植物生态学报 ›› 2020, Vol. 44 ›› Issue (9): 895-904.DOI: 10.17521/cjpe.2020.0197
• 研究论文 • 下一篇
周盼盼1, 陈全1, 张宇杰2, 汪正祥1,3, 戴璨1,3,*()
收稿日期:
2020-06-18
修回日期:
2020-07-20
出版日期:
2020-09-20
发布日期:
2020-07-27
通讯作者:
* 戴璨(daican@hubu.edu.cn). ORCID: 周盼盼: 0000-0002-8326-3062基金资助:
ZHOU Pan-Pan1, CHEN Quan1, ZHANG Yu-Jie2, WANG Zheng-Xiang1,3, DAI Can1,3,*()
Received:
2020-06-18
Revised:
2020-07-20
Online:
2020-09-20
Published:
2020-07-27
Contact:
DAI Can
Supported by:
摘要:
植物的有性繁殖是生活史和进化的核心, 母本及环境对繁殖的影响固然重要, 父本的贡献亦不容忽视。父本来源与多样性对坐果结籽和后代质量的影响明显, 但由于不同物种或种群的繁殖特点和进化历程, 往往也会呈现其独特性。该研究旨在探究挺水植物野慈姑(Sagittaria trifolia)是否存在自交或远交衰退, 以及父本数量对其繁殖和后代表现的影响。通过人工控制授粉, 设置自交、近距离异交(<50 km)、远距离异交(>200 km) 3种交配距离以及单、双两类父本数量, 共计5种授粉处理, 观测野慈姑坐果概率、单果种子数量、种子面积、萌发率(2018和2019年)、幼苗芽长(2018和2019年)共7项指标。结果显示: 不同距离的交配对野慈姑的坐果概率、单果种子数量、种子面积、萌发率、幼苗芽长没有显著影响, 野慈姑未出现明显的自交衰退或远交衰退现象。父本数量的增加对野慈姑的结实数量(坐果概率、单果种子数量、种子面积)无影响, 但结实质量方面, 双父本处理的种子萌发率略高于单父本处理。综上所述, 交配距离与父本数量对野慈姑的繁殖表现影响较小, 这可能与其频繁的自交历史、远距离的基因扩散以及高度相似的水生环境有关; 同时, 该研究基于20余个自然种群的基因型, 研究结果也表明了野慈姑物种水平有性繁殖的优异和稳定性。
周盼盼, 陈全, 张宇杰, 汪正祥, 戴璨. 交配距离与父本数量对野慈姑有性繁殖的影响. 植物生态学报, 2020, 44(9): 895-904. DOI: 10.17521/cjpe.2020.0197
ZHOU Pan-Pan, CHEN Quan, ZHANG Yu-Jie, WANG Zheng-Xiang, DAI Can. Effects of mating distance and number of pollen donors on sexual reproduction of Sagittaria trifolia. Chinese Journal of Plant Ecology, 2020, 44(9): 895-904. DOI: 10.17521/cjpe.2020.0197
图1 野慈姑种群来源。实验地为中国科学院武汉植物园。EZA-EZD, 鄂州A-D; JMA, 荆门A; JZA-JZD, 荆州A-D; QCA-QCB, 蕲春A-B。WHA-WHF, 武汉A-F; WXA, 武穴A; XSA, 浠水A; YXA-YXC, 阳新A-C; 各自然种群的详细描述见李婷等(2015)。
Fig. 1 Source populations of Sagittaria trifolia. The experimental site is Wuhan Botanical Garden, Chinese Academy of Sciences. EZA-EZD, A-D of Ezhou; JMA, A of Jingmen; JZA-JZD, A-D of Jingzhou; QCA-QCB, A-B of Qichun. WHA-WHF, A-F of Wuhan; WXA, A of Wuxue; XSA, A of Xishui; YXA-YXC, A-C of Yangxin; See Li et al. (2015) for specific information of each natural population.
繁殖指标 Reproductive indices | 自交 Selfing | 近距离异交 Outcrossing of short distance | 远距离异交 Outcrossing of long distance | 比较 Comparison |
---|---|---|---|---|
坐果概率 Fruiting probability (%) | 90.38 ± 4.13 | 88.46 ± 4.47 | 90.00 ± 4.29 | LRT = 0.136, p = 0.93 |
单果种子数 Seed number per fruit | 236.96 ± 21.78 | 237.49 ± 25.02 | 253.98 ± 24.00 | F2,125.0 = 0.22, p = 0.81 |
种子面积 Seed size (mm2) | 5.50 ± 0.20 | 5.90 ± 0.24 | 5.68 ± 0.20 | F2,123.8 = 0.84, p = 0.44 |
2018年萌发率 Germination rate of year 2018 (%) | 5.82 ± 0.95 | 4.64 ± 1.05 | 4.47 ± 0.70 | F2,126.0 = 0.07, p = 0.93 |
2019年萌发率 Germination rate of year 2019 (%) | 8.48 ± 1.38 | 7.62 ± 1.23 | 9.16 ± 1.63 | F2,104.0 = 0.14, p = 0.87 |
2018年幼苗芽长 Seedling length of year 2018 (cm) | 3.24 ± 0.28 | 3.09 ± 0.21 | 3.36 ± 0.24 | F2,93.3 = 0.67, p = 0.52 |
2019年幼苗芽长 Seedling length of year 2019 (cm) | 2.13 ± 0.17 | 2.33 ± 0.20 | 2.23 ± 0.20 | F2,85.0 = 0.26, p = 0.77 |
表1 野慈姑不同交配距离下的繁殖指标比较(平均值±标准误差)
Table 1 Comparison of reproductive indexes of Sagittaria trifolia at different mating distances (mean ± SE)
繁殖指标 Reproductive indices | 自交 Selfing | 近距离异交 Outcrossing of short distance | 远距离异交 Outcrossing of long distance | 比较 Comparison |
---|---|---|---|---|
坐果概率 Fruiting probability (%) | 90.38 ± 4.13 | 88.46 ± 4.47 | 90.00 ± 4.29 | LRT = 0.136, p = 0.93 |
单果种子数 Seed number per fruit | 236.96 ± 21.78 | 237.49 ± 25.02 | 253.98 ± 24.00 | F2,125.0 = 0.22, p = 0.81 |
种子面积 Seed size (mm2) | 5.50 ± 0.20 | 5.90 ± 0.24 | 5.68 ± 0.20 | F2,123.8 = 0.84, p = 0.44 |
2018年萌发率 Germination rate of year 2018 (%) | 5.82 ± 0.95 | 4.64 ± 1.05 | 4.47 ± 0.70 | F2,126.0 = 0.07, p = 0.93 |
2019年萌发率 Germination rate of year 2019 (%) | 8.48 ± 1.38 | 7.62 ± 1.23 | 9.16 ± 1.63 | F2,104.0 = 0.14, p = 0.87 |
2018年幼苗芽长 Seedling length of year 2018 (cm) | 3.24 ± 0.28 | 3.09 ± 0.21 | 3.36 ± 0.24 | F2,93.3 = 0.67, p = 0.52 |
2019年幼苗芽长 Seedling length of year 2019 (cm) | 2.13 ± 0.17 | 2.33 ± 0.20 | 2.23 ± 0.20 | F2,85.0 = 0.26, p = 0.77 |
[1] |
Agren J, Schemske DW (1993). Outcrossing rate and inbreeding depression in two annual monoecious herbs, Begonia hirsuta and B. semiovata. Evolution, 47, 125-135.
DOI URL PMID |
[2] |
Alberto F, Raimondi PT, Reed DC, Coelho NC, Leblois R, Whitmer A, Serrão EA (2010). Habitat continuity and geographic distance predict population genetic differentiation in giant kelp. Ecology, 91, 49-56.
DOI URL PMID |
[3] |
Armbruster P, Reed DH (2005). Inbreeding depression in benign and stressful environments. Heredity, 95, 235-242.
DOI URL PMID |
[4] |
Bailey MF, McCauley DE (2006). The effects of inbreeding, outbreeding and long-distance gene flow on survivorship in North American populations of Silene vulgaris. Journal of Ecology, 94, 98-109.
DOI URL |
[5] | Bates DM, Machler M, Bolker BM, Walker S (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 1-48. |
[6] |
Bertin RI (1986). Consequences of mixed pollinations in Campsis radicans. Oecologia, 70, 1-5.
DOI URL PMID |
[7] | Byers DL, Waller DM (1999). Do plant populations purge their genetic load? Effects of population size and mating history on inbreeding depression. Annual Review of Ecology, Evolution, and Systematics, 30, 479-513. |
[8] |
Charlesworth B, Charlesworth D, Morgan MT (1990). Genetic loads and estimates of mutation rates in highly inbred plant populations. Nature, 347, 380-382.
DOI URL |
[9] | Charlesworth D, Charlesworth B (1987). Inbreeding depression and its evolutionary consequences. Annual Review of Ecology, Evolution, and Systematics, 18, 237-268. |
[10] | Chen JK (1989). Systematic and Evolutionary Botanical Studies on Chinese Sagittaria. Wuhan University Press, Wuhan. 31-38. |
[陈家宽 (1989). 中国慈姑属的系统与进化植物学研究. 武汉大学出版社, 武汉. 31-38.] | |
[11] |
Chen JM, Liu F, Wang QF, Motley TJ (2008). Phylogeography of a marsh herb Sagittaria trifolia (Alismataceae) in China inferred from cpDNA atpB-rbcL intergenic spacers. Molecular Phylogenetics and Evolution, 48, 168-175.
DOI URL |
[12] |
Crnokrak P, Barrett SCH (2002). Perspective: purging the genetic load: a review of the experimental evidence. Evolution, 56, 2347.
DOI URL PMID |
[13] |
Dai C, Li LN, Wang ZX, Liao K (2018a). Sequential decline in fruit resource allocation within inflorescences of Sagittaria trifolia: a test of non-uniform pollination hypothesis. Plant Species Biology, 33, 259-267.
DOI URL |
[14] |
Dai C, Luo WJ, Gong YB, Liu F, Wang ZX (2018b). Resource reallocation patterns within Sagittaria trifolia inflorescences following differential pollination. American Journal of Botany, 105, 803-811.
DOI URL PMID |
[15] |
Duminil J, Mendene Abessolo DT, Ndiade Bourobou D, Doucet JL, Loo J, Hardy OJ (2016). High selfing rate, limited pollen dispersal and inbreeding depression in the emblematic African rain forest tree Baillonella toxisperma Management implications. Forest Ecology and Management, 379, 20-29.
DOI URL |
[16] |
East EM (1936). Heterosis. Genetics, 21, 375. DOI: 10.1007/BF02982541.
URL PMID |
[17] |
Edmands S (2002). Does parental divergence predict reproductive compatibility? Trends in Ecology and Evolution, 17, 520-527.
DOI URL |
[18] |
Edmands S (2007). Between a rock and a hard place: evaluating the relative risks of inbreeding and outbreeding for conservation and management. Molecular Ecology, 16, 463-475.
DOI URL PMID |
[19] |
Fischer M, Matthies D (1997). Mating structure and inbreeding and outbreeding depression in the rare plant Gentianella germanica (Gentianaceae). American Journal of Botany, 84, 1685. DOI: 10.2307/2446466.
URL PMID |
[20] | Fox J, Weisberg S (2019). An {R} Companion to Applied Regression. 3rd ed. Sage, Thousand Oaks, USA. |
[21] |
Frankham R, Ballou JD, Eldridge MDB, Lacy RC, Ralls K, Dudash MR, Fenster CB (2011). Predicting the probability of outbreeding depression. Conservation Biology, 25, 465-475.
DOI URL |
[22] |
Galloway LF, Etterson JR (2007). Transgenerational plasticity is adaptive in the wild. Science, 318, 1134-1136.
DOI URL PMID |
[23] |
Glémin S (2003). How are deleterious mutations purged? Drift versus nonrandom mating. Evolution, 57, 2678-2687.
DOI URL PMID |
[24] | He YP, Liu JQ (2003). A review on recent advances in the studies of plant breeding system. Acta Phytoecologica Sinica, 27, 151-163. |
[何亚平, 刘建全 (2003). 植物繁育系统研究的最新进展和评述. 植物生态学报, 27, 151-163.] | |
[25] |
Hildesheim L, Opedal OH, Armbruster S, Pelabon C (2019). Quantitative and qualitative consequences of reduced pollen loads in a mixed-mating plant. Ecology and Evolution, 9, 14253-14260.
DOI URL PMID |
[26] |
Holland JN, Chamberlain SA, Waguespack AM, Kinyo AS (2009). Effects of pollen load and donor diversity on seed and fruit mass in the Columnar Cactus, Pachycereus schottii (Cactaceae). International Journal of Plant Sciences, 170, 467-475.
DOI URL |
[27] |
Hufford KM, Krauss SL, Veneklaas EJ (2012). Inbreeding and outbreeding depression in Stylidium hispidum: implications for mixing seed sources for ecological restoration. Ecology and Evolution, 2, 2262-2273.
DOI URL PMID |
[28] |
Hufford KM, Mazer SJ (2003). Plant ecotypes: genetic differentiation in the age of ecological restoration. Trends in Ecology and Evolution, 18, 147-155.
DOI URL |
[29] |
Hull-Sanders HM, Eubanks MD, Carr DE (2005). Inbreeding depression and selfing rate of Ipomoea hederacea var. integriuscula (Convolvulaceae). American Journal of Botany, 92, 1871-1877.
DOI URL PMID |
[30] |
Husband BC, Schemske DW (1997). The effect of inbreeding in diploid and tetraploid populations of Epilobium angustifolium (Onagraceae): implications for the genetic basis of inbreeding depression. Evolution, 51, 737-746.
DOI URL PMID |
[31] |
Johnston MO, Schoen DJ (1996). Correlated evolution of self-fertilization and inbreeding depression: an experimental study of nine populations of Amsinckia (Boraginaceae). Evolution, 50, 1478-1491.
DOI URL PMID |
[32] | Kaeppler S (2012). Heterosis: many genes, many mechanism End the search for an undiscovered unifying theory. ISRN Botany, 2012, 1-12. |
[33] |
Karron JD, Mitchell RJ, Bell JM (2006). Multiple pollinator visits to Mimulus ringens (Phrymaceae) flowers increase mate number and seed set within fruits. American Journal of Botany, 93, 1306-1312.
DOI URL PMID |
[34] |
Kittelson PM, Maron JL (2000). Outcrossing rate and inbreeding depression in the perennial yellow bush lupine, Lupinus arboreus (Fabaceae). American Journal of Botany, 87, 652-660.
URL PMID |
[35] |
Koffi A, Severin BB, Guillaume KK, Bertin YK, Clemence KL, Sylvere YK, Yao D (2013). Effect of pollen load, source and mixture on reproduction success of four cultivars of Citrullus lanatus (Thunb.) Matsumara and Nakai (Cucurbitaceae). Scientia Horticulturae, 164, 521-531.
DOI URL |
[36] |
Kress WJ (1981). Sibling competition and evolution of pollen unit, ovule number, and pollen vector in angiosperms. Systematic Botany, 6, 101-112.
DOI URL |
[37] | Kuznetsova A, Brockhoff PB, Christensen RHB (2017). lmerTest package: tests in linear mixed effects models. Journal of Statistical Software, 82, 1-26. |
[38] |
Lande R, Schemske DW (1985). The evolution of self-fertilization and inbreeding depression in plants. I: Genetic models. Evolution, 39, 24-40.
DOI URL PMID |
[39] |
Lankinen Å, Maad J, Armbruster WS (2009). Pollen-tube growth rates in Collinsia heterophylla (Plantaginaceae): one-donor crosses reveal heritability but no effect on spoophytic-offspring fitness. Annals of Botany, 103, 941-950.
DOI URL PMID |
[40] | Lenth RV (2016). Least-Squares Means: the R package lsmeans. Journal of Statistical Software, 69, 1-33. |
[41] |
Li T, Qin DF, Dai C (2015). An estimation of the outcrossing rate in Sagittaria trifolia using SSR fluorescence markers. Plant Science Journal, 33, 133-142.
DOI URL |
[李婷, 覃道凤, 戴璨 (2015). 利用SSR荧光标记对野慈姑异交率的估测. 植物科学学报, 33, 133-142.]
DOI URL |
|
[42] | Luo WJ, Jin XF, Wang ZX, Dai C (2018). The reproductive difference in Sagittaria trifolia under two contrasting habitats: direct and indirect effects. Acta Ecologica Sinica, 38, 3543-3552. |
[罗文杰, 金晓芳, 汪正祥, 戴璨 (2018). 两种生境下野慈姑繁殖差异及其机制. 生态学报, 38, 3543-3552.]
DOI URL |
|
[43] |
Marcón F, Martínez EJ, Rodríguez GR, Zilli AL, Brugnoli EA, Acuña CA (2019). Genetic distance and the relationship with heterosis and reproductive behavior in tetraploid bahiagrass hybrids. Molecular Breeding, 39, 1-13.
DOI URL |
[44] |
Marshall DL (1988). Postpollination effects on seed paternity: mechanisms in addition to microgametophyte competition operate in wild radish. Evolution, 42, 1256-1266.
DOI URL PMID |
[45] |
Marshall DL, Ellstrand NC (1986). Sexual selection in Raphanus sativus: experimental data on nonrandom fertilization, maternal choice, and consequences of multiple paternity. The American Naturalist, 127, 446-461.
DOI URL |
[46] |
Marshall DL, Shaner MGM, Oliva JP (2007). Effects of pollen load size on seed paternity in wild radish: the roles of pollen competition and mate choice. Evolution, 61, 1925-1937.
DOI URL PMID |
[47] |
Minnaar C, Anderson B, De Jager ML, Karron JD (2019). Plant-pollinator interactions along the pathway to paternity. Annals of Botany, 123, 225-245.
DOI URL PMID |
[48] |
Paschke M, Abs C, Schmid B (2002). Effects of population size and pollen diversity on reproductive success and offspring size in the narrow endemic Cochlearia bavarica (Brassicaceae). American Journal of Botany, 89, 1250-1259.
DOI URL PMID |
[49] |
Pélabon C, Albertsen E, Falahati-Anbaran M, Wright J, Armbruster WS (2015). Does multiple paternity affect seed mass in angiosperms? An experimental test in Dalechampia scandens. Journal of Evolutionary Biology, 28, 1719-1733.
DOI URL PMID |
[50] |
Pélabon C, Hennet L, Bolstad GH, Albertsen E, Opedal ØH, Ekrem RK, Armbruster WS (2016). Does stronger pollen competition improve offspring fitness when pollen load does not vary? American Journal of Botany, 103, 522-531.
DOI URL PMID |
[51] |
Price MV, Waser NM (1979). Pollen dispersal and optimal outcrossing in Delphinium nelsoni. Nature, 277, 294-297.
DOI URL |
[52] | Qin DF, Li T, Dai C (2015). Factors affecting the estimation of pollen limitation in Sagittaria trifolia. Journal of Applied Ecology, 26, 302-307. |
[覃道凤, 李婷, 戴璨 (2015). 野慈姑花粉限制评估的影响因素. 应用生态学报, 26, 302-307.] | |
[53] |
Quilichini A, Debussche M, Thompson JD (2001). Evidence for local outbreeding depression in the Mediterranean island endemic Anchusa crispa Viv. (Boraginaceae). Heredity, 87, 190-197.
DOI URL PMID |
[54] | Revelle W (2018). psych: Procedures for Personality and Psychological Research. Northwestern University, Evanston, USA. |
[55] |
Rhode JM, Emmett Duffy J (2004). Seed production from the mixed mating system of Chesapeake Bay (USA) eelgrass (Zostera marina; Zosteraceae). American Journal of Botany, 91, 192-197.
DOI URL PMID |
[56] |
Ruhsam M, Hollingsworth PM, Squirrell J, Ennos RA (2010). Signficant differences in outcrossing rate, self-incmpatibility, and inbreeding depression between two widely hybridizing species of Geum. Biological Journal of the Linnean Society, 101, 977-990.
DOI URL |
[57] |
Santamaría L (2002). Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecologica, 23, 137-154.
DOI URL |
[58] |
Schiemann K, Tyler T, Widén B (2000). Allozyme diversity in relation to geographic distribution and population size in Lathyrus vernus (L.) Bernh. (Fabaceae). Plant Systematics and Evolution, 225, 119-132.
DOI URL |
[59] | Seltmann P, Cocucci A, Renison D, Cierjacks A, Hensen I (2009). Mating system, outcrossing distance effects and pollen availability in the wind-pollinated treeline species Polylepis australis BITT. (Rosaceae). Basic and Applied Ecology, 10, 52-60. |
[60] |
Sork VL, Schemske DW (1992). Fitness consequences of mixed-donor pollen loads in the annual legume Chamaecrista fasciculata. American Journal of Botany, 79, 508-515.
DOI URL |
[61] | Team RDC (2016). R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. |
[62] |
Trame AM, Coddington AJ, Paige KN (1995). Field and genetic studies testing optimal outcrossing in Agave schottii, a long-lived clonal plant. Oecologia, 104, 93-100.
DOI URL PMID |
[63] |
Van Etten ML, Tate JA, Anderson SH, Kelly D, Ladley JJ, Merrett MF, Peterson PG, Robertson AW (2015). The compounding effects of high pollen limitation, selfing rates and inbreeding depression leave a New Zealand tree with few viable offspring. Annals of Botany, 116, 833-843.
DOI URL PMID |
[64] |
Vandepitte K, Honnay O, Jacquemyn H, Roldán-Ruiz I (2010). Effects of outcrossing in fragmented populations of the primarily selfing forest herb Geum urbanum. Evolutionary Ecology, 24, 1353-1364.
DOI URL |
[65] |
Volis S, Shulgina I, Zaretsky M, Koren O (2011). Epistasis in natural populations of a predominantly selfing plant. Heredity, 106, 300-309.
DOI URL |
[66] | Wang ZF, Peng SL (2003). Plant conservation genetics. Acta Ecologica Sinica, 23, 158-172. |
[王峥峰, 彭少麟 (2003). 植物保护遗传学. 生态学报, 23, 158-172.] | |
[67] |
Waser NM, Price MV (1994). Crossing-distance effects in Delphinium nelsonii: outbreeding and inbreeding depression in progeny fitness. Evolution, 48, 842.
DOI URL PMID |
[68] |
Xi Q, Zhao TN, Zhang CL (2014). Influence of treatments on Pinus pumila seed viability. Plant Science Journal, 32, 427-433.
DOI URL |
[席沁, 赵廷宁, 张成梁 (2014). 若干种子处理方法对偃松种子生活力的影响. 植物科学学报, 32, 427-433.]
DOI URL |
|
[69] | Yang ZR, Hao LZ, Zhang FL, Wang P, Liu JC, Li XJ, Zhang JW, Hu NB, Zhao QY, Wang LY (2007). Seed germination and changes in storage substance contents of Allium mongolicum Regel. Plant Physiology Communications, (1), 173-175. |
[杨忠仁, 郝丽珍, 张凤兰, 王萍, 刘杰才, 李晓静, 张进文, 胡宁宝, 赵清岩, 王六英 (2007). 沙葱种子的萌发特性和几种贮藏物质含量的变化. 植物生理学通讯, (1), 173-175.] | |
[70] | Zhang DY, Jiang XH (2001). Mating system evolution, resource allocation, and genetic diversity in plants. Acta Phytoecologica Sinica, 25, 130-143. |
[张大勇, 姜新华 (2001). 植物交配系统的进化、资源分配对策与遗传多样性. 植物生态学报, 25, 130-143.] | |
[71] | Zhao XJ, Tan DY (2007). Selective abortion and its evolutionary, ecological significance in seed plants. Journal of Plant Ecology (Chinese Version), 31, 1007-1018. |
[赵学杰, 谭敦炎 (2007). 种子植物的选择性败育及其进化生态意义. 植物生态学报, 31, 1007-1018.] | |
[72] |
Zhou QY (2014). Effect of pollen donor diversity on fecundity in Xanthoceras sorbifolium. Plant Science Journal, 32, 259-264.
DOI URL |
[周庆源(2014). 文冠果花粉供体的多样性对果实产出的影响. 植物科学学报, 32, 259-264.]
DOI URL |
|
[73] |
Ziehe M, Roberds JH (1989). Inbreeding depression due to overdominance in partially self-fertilizing plant populations. Genetics, 121, 861-868.
URL PMID |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19