植物生态学报 ›› 2022, Vol. 46 ›› Issue (4): 416-427.DOI: 10.17521/cjpe.2021.0169
收稿日期:
2021-05-06
接受日期:
2021-11-17
出版日期:
2022-04-20
发布日期:
2022-01-30
通讯作者:
王琼
作者简介:
*(wangqiong@cwnu.edu.cn)基金资助:
ZHONG Nan-Die, WANG Li, XIAO Jie, WANG Qiong*()
Received:
2021-05-06
Accepted:
2021-11-17
Online:
2022-04-20
Published:
2022-01-30
Contact:
WANG Qiong
Supported by:
摘要:
花粉来源影响着植物的生殖成功和种群的遗传结构, 母体效应则有利于子代适应母代经历的环境。然而, 气候变暖背景下, 花粉来源联合母体效应对植物生殖成功的影响仍不明了。该研究以兼性异交的中国特有植物红雉凤仙花(Impatiens oxyanthera)为研究对象, 采用双因素随机区组设计, 设置母代增温(+0 ℃和+2 ℃)嵌套子代增温(+0 ℃、+2 ℃和+4 ℃)共6种实验处理, 探讨不同母代增温条件下子代增温对红雉凤仙花花粉来源限制的影响。结果显示: 红雉凤仙花异交的结实率和种子数均高于自交的相应值, 且随着子代增温幅度提升, 这2个值均呈现不同程度降低, 特别是自交结实率和种子数随子代增温明显降低, 而母代增温则减缓了自交引起的生殖成功率降低的效应。上述结果说明, 红雉凤仙花异交生殖成功率大于自交。子代增温显著降低了兼性异交植物自交的适合度, 母代增温可以减缓这种不利影响, 从而表现出对增温的跨代适应性。
钟楠蝶, 王力, 肖杰, 王琼. 增温条件下花粉来源对红雉凤仙花生殖成功的影响. 植物生态学报, 2022, 46(4): 416-427. DOI: 10.17521/cjpe.2021.0169
ZHONG Nan-Die, WANG Li, XIAO Jie, WANG Qiong. Effect of pollen source on reproductive success of Impatiens oxyanthera under warming conditions. Chinese Journal of Plant Ecology, 2022, 46(4): 416-427. DOI: 10.17521/cjpe.2021.0169
图1 模拟增温期间3个子代增温处理的日平均气温变化。O0, 子代+0 ℃; O2, 子代+2 ℃; O4, 子代+4 ℃。
Fig. 1 Daily mean air temperature changes of three temperature treatments in offspring generation during artificial warming. O0, warmed 0 °C in the offspring generation; O2, warmed 2 °C in the offspring generation; O4, warmed 4 °C in the offspring generation.
图2 2019年部分混合授粉(A)和2020年单一授粉(B)示意图。空心圆圈和NP代表自然授粉, 灰色圆圈和CP代表异株异花授粉, 黑色圆圈和SP代表同株异花授粉。
Fig. 2 Schematic diagram of partial mixed pollination in 2019 (A) and single pollination in 2020 (B). Hollow circles and NP represent natural pollination, grey circles and CP represent cross-pollination, and black circles and SP represent self-pollination.
实验处理 Experimental treatment | 2019 | 2020 |
---|---|---|
母代增温 Warming treatments in the parental generations | 1.350 (0.246) | 0.236 (0.628) |
子代增温 Warming treatments in the offspring generations | 2.286 (0.103) | 2.169 (0.119) |
花粉来源 Pollen source | 16.528 (<0.001) | 8.963 (<0.001) |
母代增温×子代增温 Warming treatments in the parental generations × warming treatments in the offspring generations | 2.222 (0.110) | 1.647 (0.197) |
母代增温×花粉来源 Warming treatments in the parental generations × pollen source | 0.245 (0.783) | 5.957 (0.003) |
子代增温×花粉来源 Warming treatments in the offspring generations × pollen source | 1.687 (0.153) | 0.098 (0.983) |
母代增温×子代增温×花粉来源 Warming treatments in the parental generations × warming treatments in the offspring generations × pollen source | 0.175 (0.951) | 3.366 (0.012) |
表1 母代增温、子代增温和花粉来源对红雉凤仙花结实率的影响(三因素方差分析)
Table 1 Effects of warming treatments in the parental and offspring generations and pollen source on seed set of Impatiens oxyanthera (three-way ANOVA)
实验处理 Experimental treatment | 2019 | 2020 |
---|---|---|
母代增温 Warming treatments in the parental generations | 1.350 (0.246) | 0.236 (0.628) |
子代增温 Warming treatments in the offspring generations | 2.286 (0.103) | 2.169 (0.119) |
花粉来源 Pollen source | 16.528 (<0.001) | 8.963 (<0.001) |
母代增温×子代增温 Warming treatments in the parental generations × warming treatments in the offspring generations | 2.222 (0.110) | 1.647 (0.197) |
母代增温×花粉来源 Warming treatments in the parental generations × pollen source | 0.245 (0.783) | 5.957 (0.003) |
子代增温×花粉来源 Warming treatments in the offspring generations × pollen source | 1.687 (0.153) | 0.098 (0.983) |
母代增温×子代增温×花粉来源 Warming treatments in the parental generations × warming treatments in the offspring generations × pollen source | 0.175 (0.951) | 3.366 (0.012) |
图3 2019年母代增温和子代增温对红雉凤仙花结实率的影响(平均值±标准误)。不同大写字母代表3种子代增温处理之间平均值差异显著(p < 0.05); 不同小写字母代表同一子代增温条件下不同授粉处理之间的差异显著(p < 0.05)。M0, 母代+0 ℃。M2, 母代+2 ℃。O0, 子代+0 ℃; O2, 子代+2 ℃; O4, 子代+4 ℃。CP, 异株异花授粉; NP, 自然授粉; SP, 同株异花授粉。
Fig. 3 Effects of warming treatments in the parental and offspring generations on seed set of Impatiens oxyanthera in 2019 (mean ± SE). Different uppercase letters represent significant difference among three warming treatments in the offspring generation (p < 0.05); different lowercase letters represent significant differences between different pollination treatments under the same warming treatments in the offspring generation (p < 0.05). M0, warmed 0 °C in the parental generation. M2, warmed 2 °C in the parental generation. O0, warmed 0 °C in the offspring generation; O2, warmed 2 °C in the offspring generation; O4, warmed 4 °C in the offspring generation. CP, cross-pollination; NP, natural pollination; SP, self-pollination.
图4 2020年母代增温和子代增温对红雉凤仙花结实率的影响(平均值±标准误)。相同大写字母代表3种子代增温处理之间的平均值差异不显著(p ≥ 0.05); 不同小写字母代表同一子代增温条件下不同授粉处理之间的差异显著(p < 0.05)。M0, 母代+0 ℃。M2, 母代+2 ℃。O0, 子代+0 ℃; O2, 子代+2 ℃; O4, 子代+4 ℃。CP, 异株异花授粉; NP, 自然授粉; SP, 同株异花授粉。
Fig. 4 Effects of warming treatments in the parental and offspring generations on seed set of Impatiens oxyanthera in 2020 (mean ± SE). Same uppercase letters represent no significant difference among three warming treatments in the offspring generation (p ≥ 0.05); different lowercase letters represent significant differences between different pollination treatments under the same warming treatments in the offspring generation (p < 0.05). M0, warmed 0 °C in the parental generation. M2, warmed 2 °C in the parental generation. O0, warmed 0 °C in the offspring generation; O2, warmed 2 °C in the offspring generation; O4, warmed 4 °C in the offspring generation. CP, cross-pollination; NP, natural pollination; SP, self-pollination.
实验处理 Experimental treatment | 2019 | 2020 |
---|---|---|
母代增温 Warming treatments in the parental generations | 0.000 (0.991) | 0.950 (0.332) |
子代增温 Warming treatments in the offspring generations | 3.667 (0.027) | 1.681 (0.191) |
花粉来源 Pollen source | 13.769 (<0.001) | 8.147 (<0.001) |
母代增温×子代增温 Warming treatments in the parental generations × warming treatments in the offspring generations | 3.208 (0.042) | 1.585 (0.209) |
母代增温×花粉来源 Warming treatments in the parental generations × pollen source | 0.214 (0.807) | 4.939 (0.009) |
子代增温×花粉来源 Warming treatments in the offspring generations × pollen source | 1.686 (0.153) | 0.630 (0.642) |
母代增温×子代增温×花粉来源 Warming treatments in the parental generations × warming treatments in the offspring generations × pollen source | 0.602 (0.648) | 2.971 (0.022) |
表2 母代增温、子代增温和花粉来源对红雉凤仙花未受精胚珠数的影响(三因素方差分析)
Table 2 Effects of warming treatments in the parental and offspring generations and pollen source on number of unfertilized ovules of Impatiens oxyanthera (three-way ANOVA)
实验处理 Experimental treatment | 2019 | 2020 |
---|---|---|
母代增温 Warming treatments in the parental generations | 0.000 (0.991) | 0.950 (0.332) |
子代增温 Warming treatments in the offspring generations | 3.667 (0.027) | 1.681 (0.191) |
花粉来源 Pollen source | 13.769 (<0.001) | 8.147 (<0.001) |
母代增温×子代增温 Warming treatments in the parental generations × warming treatments in the offspring generations | 3.208 (0.042) | 1.585 (0.209) |
母代增温×花粉来源 Warming treatments in the parental generations × pollen source | 0.214 (0.807) | 4.939 (0.009) |
子代增温×花粉来源 Warming treatments in the offspring generations × pollen source | 1.686 (0.153) | 0.630 (0.642) |
母代增温×子代增温×花粉来源 Warming treatments in the parental generations × warming treatments in the offspring generations × pollen source | 0.602 (0.648) | 2.971 (0.022) |
图5 2019年母代增温和子代增温对红雉凤仙花未受精胚珠数的影响(平均值±标准误)。不同大写字母代表3种子代增温处理之间的平均值差异显著(p < 0.05); 不同小写字母代表同一子代增温条件下不同授粉处理之间的差异显著(p < 0.05)。M0, 母代+0 ℃。M2, 母代+2 ℃。O0, 子代+0 ℃; O2, 子代+2 ℃; O4, 子代+4 ℃。CP, 异株异花授粉; NP, 自然授粉; SP, 同株异花授粉。
Fig. 5 Effects of warming treatments in the parental and offspring generations on number of unfertilized ovules of Impatiens oxyanthera in 2019 (mean ± SE). Different uppercase letters represent significant difference among three warming treatments in the offspring generation (p < 0.05); different lowercase letters represent significant differences between different pollination treatments under the same warming treatments in the offspring generation (p < 0.05). M0, warmed 0 °C in the parental generation. M2, warmed 2 °C in the parental generation. O0, warmed 0 °C in the offspring generation; O2, warmed 2 °C in the offspring generation; O4, warmed 4 °C in the offspring generation. CP, cross-pollination; NP, natural pollination; SP, self-pollination.
图6 2020年母代增温和子代增温对红雉凤仙花未受精胚珠数的影响(平均值±标准误)。相同大写字母代表3种子代增温处理之间的平均值差异不显著(p ≥ 0.05); 不同小写字母代表同一子代增温条件下不同授粉处理之间的差异显著(p < 0.05)。M0, 母代+0 ℃。M2, 母代+2 ℃。O0, 子代+0 ℃; O2, 子代+2 ℃; O4, 子代+4 ℃。CP, 异株异花授粉; NP, 自然授粉; SP, 同株异花授粉。
Fig. 6 Effects of warming treatments in the parental and offspring generations on number of unfertilized ovules of Impatiens oxyanthera in 2020 (mean ± SE). Same uppercase letters represent no significant difference among three warming treatments in the offspring generation (p ≥ 0.05); different lowercase letters represent significant differences between different pollination treatments under the same warming treatments in the offspring generation (p < 0.05). M0, warmed 0 °C in the parental generation. M2, warmed 2 °C in the parental generation. O0, warmed 0 °C in the offspring generation; O2, warmed 2 °C in the offspring generation; O4, warmed 4 °C in the offspring generation. CP, cross-pollination; NP, natural pollination; SP, self-pollination.
实验处理 Experimental treatment | 2019 | 2020 |
---|---|---|
母代增温 Warming treatments in the parental generations | 1.350 (0.246) | 0.183 (0.669) |
子代增温 Warming treatments in the offspring generations | 2.286 (0.103) | 1.380 (0.256) |
花粉来源 Pollen source | 16.528 (<0.001) | 6.541 (0.002) |
母代增温×子代增温 Warming treatments in the parental generations × warming treatments in the offspring generations | 2.222 (0.110) | 1.265 (0.286) |
母代增温×花粉来源 Warming treatments in the parental generations × pollen source | 0.245 (0.783) | 5.493 (0.005) |
子代增温×花粉来源 Warming treatments in the offspring generations × pollen source | 1.687 (0.153) | 0.167 (0.955) |
母代增温×子代增温×花粉来源 Warming treatments in the parental generations × warming treatments in the offspring generations × pollen source | 0.175 (0.951) | 3.554 (0.009) |
表3 母代增温、子代增温和花粉来源对红雉凤仙花种子数的影响(三因素方差分析)
Table 3 Effects of warming treatments in the parental and offspring generations and pollen source on seed number of Impatiens oxyanthera (three-way ANOVA)
实验处理 Experimental treatment | 2019 | 2020 |
---|---|---|
母代增温 Warming treatments in the parental generations | 1.350 (0.246) | 0.183 (0.669) |
子代增温 Warming treatments in the offspring generations | 2.286 (0.103) | 1.380 (0.256) |
花粉来源 Pollen source | 16.528 (<0.001) | 6.541 (0.002) |
母代增温×子代增温 Warming treatments in the parental generations × warming treatments in the offspring generations | 2.222 (0.110) | 1.265 (0.286) |
母代增温×花粉来源 Warming treatments in the parental generations × pollen source | 0.245 (0.783) | 5.493 (0.005) |
子代增温×花粉来源 Warming treatments in the offspring generations × pollen source | 1.687 (0.153) | 0.167 (0.955) |
母代增温×子代增温×花粉来源 Warming treatments in the parental generations × warming treatments in the offspring generations × pollen source | 0.175 (0.951) | 3.554 (0.009) |
图7 2019年母代增温和子代增温对红雉凤仙花种子数的影响(平均值±标准误)。相同大写字母代表3种子代增温处理之间的平均值差异不显著(p ≥ 0.05); 不同小写字母代表同一子代增温条件下不同授粉处理之间的差异显著(p < 0.05)。M0, 母代+0 ℃。M2, 母代+2 ℃。O0, 子代+0 ℃; O2, 子代+2 ℃; O4, 子代+4 ℃。CP, 异株异花授粉; NP, 自然授粉; SP, 同株异花授粉。
Fig. 7 Effects of warming treatments in the parental and offspring generations on seed number of Impatiens oxyanthera in 2019 (mean ± SE). Same uppercase letters represent no significant difference among three warming treatments in the offspring generation (p ≥ 0.05); different lowercase letters represent significant differences between different pollination treatments under the same warming treatments in the offspring generation (p < 0.05). M0, warmed 0 °C in the parental generation. M2, warmed 2 °C in the parental generation. O0, warmed 0 °C in the offspring generation; O2, warmed 2 °C in the offspring generation; O4, warmed 4 °C in the offspring generation. CP, cross-pollination; NP, natural pollination; SP, self-pollination.
图8 2020年母代增温和子代增温对红雉凤仙花种子数的影响(平均值±标准误)。相同大写字母代表3种子代增温处理之间的平均值差异不显著(p ≥ 0.05); 不同小写字母代表同一子代增温条件下不同授粉处理之间的差异显著(p < 0.05)。M0, 母代+0 ℃。M2, 母代+2 ℃。O0, 子代+0 ℃; O2, 子代+2 ℃; O4, 子代+4 ℃。CP, 异株异花授粉; NP, 自然授粉; SP, 同株异花授粉。
Fig. 8 Effects of warming treatments in the parental and offspring generations on seed number of Impatiens oxyanthera in 2020 (mean ± SE). Same uppercase letters represent no significant difference among three warming treatments in the offspring generation (p ≥ 0.05); different lowercase letters represent significant differences between different pollination treatments under the same warming treatments in the offspring generation (p < 0.05). M0, warmed 0 °C in the parental generation. M2, warmed 2 °C in the parental generation. O0, warmed 0 °C in the offspring generation; O2, warmed 2 °C in the offspring generation; O4, warmed 4 °C in the offspring generation. CP, cross-pollination; NP, natural pollination; SP, self-pollination.
[1] |
Aizen MA, Harder LD (2007). Expanding the limits of the pollen-limitation concept: effects of pollen quantity and quality. Ecology, 88, 271-281.
DOI URL |
[2] | Bell G (1985). On the function of flowers. Proceedings of the Royal Society B: Biological Sciences, 224, 223-265. |
[3] |
Biesmeijer JC, Roberts SPM, Reemer M, Ohlemüller R, Edwards M, Peeters T, Schaffers AP, Potts SG, Kleukers R, Thomas CD, Settele J, Kunin WE (2006). Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science, 313, 351-354.
DOI PMID |
[4] | Blödner C, Goebel C, Feussner I, Gatz C, Polle A (2007). Warm and cold parental reproductive environments affect seed properties, fitness, and cold responsiveness in Arabidopsis thaliana progenies. Plant, Cell & Environment, 30, 165-175. |
[5] | Cai XZ, Liu KM, Cong YY (2012). Floral organogenesis and development of Impatiens longicornuta (Balsaminaceae). Bulletin of Botanical Research, 32, 651-656. |
[ 蔡秀珍, 刘克明, 丛义艳 (2012). 长角凤仙花(凤仙花科)的花器官发生和发育. 植物研究, 32, 651-656.] | |
[6] |
Campbell DR, Bischoff M, Lord JM, Robertson AW (2010). Flower color influences insect visitation in alpine New Zealand. Ecology, 91, 2638-2649.
PMID |
[7] |
Charlesworth D, Charlesworth B (1987). Inbreeding depression and its evolutionary consequences. Annual Review of Ecology and Systematics, 18, 237-268.
DOI URL |
[8] |
Chen M, Zhao XY (2017). Effect of pollen and resource limitation on reproduction of Zygophyllum xanthoxylum in fragmented habitats. Ecology and Evolution, 7, 9076-9084.
DOI PMID |
[9] | Chen YL (2001). Flora Reipublicae Popularis Sinicaae: Tomus 47(2). Science Press, Beijing. 142-143. |
[ 陈艺林 (2001). 中国植物志:第47卷(第二分册). 科学出版社, 北京. 142-143.] | |
[10] |
Cruzan MB, Thomson JD (1997). Effects of pre-dispersal selection on offspring growth and survival in Erythronium grandiflorum. Journal of Evolutionary Biology, 10, 295-314.
DOI URL |
[11] |
Dan YH, Baxter A, Zhang S, Pantazis CJ, Veilleux RE (2010). Development of efficient plant regeneration and transformation system for Impatiens using Agrobacterium tumefaciens and multiple bud cultures as explants. BMC Plant Biology, 10, 165-176.
DOI URL |
[12] |
Diggle PK, Mulder CPH (2019). Diverse developmental responses to warming temperatures underlie changes in flowering phenologies. Integrative and Comparative Biology, 59, 559-570.
DOI URL |
[13] |
Dudash MR (1990). Relative fitness of selfed and outcrossed progeny in a self-compatible, protandrous species, Sabatia angularis L. (Gentianaceae): a comparison in three environments. Evolution, 44, 1129-1139.
DOI URL |
[14] |
Galloway LF, Etterson JR (2007). Transgenerational plasticity is adaptive in the wild. Science, 318, 1134-1136.
PMID |
[15] |
Gillet EM, Gregorius HR (2020). Effects of reproductive resource allocation and pollen density on fertilization success in plants. BMC Ecology, 20, 26. DOI: 10.11861S12898-020-00290-X.
DOI URL |
[16] |
Goodwillie C, Kalisz S, Eckert CG (2005). The evolutionary enigma of mixed mating systems in plants: occurrence, theoretical explanations, and empirical evidence. Annual Review of Ecology, Evolution, and Systematics, 36, 47-79.
DOI URL |
[17] |
Grant-Downton RT, Dickinson HG (2005). Epigenetics and its implications for plant biology. 1. The epigenetic network in plants. Annals of Botany, 96, 1143-1164.
PMID |
[18] | He YP, Liu JQ (2003). A review on recent advances in the studies of plant breeding system. Acta Phytoecologica Sinica, 27, 151-163. |
[ 何亚平, 刘建全 (2003). 植物繁育系统研究的最新进展和评述. 植物生态学报, 27, 151-163.]
DOI |
|
[19] |
Hegland SJ, Nielsen A, Lázaro A, Bjerknes AL, Totland Ø (2009). How does climate warming affect plant-pollinator interactions? Ecology Letters, 12, 184-195.
DOI PMID |
[20] |
Herlihy CR, Eckert CG (2004). Experimental dissection of inbreeding and its adaptive significance in a flowering plant, Aquilegia canadensis (Ranunculaceae). Evolution, 58, 2693-2703.
DOI URL |
[21] |
Herman JJ, Sultan SE (2011). Adaptive transgenerational plasticity in plants: case studies, mechanisms, and implications for natural populations. Frontiers in Plant Science, 2, 102. DOI: 10.3389/fpls.2011.00102.
DOI PMID |
[22] |
Hirayama K, Ishida K, Tomaru N (2005). Effects of pollen shortage and self-pollination on seed production of an endangered tree, Magnolia stellata. Annals of Botany, 95, 1009-1015.
PMID |
[23] | Huang SQ, Guo YH, Chen JK (1998). Pollination rates and pollen tube growth in a vulnerable plant, Liriodendron chinense (Hemsl.) Sarg. (Magnoliaceae). Acta Phytotaxonomica Sinica, 36, 310-316. |
[ 黄双全, 郭友好, 陈家宽 (1998). 渐危植物鹅掌楸的授粉率及花粉管生长. 植物分类学报, 36, 310-316.] | |
[24] |
Husband BC, Schemske DW (1996). Evolution of the magnitude and timing of inbreeding depression in plants. Evolution, 50, 54-70.
DOI PMID |
[25] |
Klinkhamer PGL, van der Lugt PP (2004). Pollinator service only depends on nectar production rates in sparse populations. Oecologia, 140, 491-494.
PMID |
[26] |
Ksiazek K, Fant J, Skogen K (2012). An assessment of pollen limitation on Chicago green roofs. Landscape and Urban Planning, 107, 401-408.
DOI URL |
[27] | Lennartsson T (2002). Extinction thresholds and disrupted plant-pollinator interactions in fragmented plant populations. Ecology, 83, 3060-3072. |
[28] | Li DF (2018). Impact of Nectar Robbing on Female Reproductive Success of Impatiens oxyanthera (Balsaminaceae) Under Simulated Climate Warming. Master degree dissertation, China West Normal University, Nanchong, Sichuan. |
[ 李登飞 (2018). 模拟增温条件下盗蜜对红雉凤仙花雌性生殖成功的影响. 硕士学位论文, 西华师范大学, 四川南充.] | |
[29] | Li YH, Wang Q (2014). Pollen limitation of the seed setting of Impatiens oxyanthera. Journal of Sichuan Forestry Science and Technology, 35(4), 17-22. |
[ 李艳红, 王琼 (2014). 红雉凤仙花结籽的花粉限制. 四川林业科技, 35(4), 17-22.] | |
[30] | Liu L, Wu W, Zheng YL, Huang CY, Liu RJ (2007). Variations on the chemical components of the volatile oil of Houttuynia cordata Thunb. populations from different valleys and altitudes of Mt. Emei. Acta Ecologica Sinica, 27, 2239-2250. |
[ 刘雷, 吴卫, 郑有良, 黄春燕, 刘仁健 (2007). 峨眉山不同山峪和海拔高度鱼腥草(Houttuynia cordata Thunb.)居群挥发油成分的变化. 生态学报, 27, 2239-2250.] | |
[31] |
Liu YZ, Mu JP, Niklas KJ, Li GY, Sun SC (2012). Global warming reduces plant reproductive output for temperate multi-inflorescence species on the Tibetan Plateau. New Phytologist, 195, 427-436.
DOI URL |
[32] |
Lloyd DG, Schoen DJ (1992). Self- and cross-fertilization in plants. I. Functional dimensions. International Journal of Plant Sciences, 153, 358-369.
DOI URL |
[33] |
Lozada-Gobilard S, Weigend M, Fischer E, Janssens SB, Ackermann M, Abrahamczyk S (2019). Breeding systems in Balsaminaceae in relation to pollen/ovule ratio, pollination syndromes, life history and climate zone. Plant Biology, 21, 157-166.
DOI PMID |
[34] | Lu LN, He X, Li QF, Yi J, He JJ (2015). Pollen and resource limitations to lifetime seed production in a wild population of Ceratoides arborescens. Acta Ecologica Sinica, 35, 1706-1712. |
[ 卢立娜, 贺晓, 李青丰, 易津, 何金军 (2015). 华北驼绒藜自然种群结实的花粉和资源限制. 生态学报, 35, 1706-1712.] | |
[35] |
Łubek A, Kukwa M, Jaroszewicz B, Czortek P (2018). Changes in the epiphytic lichen biota of Białowieża Primeval forest are not explained by climate warming. Science of the Total Environment, 643, 468-478.
DOI URL |
[36] |
Lundin O, Raderschall CA (2021). Landscape complexity benefits bumble bee visitation in faba bean (Vicia faba minor L.) but crop productivity is not pollinator-dependent. Agriculture, Ecosystems & Environment, 314, 107417. DOI: 10.1016/j.agee.2021.107417.
DOI URL |
[37] | Luo WH, Ji CH, Liu JL, Cao L, Wang RS, Cheng S, Gao LJ (2019). Study on foraging behavior and effect of pollinations by different bees on Citrus maxima (Burm) Merr. cv. Huangsha Yu. Southwest China Journal of Agricultural Sciences, 32, 1360-1365. |
[ 罗文华, 姬聪慧, 刘佳霖, 曹兰, 王瑞生, 程尚, 高丽娇 (2019). 2种蜂对黄沙白柚的访花行为及授粉效果研究. 西南农业学报, 32, 1360-1365.] | |
[38] | Mao ZB, Boehler C, Ge XJ (2011). Pollination ecology and breeding system of Impatiens lateristachys (Balsaminaceae) endemic to China. Guihaia, 31, 160-166. |
[ 毛志斌, Boehler C, 葛学军 (2011). 侧穗凤仙花的传粉生态和繁育系统. 广西植物, 31, 160-166.] | |
[39] |
Marshall DJ, Uller T (2007). When is a maternal effect adaptive? Oikos, 116, 1957-1963.
DOI URL |
[40] |
McEwan RW, Brecha RJ, Geiger DR, John GP (2011). Flowering phenology change and climate warming in southwestern Ohio. Plant Ecology, 212, 55-61.
DOI URL |
[41] | Ni SS, Peng L, Gao Y (2016). Impacts of tourist disturbance on soil properties and plant communities in Emeishan Mountain scenic region. Chinese Journal of Agricultural Resources and Regional Planning, 37(3), 93-96. |
[ 倪珊珊, 彭琳, 高越 (2016). 旅游干扰对峨眉山风景区土壤及植被的影响. 中国农业资源与区划, 37(3), 93-96.] | |
[42] |
Niesenbaum RA (1999). The effects of pollen load size and donor diversity on pollen performance, selective abortion, and progeny vigor in Mirabilis jalapa (Nyctaginaceae). American Journal of Botany, 86, 261-268.
PMID |
[43] |
Parachnowitsch AL, Kessler A (2010). Pollinators exert natural selection on flower size and floral display in Penstemon digitalis. New Phytologist, 188, 393-402.
DOI PMID |
[44] |
Petanidou T, Smets E (1996). Does temperature stress induce nectar secretion in Mediterranean plants? New Phytologist, 133, 513-518.
DOI URL |
[45] |
Ramsey M, Vaughton G (2000). Pollen quality limits seed set in Burchardia umbellata (Colchicaceae). American Journal of Botany, 87, 845-852.
PMID |
[46] | Ren YQ, Yang Q, Liao YJ, Chen R, Luo YF (2013). Effect of resource limitation and pollen sources on fruit setting rate and fruit characters of Vaccinium ashei. Northern Horticulture, (22), 35-38. |
[ 任永权, 杨芩, 廖优江, 陈容, 罗亚芬 (2013). 资源限制和花粉来源对兔眼蓝莓坐果率和果实性状的影响. 北方园艺, (22), 35-38.] | |
[47] |
Tian JP, Liu KM, Hu GW (2004). Pollination ecology and pollination system of Impatiens reptans (Balsaminaceae) endemic to China. Annals of Botany, 93, 167-175.
DOI URL |
[48] |
Vamosi JC, Knight TM, Steets JA, Mazer SJ, Burd M, Ashman TL (2006). Pollination decays in biodiversity hotspots. Proceedings of the National Academy of Sciences of the United States of America, 103, 956-961.
PMID |
[49] |
Verhoeven KJF, Verbon EH, van Gurp TP, Oplaat C, Ferreira de Carvalho J, Morse AM, Stahl M, Macel M, McIntyre LM (2018). Intergenerational environmental effects: functional signals in offspring transcriptomes and metabolomes after parental jasmonic acid treatment in apomictic dandelion. New Phytologist, 217, 871-882.
DOI PMID |
[50] |
Wang GC, Huang Y, Wei YR, Zhang W, Li TT, Zhang Q (2019). Inner Mongolian grassland plant phenological changes and their climatic drivers. Science of the Total Environment, 683, 1-8.
DOI URL |
[51] | Wang Q (2013). Biological Effects of Experimental Warming on Pollination in Impatiens oxyanthera (Balsaminaceae). PhD dissertation, University of Chinese Academy of Sciences, Beijing. |
[ 王琼 (2013). 模拟增温对红雉凤仙花传粉的生物学效应. 博士学位论文, 中国科学院大学, 北京.] | |
[52] |
Whittle CA, Otto SP, Johnston MO, Krochko JE (2009). Adaptive epigenetic memory of ancestral temperature regime in Arabidopsis thalian. Botany, 87, 650-657.
DOI URL |
[53] |
Wolf JB, Wade MJ (2016). Evolutionary genetics of maternal effects. Evolution, 70, 827-839.
DOI URL |
[54] | Xiao LX, Liu KM (2009). Floral traits and pollination system of Impatiens chinensis (Balsaminaceae). Bulletin of Botanical Research, 29, 164-168. |
[ 肖乐希, 刘克明 (2009). 华凤仙花部特征和传粉系统研究. 植物研究, 29, 164-168.] | |
[55] | Xiao YA, Li XH, Zeng JJ, Hu WH, Hu XH, Zhou B (2012). Effects of hand pollination on fruit and seed set in the endangered plant Disanthus cercidifolius var. longipes. Journal of Jinggangshan University (Natural Science), 33, 96-101. |
[ 肖宜安, 李晓红, 曾建军, 胡文海, 胡雪华, 周兵 (2012). 人工授粉对濒危植物长柄双花木结果率和结实率的影响. 井冈山大学学报: 自然科学版, 33, 96-101.] | |
[56] | Yang Q, Wan XQ, Li DP, Li XY, Zhang TT, Peng S (2017). Effects of temperature on pollen viability and stigma receptivity in ‘premier’ rabbiteye blueberry. Northern Horticulture, (14), 39-43. |
[ 杨芩, 万兴权, 李东平, 李性苑, 张婷渟, 彭舒 (2017). 温度对‘杰兔’兔眼蓝莓花粉活力及柱头可授性的影响. 北方园艺, (14), 39-43.] | |
[57] |
Young HJ, Dunning DW, von Hasseln KW (2007). Foraging behavior affects pollen removal and deposition in Impatiens capensis (Balsaminaceae). American Journal of Botany, 94, 1267-1271.
DOI URL |
[58] | Yu SX (2012). Balsaminaceae of China. Peking University Press, Beijing. |
[ 于胜祥 (2012). 中国凤仙花. 北京大学出版社, 北京.] | |
[59] | Zhao ZC, Wang SW, Luo Y (2007). Assessments and projections of temperature rising since the establishment of IPCC. Advances in Climate Change Research, 3, 183-184. |
[ 赵宗慈, 王绍武, 罗勇 (2007). IPCC成立以来对温度升高的评估与预估. 气候变化研究进展, 3, 183-184.] | |
[60] |
Zhong YF, Zhang Z, Song XQ, Zhou ZD (2014). Pollination biology of Impatiens hainanensis (Balsaminaceae) populations at different altitudes. Biodiversity Science, 22, 467-475.
DOI URL |
[ 钟云芳, 张哲, 宋希强, 周兆德 (2014). 海南凤仙花不同海拔种群的传粉生物学. 生物多样性, 22, 467-475.]
DOI |
|
[61] | Zhou BT, Qian J (2021). Changes of weather and climate extremes in the IPCC sixth assessment report. Climate Change Research, 16(1), 1-7. |
[ 周波涛, 钱进 (2021). IPCC AR6报告解读:极端天气气候事件变化. 气候变化研究进展, 16(1), 1-7.] | |
[62] | Zhu XF, Jiang WJ, Zhu LX, Jin Y (1997). Study on present environmental situation of the Emei Mountain. Sichuan Environment, (2), 9-17. |
[ 朱晓帆, 蒋文举, 朱联锡, 金燕 (1997). 峨眉山环境现状研究. 四川环境, (2), 9-17.] | |
[63] |
Zimmerman M, Pyke GH (1988). Reproduction in polemonium: assessing the factors limiting seed set. The American Naturalist, 131, 723-738.
DOI URL |
[1] | 索南吉, 李博文, 吕汪汪, 王文颖, 拉本, 陆徐伟, 宋扎磋, 陈程浩, 苗琪, 孙芳慧, 汪诗平. 增温增水情景下钉柱委陵菜物候序列的变化及其抗冻性[J]. 植物生态学报, 2024, 48(2): 158-170. |
[2] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[3] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[4] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[5] | 郭敏, 罗林, 梁进, 王彦杰, 赵春章. 冻融变化对西南亚高山森林优势种云杉和华西箭竹根区土壤理化性质与酶活性的影响[J]. 植物生态学报, 2023, 47(6): 882-894. |
[6] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[7] | 田磊, 朱毅, 李欣, 韩国栋, 任海燕. 不同降水条件下内蒙古荒漠草原主要植物物候对长期增温和氮添加的响应[J]. 植物生态学报, 2022, 46(3): 290-299. |
[8] | 韩聪, 刘鹏, 母艳梅, 原媛, 郝少荣, 田赟, 查天山, 贾昕. 黑沙蒿灌丛生态系统碳平衡对昼夜非对称增温的响应[J]. 植物生态学报, 2022, 46(12): 1473-1485. |
[9] | 毛瑾, 朵莹, 邓军, 程杰, 程积民, 彭长辉, 郭梁. 冬季增温和减雪对黄土高原典型草原土壤养分和细菌群落组成的影响[J]. 植物生态学报, 2021, 45(8): 891-902. |
[10] | 蒋芬, 黄娟, 褚国伟, 程严, 刘旭军, 刘菊秀, 列志旸. 增温对南亚热带森林土壤磷形态的影响及其对有效磷的贡献[J]. 植物生态学报, 2021, 45(2): 197-206. |
[11] | 魏春雪, 杨璐, 汪金松, 杨家明, 史嘉炜, 田大栓, 周青平, 牛书丽. 实验增温对陆地生态系统根系生物量的影响[J]. 植物生态学报, 2021, 45(11): 1203-1212. |
[12] | 赵河聚, 岳艳鹏, 贾晓红, 成龙, 吴波, 李元寿, 周虹, 赵雪彬. 模拟增温对高寒沙区生物土壤结皮-土壤系统呼吸的影响[J]. 植物生态学报, 2020, 44(9): 916-925. |
[13] | 周盼盼, 陈全, 张宇杰, 汪正祥, 戴璨. 交配距离与父本数量对野慈姑有性繁殖的影响[J]. 植物生态学报, 2020, 44(9): 895-904. |
[14] | 罗林, 黄艳, 梁进, 汪恩涛, 胡君, 贺合亮, 赵春章. 西南亚高山针叶林主要树种互作及增温对根区土壤微生物群落的影响[J]. 植物生态学报, 2020, 44(8): 875-884. |
[15] | 朱彪, 陈迎. 陆地生态系统野外增温控制实验的技术与方法[J]. 植物生态学报, 2020, 44(4): 330-339. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19