral longevity in a monocarpic herb. New Phytologist, 221, 2298-2307.
DOI URL |
[35] |
Steinacher G, Wagner J ( 2010). Flower longevity and duration of pistil receptivity in high mountain plants. Flora, 205, 376-387.
DOI URL |
[36] |
Stratton DA ( 1989). Longevity of individual flowers in a Costa Rican cloud forest: ecological correlates and phylogenetic constraints. Biotropica, 21, 308-318.
DOI URL |
[37] |
Teixido AL, Valladares F ( 2014). Disproportionate carbon and water maintenance costs of large corollas in hot Mediterranean ecosystems. Perspectives in Plant Ecology Evolution and Systematics, 16, 83-92.
DOI URL |
[38] |
Teixido AL, Valladares F ( 2015). Temperature-limited floral longevity in the large-flowered Mediterranean shrub Cistus ladanifer (Cistaceae). International Journal of Plant Sciences, 176, 131-140.
DOI URL |
[39] |
Totland R, Sottocornola M ( 2001). Pollen limitation of reproductive success in two sympatric alpine willows (Salicaceae) with contrasting pollination strategies. American Journal of Botany, 88, 1011-1015.
URL PMID |
[40] |
Trunschke J, Stöcklin J ( 2017). Plasticity of flower longevity in alpine plants is increased in populations from high elevation compared to low elevation populations. Alpine Botany, 127, 41-51.
DOI URL |
[41] |
Wang YX, Liu ZJ, Zhao ZG, Hou M, Zhang XR, Lü WL ( 2018). Responses of floral longevity to pollination environments in 11 species from two alpine meadows. Biodiversity Science, 26, 510-518.
DOI URL |
[ 王玉贤, 刘左军, 赵志刚, 侯盟, 张小瑞, 吕婉灵 ( 2018). 青藏高原高寒草甸植物花寿命对传粉环境的响应. 生物多样性, 26, 510-518.]
DOI URL |
|
[42] |
Zhang FP, Yang YJ, Yang QY, Zhang W, Brodribb TJ, Hao GY, Hu H, Zhang SB ( 2017). Floral mass per area and water maintenance traits are correlated with floral longevity in Paphiopedilum (Orchidaceae). Frontiers in Plant Science, 8, 501. DOI: 10.3389/fpls.2017.00501.
DOI URL PMID |
[43] | Zhang J ( 2013). Study on Reproductive Biology of Taraxacum species in Northeast China. PhD dissertation, Shenyang Agricultural University, Shenyang. |
[ 张建 ( 2013). 蒲公英属植物繁殖生物学研究. 博士学位论文, 沈阳农业大学, 沈阳.] | |
[44] |
Zhang ZQ, Zhang YH, Sun H ( 2011). The reproductive biology of Stellera chamaejasme (Thymelaeaceae): a self-incompatible weed with specialized flowers. Flora, 206, 567-574.
DOI URL |
[45] | Zhao ZG, Du GZ ( 2003). Characteristics of the mating system and strategies for resource allocation in Ranunculaceae. Journal of Lanzhou University (Natural Science), 39, 70-74. |
[ 赵志刚, 杜国祯 ( 2003). 毛茛科植物交配系统的特征与花期资源分配对策. 兰州大学学报(自然科学版), 39, 70-74.] | |
[46] |
Zhao ZG, Hou M, Wang YJ, Du GZ ( 2020). Phenological variation of flower longevity and duration of sex phases in a protandrous alpine plant: potential causes and fitness significance. BMC Plant Biology, 20, 137.
DOI URL PMID |
[47] |
Zhao ZG, Wang YK ( 2015). Selection by pollinators on floral traits in generalized Trollius ranunculoides (Ranunculaceae) along altitudinal gradients. PLOS ONE, 10, e0118299. DOI: 10.1371/journal.pone.0118299.
DOI URL PMID |
[48] | Zhu WQ, Chen LX, Zhou ZJ (2001). Several characteristics of contemporary climate change in the Tibetan Plateau. Science in China Series D: Earth Sciences, 44, 410-420. |
[49] | Zuur AF, Ieno EN, Walker N, Saveliev AA, Smith GM (2009). Mixed Effects Models and Extensions in Ecology with R. Springer, New York. |
[1] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[2] | 孙佳慧, 史海兰, 陈科宇, 纪宝明, 张静. 植物细根功能性状的权衡关系研究进展[J]. 植物生态学报, 2023, 47(8): 1055-1070. |
[3] | 师生波, 周党卫, 李天才, 德科加, 杲秀珍, 马家麟, 孙涛, 王方琳. 青藏高原高山嵩草光合功能对模拟夜间低温的响应[J]. 植物生态学报, 2023, 47(3): 361-373. |
[4] | 李耀琪, 王志恒. 植物功能生物地理学的研究进展与展望[J]. 植物生态学报, 2023, 47(2): 145-169. |
[5] | 和璐璐, 张萱, 章毓文, 王晓霞, 刘亚栋, 刘岩, 范子莹, 何远洋, 席本野, 段劼. 辽东山区不同坡向长白落叶松人工林树冠特征与林木生长关系[J]. 植物生态学报, 2023, 47(11): 1523-1539. |
[6] | 师生波, 师瑞, 周党卫, 张雯. 低温对高山嵩草叶片光化学和非光化学能量耗散特征的影响[J]. 植物生态学报, 2023, 47(10): 1441-1452. |
[7] | 林马震, 黄勇, 李洋, 孙建. 高寒草地植物生存策略地理分布特征及其影响因素[J]. 植物生态学报, 2023, 47(1): 41-50. |
[8] | 朱玉英, 张华敏, 丁明军, 余紫萍. 青藏高原植被绿度变化及其对干湿变化的响应[J]. 植物生态学报, 2023, 47(1): 51-64. |
[9] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[10] | 金伊丽, 王皓言, 魏临风, 侯颖, 胡景, 吴铠, 夏昊钧, 夏洁, 周伯睿, 李凯, 倪健. 青藏高原植物群落样方数据集[J]. 植物生态学报, 2022, 46(7): 846-854. |
[11] | 程思祺, 姜峰, 金光泽. 温带森林阔叶植物幼苗叶经济谱及其与防御性状的关系[J]. 植物生态学报, 2022, 46(6): 678-686. |
[12] | 翟江维, 林馨慧, 武瑞哲, 徐义昕, 靳豪豪, 金光泽, 刘志理. 小兴安岭不同功能型阔叶植物的柄叶权衡[J]. 植物生态学报, 2022, 46(6): 700-711. |
[13] | 卢晶, 马宗祺, 高鹏斐, 樊宝丽, 孙坤. 祁连山区演替先锋物种西藏沙棘的种群结构及动态对海拔梯度的响应[J]. 植物生态学报, 2022, 46(5): 569-579. |
[14] | 胡潇飞, 魏临风, 程琦, 吴星麒, 倪健. 青藏高原地区气候图解数据集[J]. 植物生态学报, 2022, 46(4): 484-492. |
[15] | 吴赞, 彭云峰, 杨贵彪, 李秦鲁, 刘洋, 马黎华, 杨元合, 蒋先军. 青藏高原高寒草地退化对土壤及微生物化学计量特征的影响[J]. 植物生态学报, 2022, 46(4): 461-472. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19