植物生态学报 ›› 2020, Vol. 44 ›› Issue (4): 330-339.DOI: 10.17521/cjpe.2019.0179
所属专题: 生态学研究的技术和方法
收稿日期:
2019-07-08
接受日期:
2019-09-16
出版日期:
2020-04-20
发布日期:
2019-11-30
通讯作者:
朱彪 ORCID:0000-0001-9858-7943
基金资助:
Received:
2019-07-08
Accepted:
2019-09-16
Online:
2020-04-20
Published:
2019-11-30
Contact:
ZHU Biao ORCID:0000-0001-9858-7943
Supported by:
摘要:
由于人类活动导致的碳排放急剧增加, 工业革命以来全球地表温度显著增加约1 ℃, 未来全球气候还将持续变暖, 到21世纪末最高可升温4 ℃。这种前所未有的气候变化不仅影响陆地植被的适应策略, 也深刻影响生态系统的结构和功能。其中陆地生态系统碳收支对全球变暖的反馈, 是决定未来气候变化强度的关键因素, 因此全球已经开展了大量的生态系统尺度的野外增温控制实验, 研究生态系统碳收支对气温升高的响应, 从而提高地球系统模型的预测精度。然而由于增温技术和方法的不同, 不同研究的结果之间难以进行比较。该文系统总结了常见的野外增温技术和方法, 包括主动增温和被动增温, 阐述了其优缺点、适用对象以及相关研究成果。同时简要介绍了野外增温控制实验的前沿研究方向——新一代野外增温技术(包括全土壤剖面增温和全生态系统增温)和基于新一代增温技术开展的野外增温联网实验。
朱彪, 陈迎. 陆地生态系统野外增温控制实验的技术与方法. 植物生态学报, 2020, 44(4): 330-339. DOI: 10.17521/cjpe.2019.0179
ZHU Biao, CHEN Ying. Techniques and methods for field warming manipulation experiments in terrestrial ecosystems. Chinese Journal of Plant Ecology, 2020, 44(4): 330-339. DOI: 10.17521/cjpe.2019.0179
技术 Technique | 方法 Method | 优点 Advantage | 缺点 Disadvantage | 适用对象 Object | 应用举例 Example |
---|---|---|---|---|---|
被动增温 Passive warming | 土壤移位 Soil translocation | 成本低, 易操作, 方便多点多重复 Low cost, easy to operate, convenient for multiple locations and replicates | 小尺度, 有扰动, 不能用于 森林 Small scale, disturbed, not suitable for forests | 植物和表层土壤增温, 任何生态系统, 特别是草地 Plants and surface soil warming, any ecosystem, especially grassland | |
温室 Greenhouse | 成本低, 适用于偏远无电源 地区 Low cost, suitable for remote power-free areas | 小尺度, 密闭系统, 不能用于森林 Small scale, closed system, not suitable for forests | 植物和表层土壤增温, 植物较矮、没有电源的生态系统 Plants and surface soil warming, short-stature, power-free ecosystem | ||
开顶式同化箱 Open-top chamber | 成本低, 多梯度增温, 适用于偏远无电源地区 Low cost, multi-gradient warming, suitable for remote power-free areas | 小尺度, 半密闭系统, 不能用于森林 Small scale, closed system, not suitable for forests | 植物和表层土壤增温, 植物较矮、没有电源的生态系统 Plants and surface soil warming, short-stature, power-free ecosystem | ||
主动增温 Active warming | 红外辐射器 Infrared radiators | 扰动少, 模拟真实情景 Low disturbance, simulate real warming scenario | 成本较高, 小尺度, 不能加热深层土壤, 样地面积较小 High cost, small scale, cannot heat deep soil, small plot area | 植物和表层土壤增温, 植物较矮、有电源的生态系统 Plants and surface soil warming, short-stature, power-accessible ecosystem | |
加热电缆 Heating cables | 可以用于加热土壤, 特别是森林土壤 Can be used to heat soil, especially forest soil | 成本较高, 小尺度, 不能加热空气和深层土壤, 有一定扰动 High cost, small scale, cannot heat air and deep soil, some disturbance | 土壤增温, 有电源, 任何生态系统, 特别是森林 Soil warming, power-accessible, any ecosystem, especially the forest | ||
新一代实验 Next- generation | 全土壤剖面 Whole-soil-profile | 扰动少, 模拟真实土壤增温情景, 包括深层土壤 Low disturbance, simulate real soil warming scenario, including deep soil | 成本较高, 尺度较小, 不能加热空气 High cost, smaller scale, no heating of air | 土壤增温, 有电源, 任何生态系统 Soil warming, power-accessible, any ecosystem | |
全生态系统 Whole-ecosystem | 扰动少, 最接近真实的生态系统增温情景 Low disturbance, closest to the real ecosystem warming scenario | 成本很高, 尺度较小, 难推广, 不能用于森林 High cost, small scale, difficult to use widely, not suitable for forest | 全生态系统增温, 有电源, 植物较矮的生态系统 Whole-ecosystem warming, power-accessible, short-stature ecosystem |
表1 陆地生态系统野外增温控制实验技术与方法总结
Table 1 Summary of techniques and methods for field warming manipulation experiments in terrestrial ecosystems
技术 Technique | 方法 Method | 优点 Advantage | 缺点 Disadvantage | 适用对象 Object | 应用举例 Example |
---|---|---|---|---|---|
被动增温 Passive warming | 土壤移位 Soil translocation | 成本低, 易操作, 方便多点多重复 Low cost, easy to operate, convenient for multiple locations and replicates | 小尺度, 有扰动, 不能用于 森林 Small scale, disturbed, not suitable for forests | 植物和表层土壤增温, 任何生态系统, 特别是草地 Plants and surface soil warming, any ecosystem, especially grassland | |
温室 Greenhouse | 成本低, 适用于偏远无电源 地区 Low cost, suitable for remote power-free areas | 小尺度, 密闭系统, 不能用于森林 Small scale, closed system, not suitable for forests | 植物和表层土壤增温, 植物较矮、没有电源的生态系统 Plants and surface soil warming, short-stature, power-free ecosystem | ||
开顶式同化箱 Open-top chamber | 成本低, 多梯度增温, 适用于偏远无电源地区 Low cost, multi-gradient warming, suitable for remote power-free areas | 小尺度, 半密闭系统, 不能用于森林 Small scale, closed system, not suitable for forests | 植物和表层土壤增温, 植物较矮、没有电源的生态系统 Plants and surface soil warming, short-stature, power-free ecosystem | ||
主动增温 Active warming | 红外辐射器 Infrared radiators | 扰动少, 模拟真实情景 Low disturbance, simulate real warming scenario | 成本较高, 小尺度, 不能加热深层土壤, 样地面积较小 High cost, small scale, cannot heat deep soil, small plot area | 植物和表层土壤增温, 植物较矮、有电源的生态系统 Plants and surface soil warming, short-stature, power-accessible ecosystem | |
加热电缆 Heating cables | 可以用于加热土壤, 特别是森林土壤 Can be used to heat soil, especially forest soil | 成本较高, 小尺度, 不能加热空气和深层土壤, 有一定扰动 High cost, small scale, cannot heat air and deep soil, some disturbance | 土壤增温, 有电源, 任何生态系统, 特别是森林 Soil warming, power-accessible, any ecosystem, especially the forest | ||
新一代实验 Next- generation | 全土壤剖面 Whole-soil-profile | 扰动少, 模拟真实土壤增温情景, 包括深层土壤 Low disturbance, simulate real soil warming scenario, including deep soil | 成本较高, 尺度较小, 不能加热空气 High cost, smaller scale, no heating of air | 土壤增温, 有电源, 任何生态系统 Soil warming, power-accessible, any ecosystem | |
全生态系统 Whole-ecosystem | 扰动少, 最接近真实的生态系统增温情景 Low disturbance, closest to the real ecosystem warming scenario | 成本很高, 尺度较小, 难推广, 不能用于森林 High cost, small scale, difficult to use widely, not suitable for forest | 全生态系统增温, 有电源, 植物较矮的生态系统 Whole-ecosystem warming, power-accessible, short-stature ecosystem |
图2 美国明尼苏达州泥炭森林全生态系统增温实验(Hanson et al., 2017)。美国能源部资助的SPRUCE项目(美国能源部Oak ridge国家实验室, https://mnspruce.ornl.gov/)。
Fig. 2 Whole-ecosystem warming experiment in the peatland forest, Minnesota, USA (Hanson et al., 2017). The SPRUCE project was funded by the Department of Energy of USA (Courtesy of Oak Ridge National Laboratory, U.S. Dept. of Energy, https://mnspruce.ornl.gov/).
[1] |
Aronson EL, McNulty SG (2009). Appropriate experimental ecosystem warming methods by ecosystem, objective, and practicality. Agricultural and Forest Meteorology, 149, 1791-1799.
DOI URL |
[2] | Bradford MA, Wieder WR, Bonan GB, Fierer N, Raymond PA, Crowther TW (2016). Managing uncertainty in soil carbon feedbacks to climate change. Nature Climate Change, 6, 751-758. |
[3] | Castanha C, Zhu B, Hicks Pries CE, Georgiou K, Torn MS (2018). The effects of heating, rhizosphere, and depth on root litter decomposition are mediated by soil moisture. Biogeochemistry, 137, 267-279. |
[4] |
Chen J, Luo YQ, Xia JY, Jiang LF, Zhou XH, Lu M, Liang JY, Shi Z, Shelton S, Cao JJ (2015). Stronger warming effects on microbial abundances in colder regions. Scientific Reports, 5, 18032. DOI: 10.1038/srep18032.
DOI URL PMID |
[5] | Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C, Le Quéré C, Myneni RB, Piao SL, Thornton P (2013). Carbon and other biogeochemical cycles//Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Climate Change 2013: the Physical Science Basis. Cambridge University Press, Cambridge, UK. |
[6] |
Elmendorf SC, Henry GHR, Hollister RD, Björk RG, Bjorkman AD, Callaghan TV, Collier LS, Cooper EJ, Cornelissen JHC, Day TA, Fosaa AM, Gould WA, Grétarsdóttir J, Harte J, Hermanutz L, Hik DS, Hofgaard A, Jarrad F, Jónsdóttir IS, Keuper F, Klanderud K, Klein JA, Koh S, Kudo G, Lang SI, Loewen V, May JL, Mercado J, Michelsen A, Molau U, Myers-Smith IH, Oberbauer SF, Pieper S, Post E, Rixen C, Robinson CH, Schmidt NM, Shaver GR, Stenström A, Tolvanen A, Totland Ø, Troxler T, Wahren CH, Webber PJ, Welker JM, Wookey PA (2012). Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecology Letters, 15, 164-175.
URL PMID |
[7] | Fraser LH, Henry HA, Carlyle CN, White SR, Beierkuhnlein C, Cahill Jr JF, Casper BB, Cleland E, Collins SL, Dukes JS, Knapp AK, Lind E, Long RJ, Luo YQ, Reich PB, Smith MD, Sternberg M, Turkington R (2013). Coordinated distributed experiments: an emerging tool for testing global hypotheses in ecology and environmental science. Frontiers in Ecology and the Environment, 11, 147-155. |
[8] | Friedlingstein P, Meinshausen M, Arora VK, Jones CD, Anav A, Liddicoat SK, Knutti R (2014). Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. Journal of Climate, 27, 511-526. |
[9] |
Gill AL, Giasson MA, Yu R, Finzi AC (2017). Deep peat warming increases surface methane and carbon dioxide emissions in a black spruce-dominated ombrotrophic bog. Global Change Biology, 23, 5398-5411.
URL PMID |
[10] | Gross CD, Harrison RB (2019). The case for digging deeper: Soil organic carbon storage, dynamics, and controls in our changing world. Soil Systems, 3, 28. DOI: 10.3390/soilsystems3020028. |
[11] | Hanson PJ, Childs KW, Wullschleger SD, Riggs JS, Thomas WK, Todd DE, Warren JM (2011). A method for experimental heating of intact soil profiles for application to climate change experiments. Global Change Biology, 17, 1083-1096. |
[12] | Hanson PJ, Riggs JS, Nettles WR, Phillips JR, Krassovski MB, Hook LA, Gu LH, Richardson AD, Aubrecht DM, Ricciuto DM, Warren JM, Barbier C (2017). Attaining whole-ecosystem warming using air and deep-soil heating methods with an elevated CO2 atmosphere. Biogeosciences, 14, 861-883. |
[13] |
Harpole WS, Sullivan LL, Lind EM, Firn J, Adler PB, Borer ET, Chase J, Fay PA, Hautier Y, Hillebrand H, MacDougall AS, Seabloom EW, Williams R, Bakker JD, Cadotte MW, Chaneton EJ, Chu CJ, Cleland EE, D’Antonio C, Davies KF, Gruner DS, Hagenah N, Kirkman K, Knops JMH, La Pierre KJ, McCulley RL, Moore JL, Morgan JW, Prober SM, Risch AC, Schuetz M, Stevens CJ, Wragg PD (2016). Addition of multiple limiting resources reduces grassland diversity. Nature, 537, 93-96.
DOI URL PMID |
[14] |
Harte J, Saleska SR, Levy C (2015). Convergent ecosystem responses to 23-year ambient and manipulated warming link advancing snowmelt and shrub encroachment to transient and long-term climate-soil carbon feedback. Global Change Biology, 21, 2349-2356.
DOI URL PMID |
[15] | Harte J, Torn MS, Chang FR, Feifarek B, Kinzig AP, Shaw R, Shen K (1995). Global warming and soil microclimate: results from a meadow-warming experiment. Ecological Applications, 5, 132-150. |
[16] |
Heimann M, Reichstein M (2008). Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature, 451, 289-292.
URL PMID |
[17] | Henry GHR, Molau U (1997). Tundra plants and climate change: the International Tundra Experiment (ITEX). Global Change Biology, 3(S1), 1-9. |
[18] |
Hicks Pries CE, Castanha C, Porras R, Phillips C, Torn MS (2018). Response to Comment on “The whole-soil carbon flux in response to warming”. Science, 359, eaao0457. DOI: 10.1126/science.aao0457.
DOI URL PMID |
[19] |
Hicks Pries CE, Castanha C, Porras RC, Torn MS (2017). The whole-soil carbon flux in response to warming. Science, 355, 1420-1422.
URL PMID |
[20] | Hungate BA, Holland EA, Jackson RB, Chapin III FS, Mooney HA, Field CB (1997). The fate of carbon in grasslands under carbon dioxide enrichment. Nature, 388, 576-579. |
[21] | IPCC (2013). Climate Change: the Physical Science Basis. Cambridge University Press, Cambridge, UK. |
[22] |
Kimball BA, Alonso-Rodríguez AM, Cavaleri MA, Reed SC, González G, Wood TE (2018). Infrared heater system for warming tropical forest understory plants and soils. Ecology and Evolution, 8, 1932-1944.
DOI URL PMID |
[23] | Kimball BA, Conley MM (2009). Infrared heater arrays for warming field plots scaled up to 5-m diameter. Agricultural and Forest Meteorology, 149, 721-724. |
[24] | Kimball BA, Conley MM, Wang SP, Lin XW, Luo CY, Morgan J, Smith D (2008). Infrared heater arrays for warming ecosystem field plots. Global Change Biology, 14, 309-320. |
[25] | Kimball BA, White JW, Ottman MJ, Wall GW, Bernacchi CJ, Morgan J, Smith DP (2015). Predicting canopy temperatures and infrared heater energy requirements for warming field plots. Agronomy Journal, 107, 129-141. |
[26] |
Knapp AK, Hoover DL, Wilcox KR, Avolio ML, Koerner SE, La Pierre KJ, Loik ME, Luo YQ, Sala OE, Smith MD (2015). Characterizing differences in precipitation regimes of extreme wet and dry years: implications for climate change experiments. Global Change Biology, 21, 2624-2633.
URL PMID |
[27] | Le Quéré C, Andrew RM, Friedlingstein P, Sitch S, Pongratz J, Manning AC, Korsbakken JI, Peters GP, Canadell JG, Jackson RB, Boden TA, Tans PP, Andrews OD, Arora VK, Bakker DCE, Barbero L, Becker M, Betts RA, Bopp L, Chevallier F, Chini LP, Ciais P, Cosca CE, Cross J, Currie K, Gasser T, Harris I, Hauck J, Haverd V, Houghton RA, Hunt CW, Hurtt G, Ilyina T, Jain AK, Kato E, Kautz M, Keeling RF, Klein Goldewijk K, Körtzinger A, Landschützer P, Lefèvre N, Lenton A, Lienert S, Lima I, Lombardozzi D, Metzl N, Millero F, Monteiro PMS, Munro DR, Nabel JEMS, Nakaoka SI, Nojiri Y, Padin XA, Peregon A, Pfeil B, Pierrot D, Poulter B, Rehder G, Reimer J, Rödenbeck C, Schwinger J, Séférian R, Skjelvan I, Stocker BD, Tian H, Tilbrook B, Tubiello FN, van der Laan-Luijkx IT, van der Werf GR, van Heuven S, Viovy N, Vuichard N, Walker AP, Watson AJ, Wiltshire AJ, Zaehle S, Zhu D (2018). Global carbon budget 2017. Earth System Science Data, 10, 405-448. |
[28] |
Li XN, Jiang LL, Meng FD, Wang SP, Niu HS, Iler AM, Duan JC, Zhang ZH, Luo CY, Cui SJ, Zhang LR, Li YM, Wang Q, Zhou Y, Bao XY, Dorji T, Li YN, Peñuelas J, Du MY, Zhao XQ, Zhao L, Wang GJ (2016). Responses of sequential and hierarchical phenological events to warming and cooling in alpine meadows. Nature Communications, 7, 12489. DOI: 10.1038/ncomms12489.
URL PMID |
[29] | Lin WS, Li YQ, Yang ZJ, Giardina CP, Xie JS, Chen SD, Lin CF, Kuzyakov Y, Yang YS (2018). Warming exerts greater impacts on subsoil than topsoil CO2 efflux in a subtropical forest. Agricultural and Forest Meteorology, 263, 137-146. |
[30] | Liu HY, Mi ZR, Lin L, Wang YH, Zhang ZH, Zhang FW, Wang H, Liu LL, Zhu B, Cao GM, Zhao XQ, Sanders NJ, Classen AT, Reich PB, He JS (2018). Shifting plant species composition in response to climate change stabilizes grassland primary production. Proceedings of the National Academy of Sciences of the United States of America, 115, 4051-4056. |
[31] |
Lu M, Zhou XH, Yang Q, Li H, Luo YQ, Fang CM, Chen JK, Yang X, Li B (2013). Responses of ecosystem carbon cycle to experimental warming: a meta-analysis. Ecology, 94, 726-738.
DOI URL PMID |
[32] |
Luo YQ, Melillo J, Niu SL, Beier C, Clark JS, Classen AT, Davidson E, Dukes JS, Evans RD, Field CB, Czimczik CI, Keller M, Kimball BA, Kueppers LM, Norby RJ, Pelini SL, Pendall E, Rastetter E, Six J, Smith M, Tjoelker MG, Torn MS (2011). Coordinated approaches to quantify long-term ecosystem dynamics in response to global change. Global Change Biology, 17, 843-854.
DOI URL |
[33] |
Melillo JM, Butler S, Johnson J, Mohan J, Steudler P, Lux H, Burrows E, Bowles F, Smith R, Scott L, Vario C, Hill T, Burton A, Zhou YM, Tang J (2011). Soil warming, carbon-nitrogen interactions, and forest carbon budgets. Proceedings of the National Academy of Sciences of the United States of America, 108, 9508-9512.
DOI URL |
[34] |
Melillo JM, Frey SD, DeAngelis KM, Werner WJ, Bernard MJ, Bowles FP, Pold G, Knorr MA, Grandy AS (2017). Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science, 358, 101-105.
DOI URL PMID |
[35] | Niu SL, Han XG, Ma KP, Wan SQ (2007). Field facilities in global warming and terrestrial ecosystem research. Journal of Plant Ecology (Chinese Version), 31, 262-271. |
[ 牛书丽, 韩兴国, 马克平, 万师强 (2007). 全球变暖与陆地生态系统研究中的野外增温装置. 植物生态学报, 31, 262-271.] | |
[36] | Norby R, Edwards N, Riggs J, Abner C, Wullschleger S, Gunderson C (1997). Temperature-controlled open-top chambers for global change research. Global Change Biology, 3, 259-267. |
[37] |
Peterjohn WT, Melillo JM, Bowles FP, Steudler PA (1993). Soil warming and trace gas fluxes: experimental design and preliminary flux results. Oecologia, 93, 18-24.
URL PMID |
[38] | Plaza C, Pegoraro E, Bracho R, Celis G, Crummer KG, Hutchings JA, Hicks Pries CE, Mauritz M, Natali SM, Salmon VG, Schädel C, Webb EE, Schuur EAG (2019). Direct observation of permafrost degradation and rapid soil carbon loss in tundra. Nature Geoscience, 12, 627-631. |
[39] |
Reich PB, Sendall KM, Stefanski A, Rich RL, Hobbie SE, Montgomery RA (2018). Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture. Nature, 562, 263-267.
DOI URL PMID |
[40] |
Rich RL, Stefanski A, Montgomery RA, Hobbie SE, Kimball BA, Reich PB (2015). Design and performance of combined infrared canopy and belowground warming in the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment. Global Change Biology, 21, 2334-2348.
DOI URL PMID |
[41] |
Richardson AD, Hufkens K, Milliman T, Aubrecht DM, Furze ME, Seyednasrollah B, Krassovski MB, Latimer JM, Nettles WR, Heiderman RR, Warren JM, Hanson PJ (2018). Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures. Nature, 560, 368-371.
URL PMID |
[42] | Rumpel C, Kögel-Knabner I (2011). Deep soil organic matter—A key but poorly understood component of terrestrial C cycle. Plant and Soil, 338, 143-158. |
[43] | Shaver GR, Canadell J, Chapin FS, Gurevitch J, Harte J, Henry G, Ineson P, Jonasson S, Melillo J, Pitelka L, Rustad L (2000). Global warming and terrestrial ecosystems: a conceptual framework for analysis. BioScience, 50, 871-882. |
[44] | Shi GX, Yao BQ, Liu YJ, Jiang SJ, Wang WY, Pan JB, Zhao XQ, Feng HY, Zhou HK (2017). The phylogenetic structure of AMF communities shifts in response to gradient warming with and without winter grazing on the Qinghai- Tibet Plateau. Applied Soil Ecology, 121, 31-40. |
[45] |
Sistla SA, Moore JC, Simpson RT, Gough L, Shaver GR, Schimel JP (2013). Long-term warming restructures Arctic tundra without changing net soil carbon storage. Nature, 497, 615-618.
URL PMID |
[46] | Torn MS, Chabbi A, Crill P, Hanson PJ, Janssens IA, Luo Y, Hicks Pries CE, Rumpel C, Schmidt MWI, Six J, Schrumpf M, Zhu B (2015). A call for international soil experiment networks for studying, predicting, and managing global change impacts. Soil, 1, 575-582. |
[47] |
Wan SQ, Xia JY, Liu WX, Niu SL (2009). Photosynthetic overcompensation under nocturnal warming enhances grassland carbon sequestration. Ecology, 90, 2700-2710.
URL PMID |
[48] |
Wang SP, Duan JC, Xu GP, Wang YF, Zhang ZH, Rui YC, Luo CY, Xu B, Zhu XX, Chang XF, Cui XY, Niu HS, Zhao XQ, Wang WY (2012). Effects of warming and grazing on soil N availability, species composition, and ANPP in an alpine meadow. Ecology, 93, 2365-2376.
URL PMID |
[49] |
Wilson RM, Hopple AM, Tfaily MM, Sebestyen SD, Schadt CW, Pfeifer-Meister L, Medvedeff C, McFarlane KJ, Kostka JE, Kolton M, Kolka RK, Kluber LA, Keller JK, Guilderson TP, Griffiths NA, Chanton JP, Bridgham SD, Hanson PJ (2016). Stability of peatland carbon to rising temperatures. Nature Communications, 7, 13723. DOI: 10.1038/ncomms13723.
DOI URL PMID |
[50] | Wu ZT, Dijkstra P, Koch GW, Hungate BA (2012). Biogeochemical and ecological feedbacks in grassland responses to warming. Nature Climate Change, 2, 458-461. |
[51] | Yu XC, Yao BQ, Zhou HK, Jin YX, Yang YJ, Wang WY, Dong SK, Zhao XQ (2015). Variable responses to long-term simulated warming of underground biomass and carbon allocations of two alpine meadows on the Qinghai- Tibet Plateau. Chinese Science Bulletin, 60, 379-388. |
[ 余欣超, 姚步青, 周华坤, 金艳霞, 杨月娟, 王文颖, 董世魁, 赵新全 (2015). 青藏高原两种高寒草甸地下生物量及其碳分配对长期增温的响应差异. 科学通报, 60, 379-388.] | |
[52] | Zhu JT (2016). Effects of experimental warming on plant reproductive phenology in Xizang alpine meadow. Chinese Journal of Plant Ecology, 40, 1028-1036. |
[ 朱军涛 (2016). 实验增温对藏北高寒草甸植物繁殖物候的影响. 植物生态学报, 40, 1028-1036.] |
[1] | 吴霖升, 张永光, 章钊颖, 张小康, 吴云飞. 日光诱导叶绿素荧光遥感及其在陆地生态系统监测中的应用[J]. 植物生态学报, 2022, 46(10): 1167-1199. |
[2] | 魏春雪, 杨璐, 汪金松, 杨家明, 史嘉炜, 田大栓, 周青平, 牛书丽. 实验增温对陆地生态系统根系生物量的影响[J]. 植物生态学报, 2021, 45(11): 1203-1212. |
[3] | 冯兆忠, 袁相洋, 李品, 尚博, 平琴, 胡廷剑, 刘硕. 地表臭氧浓度升高对陆地生态系统影响的研究进展[J]. 植物生态学报, 2020, 44(5): 526-542. |
[4] | 冯兆忠, 李品, 张国友, 李征珍, 平琴, 彭金龙, 刘硕. 二氧化碳浓度升高对陆地生态系统的影响: 问题与展望[J]. 植物生态学报, 2020, 44(5): 461-474. |
[5] | 冯兆忠, 徐彦森, 尚博. FACE实验技术和方法回顾及其在全球变化研究中的应用[J]. 植物生态学报, 2020, 44(4): 340-349. |
[6] | 葛体达, 王东东, 祝贞科, 魏亮, 魏晓梦, 吴金水. 碳同位素示踪技术及其在陆地生态系统碳循环研究中的应用与展望[J]. 植物生态学报, 2020, 44(4): 360-372. |
[7] | 李旭, 吴婷, 程严, 谭钠丹, 蒋芬, 刘世忠, 褚国伟, 孟泽, 刘菊秀. 南亚热带常绿阔叶林4个树种对增温的生理生态适应能力比较[J]. 植物生态学报, 2020, 44(12): 1203-1214. |
[8] | 黄玫, 王娜, 王昭生, 巩贺. 磷影响陆地生态系统碳循环过程及模型表达方法[J]. 植物生态学报, 2019, 43(6): 471-479. |
[9] | 闫鹏飞, 展鹏飞, 肖德荣, 王燚, 余瑞, 刘振亚, 王行. 模拟增温及分解界面对茭草凋落物分解速率及叶际微生物结构和功能的影响[J]. 植物生态学报, 2019, 43(2): 107-118. |
[10] | 宋小艳, 王根绪, 冉飞, 杨燕, 张莉, 肖瑶. 东北大兴安岭演替初期泰加林灌草层典型植物开花物候与生长对模拟暖干化气候的响应[J]. 植物生态学报, 2018, 42(5): 539-549. |
[11] | 管超, 张鹏, 李新荣. 腾格里沙漠东南缘生物结皮土壤呼吸对水热因子变化的响应[J]. 植物生态学报, 2017, 41(3): 301-310. |
[12] | 朱军涛, 陈宁, 张扬建, 刘瑶杰. 不同幅度的实验增温对藏北高寒草甸净生态系统碳交换的影响[J]. 植物生态学报, 2016, 40(12): 1219-1229. |
[13] | 李明泽, 王斌, 范文义, 赵丹丹. 东北林区净初级生产力及大兴安岭地区林火干扰影响的模拟研究[J]. 植物生态学报, 2015, 39(4): 322-332. |
[14] | 徐冰鑫, 胡宜刚, 张志山, 陈永乐, 张鹏, 李刚. 模拟增温对荒漠生物土壤结皮-土壤系统CO2、CH4和N2O通量的影响[J]. 植物生态学报, 2014, 38(8): 809-820. |
[15] | 孙敬松, 周广胜. 散射辐射测量及其对陆地生态系统生产力影响的研究进展[J]. 植物生态学报, 2010, 34(4): 452-461. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19