植物生态学报 ›› 2023, Vol. 47 ›› Issue (1): 41-50.DOI: 10.17521/cjpe.2022.0123
所属专题: 青藏高原植物生态学:种群生态学
收稿日期:
2022-04-07
接受日期:
2022-07-05
出版日期:
2023-01-20
发布日期:
2022-08-20
通讯作者:
*黄勇(Huang Y, huangyong@ynu.edu.cn);孙建(sunjian@itpcas.ac.cn)
基金资助:
LIN Ma-Zhen1,2, HUANG Yong1,*(), LI Yang3, SUN Jian2,*()
Received:
2022-04-07
Accepted:
2022-07-05
Online:
2023-01-20
Published:
2022-08-20
Contact:
*HUANG Yong(Huang Y, huangyong@ynu.edu.cn);SUN Jian(sunjian@itpcas.ac.cn)
Supported by:
摘要:
植物性状能够反映植物的生存策略, 是植物生态学的研究热点之一。植物CSR策略模型将植物物种分为3类: 在资源丰富环境中能够最大程度提高生物量的物种(竞争型物种: C策略); 在干扰频率较高的环境中能够快速摄取资源并繁殖的物种(投机取巧型物种: R策略); 在资源贫瘠环境中能够保持个体生存的物种(耐受型物种: S策略)。植物叶片性状对环境梯度具有适应性的改变, 性状的改变对植物生存策略产生影响, 但是青藏高原植物叶片性状是如何影响植物CSR生存策略的, 其机制尚不清楚。该研究探究了高寒草地植物CSR生存策略的分布特征, 以及环境因子对CSR生存策略的影响机制。2020年7-8月, 对青藏高原高寒草地53个样点进行了调查, 测定植物叶片叶面积、叶片鲜质量和叶片干质量等性状, 并计算C、S、R值。然后, 分析关键地理环境要素对植物CSR策略影响的主要因子和作用机理。结果表明: (1)在青藏高原高寒草地, 植物的生存策略主要以S策略(41.6%-96.7%)为主。(2)随着经度的增加, 青藏高原高寒草地C策略植物所占比例自西向东逐渐上升; 在海拔梯度上, 高寒草地C策略植物所占比例随着海拔的升高而降低。(3)随机森林分析结果显示降水量对C策略的贡献率最高(25.74%), 海拔对S策略的贡献率最高(27.34%); 分析气候因子对植物性状的影响发现降水量和温度只对叶面积产生显著影响, 且叶片含水量对植物C、S策略具有显著效应。综合而言, 研究发现降水量是影响植物CSR生存策略最关键的因子, 这对于研究高寒草地植物对环境梯度的生态适应具有十分重要的意义。
林马震, 黄勇, 李洋, 孙建. 高寒草地植物生存策略地理分布特征及其影响因素. 植物生态学报, 2023, 47(1): 41-50. DOI: 10.17521/cjpe.2022.0123
LIN Ma-Zhen, HUANG Yong, LI Yang, SUN Jian. Geographical distribution characteristics and influencing factors of plant survival strategies in an alpine grassland. Chinese Journal of Plant Ecology, 2023, 47(1): 41-50. DOI: 10.17521/cjpe.2022.0123
图2 青藏高原高寒草地常见植物的CSR策略图。C, 竞争型; S, 忍受型; R, 投机取巧型。圆圈大小代表叶片干物质含量。
Fig. 2 CSR strategy of common species in alpine grassland on the Qingzang Plateau. C, competitor; S, stress-tolerator; R, ruderal. Size of the circle represents the leaf dry matter content.
图3 青藏高原高寒草地常见植物C策略(A)和S策略(B)与各环境因子的相关性热度图。*, p < 0.05; **, p < 0.01。AI, 干旱指数; Alt, 海拔; C, 竞争型; Lat, 纬度; Lon, 经度; Pre, 降水量; S, 忍受型; Tem, 温度。
Fig. 3 Heat map of the correlation between C (A) and S (B) strategies and environmental factors in alpine grassland on the Qingzang Plateau. *, p < 0.05; **, p < 0.01. AI, aridity index; Alt, altitude; C, competitor; Lat, latitude; Lon, longitude; Pre, precipitation; S, stress-tolerator; Tem, temperature.
图4 青藏高原高寒草地环境因子对C策略(A)、S策略(B)的相对重要性分析。AI, 干旱指数; Alt, 海拔; C, 竞争型; Lat, 纬度; Lon, 经度; Pre, 降水量; S, 忍受型; Tem, 温度。
Fig. 4 Relative importance of effect of environmental factors on C (A) and S (B) strategies in alpine grassland on the Qingzang Plateau. AI, aridity index; Alt, altitude; C, competitor; Lat, latitude; Lon, longitude; Pre, precipitation; S, stress-tolerator; Tem, temperature.
图5 青藏高原高寒草地海拔(A)、降水量(B)、经度(C)、温度(D)对C策略的影响。C, 竞争型。
Fig. 5 Effects of altitude (A), precipitation (B), longitude (C), temperature (D) on C-strategy in alpine grassland on the Qingzang Plateau. C, competitor.
图6 青藏高原高寒草地海拔(A)、经度(B)、温度(C)对S策略的影响。S, 忍受型。
Fig. 6 Effects of altitude (A), longitude (B), temperature (C) on S-strategy in alpine grassland on the Qingzang Plateau. S, stress-tolerator.
图7 青藏高原高寒草地经度对降水量(A)和海拔对温度(B)的影响。
Fig. 7 Effects of longitude on precipitation (A) and altitude on temperature (B) in the alpine grassland on the Qingzang Plateau.
图8 青藏高原高寒草地植物C、S策略分别与叶面积(A、B)和叶片含水量(C、D)以及叶面积与降水量(E)和温度(F)之间的相关性分析。C, 竞争型; S, 忍受型。
Fig. 8 Correlation analysis of C and S strategies on leaf area (A, B) and leaf water content (C, D), respectively, and leaf area on precipitation (E) and temperature (F) in the alpine grassland on the Qingzang Plateau. C, competitor; S, stress-tolerator.
[1] |
Behroozian M, Ejtehadi H, Memariani F, Pierce S, Mesdaghi M (2020). Are endemic species necessarily ecological specialists? Functional variability and niche differentiation of two threatened Dianthus species in the montane steppes of northeastern Iran. Scientific Reports, 10, 11774. DOI: 10.1038/s41598-020-68618-7.
DOI |
[2] |
Caccianiga M, Luzzaro A, Pierce S, Ceriani RM, Cerabolini B (2006). The functional basis of a primary succession resolved by CSR classification. Oikos, 112, 10-20.
DOI URL |
[3] |
Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12, 351-366.
DOI PMID |
[4] | Chen L (2015). Response of Leaf Traits at Species and Functional Group Levels to Simulated Nitrogen Deposition and Precipitation Additions in a Stipa baicalensis Meadow Steppe. Master degree dissertation, Northeast Normal University, Changchun. |
[ 陈利 (2015). 贝加尔针茅草甸草原主要植物与功能群的叶片性状对增氮增雨的响应. 硕士学位论文, 东北师范大学, 长春.] | |
[5] |
Cross EL, Green PT, Morgan JW (2015). A plant strategy approach to understand multidecadal change in community assembly processes in Australian grassy woodlands. Journal of Ecology, 103, 1300-1307.
DOI URL |
[6] |
Davison J, García de León D, Zobel M, Moora M, Bueno CG, Barceló M, Gerz M, León D, Meng YM, Pillar VD, Sepp SK, Soudzilovaskaia NA, Tedersoo L, Vaessen S, Vahter T, et al. (2020). Plant functional groups associate with distinct arbuscular mycorrhizal fungal communities. New Phytologist, 226, 1117-1128.
DOI PMID |
[7] |
Ferré C, Caccianiga M, Zanzottera M, Comolli R (2020). Soil-plant interactions in a pasture of the Italian Alps. Journal of Plant Interactions, 15, 39-49.
DOI URL |
[8] |
Garnier E, Laurent G, Bellmann A, Debain S, Berthelier P, Ducout B, Roumet C, Navas ML (2001). Consistency of species ranking based on functional leaf traits. New Phytologist, 152, 69-83.
DOI PMID |
[9] |
Godoy O, Valladares F, Castro-Díez P (2011). Multispecies comparison reveals that invasive and native plants differ in their traits but not in their plasticity. Functional Ecology, 25, 1248-1259.
DOI URL |
[10] |
Grime JP (1977). Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. The American Naturalist, 111, 1221-1226.
DOI URL |
[11] |
He NP, Li Y, Liu CC, Xu L, Li MX, Zhang JH, He JS, Tang ZY, Han XG, Ye Q, Xiao CW, Yu Q, Liu SR, Sun W, Niu SL, et al. (2020). Plant trait networks: improved resolution of the dimensionality of adaptation. Trends in Ecology & Evolution, 35, 908-918.
DOI URL |
[12] |
Holmgren M, Pooter L (2007). Does a ruderal strategy dominate the endemic flora of the West African forests? Journal of Biogeography, 34, 1100-1111.
DOI URL |
[13] | Li Y, Wang Y, Han GD, Sun J, Wang YF (2022). Soil microbial biomass carbon and nitrogen levels and their controlling factors in alpine grassland, Qinghai-Tibet Plateau. Acta Prataculturae Sinica, 31, 50-60. |
[ 李洋, 王毅, 韩国栋, 孙建, 汪亚峰 (2022). 青藏高原高寒草地土壤微生物量碳氮含量特征及其控制要素. 草业学报, 31, 50-60.] | |
[14] |
Li YH, Lu Q, Wu B, Zhu YJ, Liu DJ, Zhang JX, Jin ZH (2012). A review of leaf morphology plasticity linked to plant response and adaptation characteristics in arid ecosystems. Chinese Journal of Plant Ecology, 36, 88-98.
DOI URL |
[ 李永华, 卢琦, 吴波, 朱雅娟, 刘殿君, 张金鑫, 靳占虎 (2012). 干旱区叶片形态特征与植物响应和适应的关系. 植物生态学报, 36, 88-98.]
DOI |
|
[15] |
Li YZ, Shipley B (2017). An experimental test of CSR theory using a globally calibrated ordination method. PLOS ONE, 12, e0175404. DOI: 10.1371/journal.pone.0175404.
DOI |
[16] |
Liao HX, Li DJ, Zhou T, Huang B, Zhang HJ, Chen BM, Peng SL (2021). The role of functional strategies in global plant distribution. Ecography, 44, 493-503.
DOI URL |
[17] | Ma BB, Sun J, Zhu JT, Luo GX (2018). Carbon and nitrogen stoichiometry of plant community and its influencing factors in a northern Tibet alpine grassland. Chinese Journal of Ecology, 37, 1026-1036. |
[ 马百兵, 孙建, 朱军涛, 罗广祥 (2018). 藏北高寒草地植物群落C、N化学计量特征及其影响因素. 生态学杂志, 37, 1026-1036.] | |
[18] | Ma JY, Fang XW, Xia DS, Duan ZH, Chen FH, Wang G (2008). Correlations between meteorological factors and leaf element contents in desert plant Reaumuria soongorica. Journal of Plant Ecology (Chinese Version), 32, 848-857. |
[ 马剑英, 方向文, 夏敦胜, 段争虎, 陈发虎, 王刚 (2008). 荒漠植物红砂叶片元素含量与气候因子的关系. 植物生态学报, 32, 848-857.]
DOI |
|
[19] |
Matos IS, Eller CB, Oliveras I, Mantuano D, Rosado BHP (2021). Three eco-physiological strategies of response to drought maintain the form and function of a tropical montane grassland. Journal of Ecology, 109, 327-341.
DOI URL |
[20] |
Nastos PT, Politi N, Kapsomenakis J (2013). Spatial and temporal variability of the Aridity Index in Greece. Atmospheric Research, 119, 140-152.
DOI URL |
[21] | Piao SL, Fang JY, He JS, Xiao Y (2004). Spatial distribution of grassland biomass in China. Acta Phytoecologica Sinica, 28, 491-498. |
[ 朴世龙, 方精云, 贺金生, 肖玉 (2004). 中国草地植被生物量及其空间分布格局. 植物生态学报, 28, 491-498.]
DOI |
|
[22] |
Pierce S, Negreiros D, Cerabolini BEL, Kattge J, Díaz S, Kleyer M, Shipley B, Wright SJ, Soudzilovskaia NA, Onipchenko VG, van Bodegom PM, Frenette-Dussault C, Weiher E, Pinho BX, Cornelissen JHC, et al. (2017). A global method for calculating plant CSR ecological strategies applied across biomes world-wide. Functional Ecology, 31, 444-457.
DOI URL |
[23] |
Quan Q, Tian DS, Luo YQ, Zhang FY, Crowther TW, Zhu K, Chen HYH, Zhou QP, Niu SL (2019). Water scaling of ecosystem carbon cycle feedback to climate warming. Science Advances, 5, eaav1131. DOI: 10.1126/sciadv.aav1131.
DOI |
[24] |
Reich PB (2014). The world-wide “fast-slow” plant economics spectrum: a traits manifesto. Journal of Ecology, 102, 275-301.
DOI URL |
[25] |
Sun J, Liu GH (2021). Alpine grassland on the Qingzang Plateau: pattern and process. Chinese Journal of Plant Ecology, 45, 429-433.
DOI URL |
[ 孙建, 刘国华 (2021). 青藏高原高寒草地: 格局与过程. 植物生态学报, 45, 429-433.] | |
[26] |
Sun J, Liu M, Fu BJ, Kemp D, Zhao WW, Liu GH, Han GD, Wilkes A, Lu XY, Chen YC, Cheng GW, Zhou TC, Hou G, Zhan TY, Peng F, et al. (2020b). Reconsidering the efficiency of grazing exclusion using fences on the Tibetan Plateau. Science Bulletin, 65, 1405-1414.
DOI URL |
[27] |
Sun J, Wang Y, Liu GH (2021). Linkages of aboveground plant carbon accumulation rate with ecosystem multifunctionality in alpine grassland, Qingzang Plateau. Chinese Journal of Plant Ecology, 45, 496-506.
DOI URL |
[ 孙建, 王毅, 刘国华 (2021). 青藏高原高寒草地地上植物碳积累速率对生态系统多功能性的影响机制. 植物生态学报, 45, 496-506.] | |
[28] |
Sun J, Zhou TC, Liu M, Chen YC, Liu GH, Xu M, Shi PL, Peng F, Tsunekawa A, Liu Y, Wang XD, Dong SK, Zhang YJ, Li YN (2020a). Water and heat availability are drivers of the aboveground plant carbon accumulation rate in alpine grasslands on the Tibetan Plateau. Global Ecology and Biogeography, 29, 50-64.
DOI URL |
[29] |
Timmermann A, Damgaard C, Strandberg MT, Svenning JC (2015). Pervasive early 21st-century vegetation changes across Danish semi-natural ecosystems: more losers than winners and a shift towards competitive, tall-growing species. Journal of Applied Ecology, 52, 21-30.
DOI URL |
[30] |
Wang CS, Wang SP (2015). A review of research on responses of leaf traits to climate change. Chinese Journal of Plant Ecology, 39, 206-216.
DOI URL |
[ 王常顺, 汪诗平 (2015). 植物叶片性状对气候变化的响应研究进展. 植物生态学报, 39, 206-216.]
DOI |
|
[31] | Wang RL, Yu GR, He NP, Wang QF, Zhao N, Xu ZW (2016). Altitudinal variation in the covariation of stomatal traits with leaf functional traits in Changbai Mountain. Acta Ecologica Sinica, 36, 2175-2184. |
[ 王瑞丽, 于贵瑞, 何念鹏, 王秋凤, 赵宁, 徐志伟 (2016). 气孔特征与叶片功能性状之间关联性沿海拔梯度的变化规律——以长白山为例. 生态学报, 36, 2175-2184.] | |
[32] | Wang XD, Cheng GW, Zhao T, Zhang XZ, Zhu LP, Huang L (2017). Assessment on protection and construction of ecological safety shelter for Tibet. Bulletin of Chinese Academy of Sciences, 32, 29-34. |
[ 王小丹, 程根伟, 赵涛, 张宪洲, 朱立平, 黄麟 (2017). 西藏生态安全屏障保护与建设成效评估. 中国科学院院刊, 32, 29-34.] | |
[33] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
DOI |
[34] | Yang B, Wang JC, Zhang YB (2010). Effect of long-term warming on growth and biomass allocation of Abies faxoniana seedlings. Acta Ecologica Sinica, 30, 5994-6000. |
[ 杨兵, 王进闯, 张远彬 (2010). 长期模拟增温对岷江冷杉幼苗生长与生物量分配的影响. 生态学报, 30, 5994-6000.] | |
[35] |
Yang DC, Hu L, Song XY, Wang CT (2021). Effects of changing precipitation on litter quality and decomposition of different plant functional groups in an alpine meadow. Chinese Journal of Plant Ecology, 45, 1314-1328.
DOI URL |
[ 杨德春, 胡雷, 宋小艳, 王长庭 (2021). 降雨变化对高寒草甸不同植物功能群凋落物质量及其分解的影响. 植物生态学报, 45, 1314-1328.]
DOI |
|
[36] |
Yang JH, Li YN, Bu HY, Zhang ST, Qi W (2019). Response of leaf traits of common broad-leaved woody plants to environmental factors on the eastern Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 43, 863-876.
DOI URL |
[ 杨继鸿, 李亚楠, 卜海燕, 张世挺, 齐威 (2019). 青藏高原东缘常见阔叶木本植物叶片性状对环境因子的响应. 植物生态学报, 43, 863-876.]
DOI |
|
[37] | Zheng D, Zhao DS (2017). Characteristics of natural environment of the Tibetan Plateau. Science & Technology Review, 35(6), 13-22. |
[ 郑度, 赵东升 (2017). 青藏高原的自然环境特征. 科技导报, 35(6), 13-22.] | |
[38] |
Zhou TC, Hou G, Sun J, Zong N, Shi PL (2021a). Degradation shifts plant communities from S- to R-strategy in an alpine meadow, Tibetan Plateau. Science of the Total Environment, 800, 149572. DOI: 10.1016/j.scitotenv.2021.149572.
DOI |
[39] |
Zhou TC, Sun J, Liu M, Shi PL, Zhang XB, Sun W, Yang G, Tsunekawa A (2020). Coupling between plant nitrogen and phosphorus along water and heat gradients in alpine grassland. Science of the Total Environment, 701, 134660. DOI: 10.1016/j.scitotenv.2019.134660.
DOI |
[40] |
Zhou TC, Sun J, Shi PL (2021b). Plant-microbe interactions regulate the aboveground community nitrogen accumulation rate in different environmental conditions on the Tibetan Plateau. Catena, 204, 105407. DOI: 10.1016/j.catena.2021.105407.
DOI |
[1] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[2] | 师生波, 周党卫, 李天才, 德科加, 杲秀珍, 马家麟, 孙涛, 王方琳. 青藏高原高山嵩草光合功能对模拟夜间低温的响应[J]. 植物生态学报, 2023, 47(3): 361-373. |
[3] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[4] | 师生波, 师瑞, 周党卫, 张雯. 低温对高山嵩草叶片光化学和非光化学能量耗散特征的影响[J]. 植物生态学报, 2023, 47(10): 1441-1452. |
[5] | 朱玉英, 张华敏, 丁明军, 余紫萍. 青藏高原植被绿度变化及其对干湿变化的响应[J]. 植物生态学报, 2023, 47(1): 51-64. |
[6] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[7] | 董全民, 赵新全, 刘玉祯, 冯斌, 俞旸, 杨晓霞, 张春平, 曹铨, 刘文亭. 放牧方式影响高寒草地矮生嵩草种子大小与数量的关系[J]. 植物生态学报, 2022, 46(9): 1018-1026. |
[8] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[9] | 金伊丽, 王皓言, 魏临风, 侯颖, 胡景, 吴铠, 夏昊钧, 夏洁, 周伯睿, 李凯, 倪健. 青藏高原植物群落样方数据集[J]. 植物生态学报, 2022, 46(7): 846-854. |
[10] | 李露, 金光泽, 刘志理. 阔叶红松林3种阔叶树种柄叶性状变异与相关性[J]. 植物生态学报, 2022, 46(6): 687-699. |
[11] | 卢晶, 马宗祺, 高鹏斐, 樊宝丽, 孙坤. 祁连山区演替先锋物种西藏沙棘的种群结构及动态对海拔梯度的响应[J]. 植物生态学报, 2022, 46(5): 569-579. |
[12] | 胡潇飞, 魏临风, 程琦, 吴星麒, 倪健. 青藏高原地区气候图解数据集[J]. 植物生态学报, 2022, 46(4): 484-492. |
[13] | 吴赞, 彭云峰, 杨贵彪, 李秦鲁, 刘洋, 马黎华, 杨元合, 蒋先军. 青藏高原高寒草地退化对土壤及微生物化学计量特征的影响[J]. 植物生态学报, 2022, 46(4): 461-472. |
[14] | 陈丽, 田新民, 任正炜, 董六文, 谢晨笛, 周小龙. 养分添加对天山高寒草地植物多样性和地上生物量的影响[J]. 植物生态学报, 2022, 46(3): 280-289. |
[15] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19