植物生态学报 ›› 2016, Vol. 40 ›› Issue (12): 1219-1229.DOI: 10.17521/cjpe.2016.0186
所属专题: 全球变化与生态系统; 青藏高原植物生态学:生理生态学; 碳循环
• 研究论文 • 下一篇
出版日期:
2016-12-10
发布日期:
2016-12-30
通讯作者:
张扬建
Jun-Tao ZHU1, Ning CHEN1, Yang-Jian ZHANG1,2,3,*(), Yao-Jie LIU1
Online:
2016-12-10
Published:
2016-12-30
Contact:
Yang-Jian ZHANG
摘要:
全球气候变暖将对陆地生态系统(尤其是高寒草甸生态系统)碳循环产生深远影响。该研究依托中国科学院地理科学与资源研究所藏北高原草地生态系统研究站(那曲站), 设置不同增温幅度实验, 模拟未来2 ℃增温和4 ℃增温的情景, 探究不同增温幅度对青藏高原高寒草甸净生态系统碳交换(NEE)的影响。研究结果显示: 1)在2015年生长季(6-9月), 不增温和2 ℃增温处理下NEE小于0, 总体表现为碳汇, 而4 ℃增温处理下NEE大于0, 总体表现为碳源; 2)在生长季的6月、8月及整个生长季, 与不增温相比, 4 ℃增温处理显著提高了NEE, 而2 ℃增温处理没有显著改变NEE; 7月, 2 ℃和4 ℃增温处理均显著提高了NEE; 3)在半干旱的高寒草甸生态系统, 土壤水分是决定NEE的关键因素, 增温通过降低土壤水分而导致高寒草甸生态系统碳汇能力下降。该研究可为青藏高原高寒草甸生态系统应对未来气候变化提供基础数据和理论依据。
朱军涛, 陈宁, 张扬建, 刘瑶杰. 不同幅度的实验增温对藏北高寒草甸净生态系统碳交换的影响. 植物生态学报, 2016, 40(12): 1219-1229. DOI: 10.17521/cjpe.2016.0186
Jun-Tao ZHU, Ning CHEN, Yang-Jian ZHANG, Yao-Jie LIU. Effects of experimental warming on net ecosystem CO2 exchange in Northern Xizang alpine meadow. Chinese Journal of Plant Ecology, 2016, 40(12): 1219-1229. DOI: 10.17521/cjpe.2016.0186
图1 植物生长季日降水量(柱状图)(P)与不同增温幅度的土壤湿度(折线图)。CK, 不增温; W1、W2分别代表模拟未来增温2 ℃和4 ℃的实验处理。
Fig. 1 Daily precipitation (bars) (P) and soil moisture (lines) under different warming treatments during the plant growing season. CK, no warming; W1, W2 represent the simulation of future temperature increase of 2 °C and 4 °C experimental treatment.
图2 植物生长季不同增温幅度处理下的土壤温度(A)和土壤湿度(B) (平均值±标准误差)。CK, 不增温; W1、W2分别代表模拟未来增温2 ℃和4 ℃的实验处理。不同小写字母表示在0.05水平上差异显著。
Fig. 2 Soil temperature (A), soil moisture (B) during the growing season under different warming treatments (mean ± SE). CK, no warming; W1, W2 represent the simulation of future temperature increase 2 °C and 4 °C. The different lowercase letters at the top of the figures represent significant differences at the 0.05 level.
生长季 Growing season | 6月 June | 7月 July | 8月 August | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
df | F | df | F | df | F | df | F | ||||
T | 2.25 | 23.38*** | 2 | 45.78*** | 2.18 | 8.93*** | 5 | 19.22*** | |||
W | 2.00 | 8.72** | 2 | 6.58** | 2.00 | 6.58** | 2 | 4.77* | |||
T × W | 4.51 | 2.27 | 4 | 0.47 | 2.00 | 13.57*** | 10 | 0.74 |
表1 增温(W)、测量时间(T)及其交互作用(T × W)对净生态系统碳交换(NEE)的影响的重复测量方差分析结果
Table 1 Results (F values) of repeated-measurement ANOVA on the effects of warming (W), measuring date (T), and their interactions (T × W) on net ecosystem CO2 exchange (NEE)
生长季 Growing season | 6月 June | 7月 July | 8月 August | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
df | F | df | F | df | F | df | F | ||||
T | 2.25 | 23.38*** | 2 | 45.78*** | 2.18 | 8.93*** | 5 | 19.22*** | |||
W | 2.00 | 8.72** | 2 | 6.58** | 2.00 | 6.58** | 2 | 4.77* | |||
T × W | 4.51 | 2.27 | 4 | 0.47 | 2.00 | 13.57*** | 10 | 0.74 |
图3 植物生长季不同增温实验处理下的净生态系统碳交换(NEE, A)、生态系统呼吸(ER, B)和生态系统总初级生产力(GPP, C)的季节动态(平均值±标准误差)。CK, 不增温; W1、W2分别代表模拟未来增温2 ℃和4 ℃的实验处理。
Fig. 3 Seasonal dynamics of net ecosystem CO2 exchange (NEE, A) , ecosystem respiration (ER, B) and gross primary productivity (GPP, C) during the growing season under different warming treatments (mean ± SE). CK, no warming; W1, W2 represent the simulation of future temperature increase 2 °C and 4 °C.
图4 植物生长季不同月份实验增温对净生态系统碳交换(NEE)的影响。A, 6月。B, 7月。C, 8月。D, 2015年生长季。CK, 不增温; W1、W2分别代表模拟未来增温2 ℃和4 ℃的实验处理。各图中上方的不同字母代表在0.05水平上差异显著。
Fig. 4 Different warming treatments effect on net ecosystem CO2 exchange (NEE) in different months during the growing season. A, June. B, July. C, August. D, Growing season in 2015. CK, no warming; W1, W2 represent the simulation of future temperature increase 2 °C and 4 °C. The different letters at the top of the figures represent significant differences at the 0.05 level.
图5 土壤湿度、土壤温度与净生态系统碳交换(NEE)的回归分析。
Fig. 5 Regression analysis for the relationships between net ecosystem CO2 exchange (NEE) and soil moisture, soil temperature.
1 | Baldocchi DD (2003). Assessing ecosystem carbon balance: Problems and prospects of the eddy covariance technique.Global Change Biology, 9, 478-492. |
2 | Chen J, Shi W, Cao J (2015). Effects of grazing on ecosystem CO2 exchange in a meadow grassland on the Tibetan Plateau during the growing season.Environmental Management, 55, 347-359. |
3 | Ciais PH, Reichstein M, Viovy N (2005). Europe-wide reduction in primary productivity caused by the heat and drought in 2003.Nature, 437, 529-533. |
4 | Corradi C, Kolle O, Walter K, Zimov SA, Schulze ED (2005). Carbon dioxide and methane exchange of a northeast Siberian tussock tundra.Global Change Biology, 11, 1910-1925. |
5 | Dermody O, Weltzin JF, Engel EC, Allen P, Norby RJ (2007). How do elevated [CO2], warming, and reduced precipitation interact to affect soil moisture andLAI in an old field ecosystem? Plant and Soil, 301, 255-266. |
6 | Fu BJ, Niu D, Zhao SD (2005). Global change and terrestrial ecosystems: Review and prospect.Earth Sciences, 20, 556-560.(in Chinese with English abstract) [傅伯杰, 牛栋, 赵士洞 (2005).全球变化与陆地生态系统研究: 回顾与展望. 地球科学展, 20, 556-560.] |
7 | Fu YL, Yu GR, Wang YF, Li ZQ, Hao YB (2006). Effect of water stress on ecosystem photosynthesis and respiration of a Leymus chinensis steppe in Inner Mongolia. Science China, 36, 183-193.(in Chinese) [伏玉玲, 于贵瑞, 王艳芬, 李正泉, 郝彦宾 (2006). 水分胁迫对内蒙古羊草草原生态系统光合和呼吸作用的影响. 中国科学, 36, 183-193.] |
8 | Gao XQ (1994). Preliminary analysis of climate changes in some regions of north part of Qinghai-Xizang Plateau in decade year scale. In: Qinghai Tibet Project Expert Committee ed. Formation and Evolution, Environmental Changes and Ecosystem on the Qinghai-Xizang Plateau. Science Press, Beijing. 297-303.(in Chinese) [高晓清 (1994). 青藏高原北部若干地点10年尺度气候变化的初步分析. 见: 青藏项目专家委员会编. 青藏高原形成演化、环境变迁与生态系统研究. 科学出版社, 北京. 297-303.] |
9 | Granier A, Reichstein M, Brédaa N, Janssens IA, Falge E, Ciais P, Grünwaldg T, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Facini O, Grassi G, Heinesch B, Ilvesniemi H, Keronen P, Knohl A, Köstner B, Lagergren F, Lindroth A, Longdoz B, Loustau D, Mateus J, Montagnani L, Nys C, Moors E, Papale D, Peiffer M, Pilegaard K, Pita G, Pumpanen J, Rambal S, Rebmann C, Rodrigues A, Seufert G, Tenhunen J, Vesala T, Wang Q (2007). Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003.Agricultural and Forest Meteorology, 143, 123-145. |
10 | Guo YQ, Borjigidai A, Gao QZ, Duan MJ, Ganzhu ZB, Wan YF, Li YE, Guo HB (2011). Photosynthetic characteristics ofStipa purpurea under irrigation in northern Tibet and its short-term response to temperature and CO2 concentration. Chinese Journal of Plant Ecology, 35, 311-321.(in Chinese with English abstract) [郭亚奇, 阿里穆斯, 高清竹, 段敏杰, 干珠扎布, 万运帆, 李玉娥, 郭红保 (2011). 灌溉条件下藏北紫花针茅光合特性及其对温度和CO2浓度的短期响应. 植物生态学报, 35, 311-321.] |
11 | Hao YB, Wang YF, Mei XR, Huang XZ, Cui XY, Zhou XQ, Niu HS (2008). CO2, H2O and energy exchange of an Inner Mongolia steppe ecosystem during a dry and wet year.Acta Oecologia, 33, 133-143. |
12 | Harte J, Saleska S, Shih T (2006). Shifts in plant dominance control carbon-cycle responses to experimental warming and widespread drought.Environmental Research Letters, 1, 1-6. |
13 | Huang XZ, Hao YB, Wang YF (2006). Impact of extreme drought on net ecosystem exchange from Lemus chinensis steppe in Xilin River Basin, China. Chinese Journal of Plant Ecology, 30, 894-900.(in Chinese with English abstract) [黄祥忠, 郝彦宾, 王艳芬 (2006). 极端干旱条件下锡林河流域羊草草原净生态系统碳交换特征. 植物生态学报, 30, 894-900.] |
14 | Hunt JE, Kelliher FM, McSeveny TM, Byers JN (2002). Evaporation and carbon dioxide exchange between the atmosphere and a tussock grassland during a summer drought.Agricultural and Forest Meteorology, 111, 65-82. |
15 | Illeris L, Christensen TR, Mastepanov M (2004). Moisture effects on temperature sensitivity of CO2 exchange in a subarctic heath ecosystem.Biogeochemistry, 70, 317-330. |
16 | IPCC (Intergovernmental Panel on Climate Change) (2007). Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In: Solomon S, Qin DH, Manning M, Marquis M, Chen ZL, Averyt K, Tignor M, Miller HL eds. Climate Change 2007: The Physical Science Basis. Cambridge University Press, Cambridge, UK. |
17 | Kanerva T, Regina K, Ramo K, Rämö K, Ojanperä K, Manninen S (2007). Fluxes of N2O, CH4 and CO2 in a meadow ecosystem exposed to elevated ozone and carbon dioxide for three years.Environmental Pollution, 145, 818-828. |
18 | Klein JA, Harte J, Zhao XQ (2008). Decline in medicinal and forage species with warming is mediated by plant traits on the Tibetan Plateau.Ecosystems, 11, 775-789. |
19 | Law BE, Falge E, Gu L, Baldocchi DD, Bakwin P, Berbigier P, Davis K, Dolman AJ, Falk M, Fuentes JD, Goldstein A, Granier A, Grelle A, Hollinger D, Janssens IA, Jarvis P, Jensen NO, Katul G, Mahli Y, Matteucci G, Meyers T, Monson R, Munger W, Oechel W, Olson R, Pilegaard K, Paw KT, Thorgeirsson H, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2002). Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation.Agricultural and Forest Meteorology, 113, 97-120. |
20 | Li YN, Zhao L, Zhao XQ, Zhou HK (2004). Effects of a 5-years mimic temperature increase to the structure and productivity ofKobresia humilis meadow. Acta Agrestia Sinica, 12, 236-239.(in Chinese with English abstract) [李英年, 赵亮, 赵新全, 周华坤 (2004).5年模拟增温后矮嵩草草甸群落结构及生产量的变化. 草地学报, 12, 236-239.] |
21 | Liu X, Chen B (2000). Climatic warming in the Tibetan Plateau during recent decades.International Journal of Climatology, 14, 1729-1742. |
22 | Luo Y (2007). Terrestrial carbon-cycle feedback to climate warming.Annual Review of Ecology Evolution and Systematics, 38, 683-712. |
23 | Melillo JM, Steudler PA, Aber JD, Newkrik K, Lux H, Bowles FP, Catricala C, Magill A, Ahrens T, Morrisseau S (2002). Soil warming and carbon-cycle feedbacks to the climate system.Science, 298, 2173-2175. |
24 | Meyers TP (2001). A comparison of summertime water and CO2 fluxes over rangeland for well watered and drought conditions.Agricultural and Forest Meteorology, 106, 205-214. |
25 | Niu SL, Wu MY, Han Y, Xia JY, Li MH, Wan SQ (2008). Water-mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe.New Phytologist, 177, 209-219. |
26 | Niu S, Sherry R, Zhou X, Luo Y (2013). Ecosystem carbon fluxes in response to warming and clipping in a tall grass prairie.Ecosystems, 6, 948-961. |
27 | Oberbauer SF, Tweedie CE, Welker JM, Fahnestock JT, Henry GHR, Webber PJ, Hollister RD, Walker MD, Kuchy A, Elmore E, Starr G (2007). Tundra CO2 fluxes in response to experimental warming across latitudinal and moisture gradients. Ecological Monographs, 77, 221-238. |
28 | Peñuelas J, Gordon C, Llorens L, Nielsen T, Tietema A, Beier C, Bruna P, Emmett B, Estiarte M, Gorissenet A (2004). Non-intrusive field experiments show different plant responses to warming and drought among sites, seasons and species in a North-South European gradient.Ecosystems, 7, 598-612. |
29 | Porporato A, Laio F, Ridolfi L, Rodriguez-Iturbe I (2001). Plants in water-controlled ecosystems: Active role in hydrologic processes and response to water stress: III. Vegetation water stress.Advances in Water Resources, 24, 725-744. |
30 | Qi WW, Niu HS, Wang SP, Liu YJ, Zhang LR (2012). Simulation of effects of warming on carbon budget in alpine meadow ecosystem on the Tibetan Plateau.Acta Ecologica Sinica, 30, 1713-1722.(in Chinese with English abstract) [亓伟伟, 牛海山, 汪诗平, 刘艳杰, 张立荣 (2012). 增温对青藏高原高寒草甸生态系统固碳通量影响的模拟研究. 生态学报, 30, 1713-1722.] |
31 | Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Cornelissen JHC, Gurevitch J (2001). A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming.Oecologia, 14, 543-562. |
32 | Saleska SR, Harte J, Torn MS (1999). The effect of experimental ecosystem warming on CO2 fluxes in a montane meadow.Global Change Biology, 5, 125-141. |
33 | Strebel D, Elberling B, Morgner E, Knicker HE, Cooper EJ (2010). Cold-season soil respiration in response to grazing and warming in High Arctic Svalbard.Polar Research, 29, 46-57. |
34 | Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BF, de Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004). Extinction risk from climate change.Nature, 427, 145-148. |
35 | Tsechor DJ, Totland O, Moe SR, Hopping KA, Pan JB, Klein JA (2013). Plant functional traits mediate reproductive phenology and success in response to experimental warming and snow addition in Tibet.Global Change Biology, 19, 459-472. |
36 | Wan SQ, Hui D, Wallace LL, Luo Y (2005). Direct and indirect warming effects on ecosystem carbon processes in a tall grass prairie.Global Biogeochemical Cycles, 19, 1-13. |
37 | Wan SQ, Norby RJ, Ledford J, Weltzin JF (2007). Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in a model old-field grassland.Global Change Biology, 13, 2411-2424. |
38 | Welker JM, Fahnestock JT, Henry GR, O’Dea KW, Chimner RA (2004). CO2 exchange in three Canadian high Arctic ecosystems: Response to long-term experimental warming.Global Change Biology, 10, 1981-1995. |
39 | Xia JY, Niu SL, Wan SQ (2009). Response of ecosystem carbon exchange to warming and nitrogen addition during two hydrologically contrasting growing seasons in a temperate steppe. Global Change Biology, 15, 1544-1556. |
40 | Zhang JX, Cao GM, Zhou DW, Hu QW, Zhao XQ (2003). Alpine meadow air-soil-vegetation-animal system carbon storage and carbon cycle.Acta Ecologica Sinica, 23, 627-634.(in Chinese with English abstract) [张金霞, 曹广民, 周党卫, 胡启武, 赵新全 (2003). 高寒矮嵩草草甸大气-土壤-植被-动物系统碳素储量及碳素循环. 生态学报, 23, 627-634.] |
41 | Zhang Q, Li L (2009). Study on the spatial-temporal change characteristics of net ecosystem exchange (NEE) in China. Journal of Anhui Agricultural Sciences, 37, 3108-3109.(in Chinese with English abstract) [张晴, 李力 (2009). 我国净生态系统碳交换量(NEE)的时空变化特征研究. 安徽农业科学, 37, 3108-3109.] |
42 | Zhou XH, Wan SQ, Luo YQ (2007). Source components and interannual variability of soil CO2 efflux under experimental warming and clipping in a grassland ecosystem.Global Change Biology, 13, 761-775. |
43 | Zhu JT (2016). Effects of experimental warming on plant reproductive phenology in Xizang alpine meadow.Chinese Journal of Plant Ecology, 40, 1028-1036.(in Chinese with English abstract) [朱军涛 (2016). 实验增温对藏北高寒草甸植物繁殖物候的影响. 植物生态学报, 40, 1028-1036.] |
[1] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[2] | 白雨鑫, 苑丹阳, 王兴昌, 刘玉龙, 王晓春. 东北地区3种桦木木质部导管特征对气候变化响应的趋同与差异[J]. 植物生态学报, 2023, 47(8): 1144-1158. |
[3] | 李红琴, 张法伟, 仪律北. 高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应[J]. 植物生态学报, 2023, 47(7): 922-931. |
[4] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[5] | 李伟, 张荣. 亚高寒草甸群落结构决定群落生产力实例验证[J]. 植物生态学报, 2023, 47(5): 713-723. |
[6] | 于海英, 杨莉琳, 付素静, 张志敏, 姚琦馥. 暖温带森林木本植物展叶始期对低温和热量累积变化的响应[J]. 植物生态学报, 2022, 46(12): 1573-1584. |
[7] | 刘艳方, 王文颖, 索南吉, 周华坤, 毛旭锋, 王世雄, 陈哲. 青海海北植物群落类型与土壤线虫群落相互关系[J]. 植物生态学报, 2022, 46(1): 27-39. |
[8] | 李捷, 陈莹莹, 乔福云, 郅堤港, 郭正刚. 高原鼠兔干扰对高寒草甸β多样性的影响[J]. 植物生态学报, 2021, 45(5): 476-486. |
[9] | 董利军, 李金花, 陈珊, 张瑞, 孙建, 马妙君. 若尔盖湿地高寒草甸退化过程中土壤有机碳含量变化及成因分析[J]. 植物生态学报, 2021, 45(5): 507-515. |
[10] | 汪子微, 万松泽, 蒋洪毛, 胡扬, 马书琴, 陈有超, 鲁旭阳. 青藏高原不同高寒草地类型土壤酶活性及其影响因子[J]. 植物生态学报, 2021, 45(5): 528-538. |
[11] | 马书琴, 汪子微, 陈有超, 鲁旭阳. 藏北高寒草地土壤有机质化学组成对土壤蛋白酶和脲酶活性的影响[J]. 植物生态学报, 2021, 45(5): 516-527. |
[12] | 杨德春, 胡雷, 宋小艳, 王长庭. 降雨变化对高寒草甸不同植物功能群凋落物质量及其分解的影响[J]. 植物生态学报, 2021, 45(12): 1314-1328. |
[13] | 李雪莹, 朱文泉, 李培先, 谢志英, 赵涔良. 气候变暖背景下青藏高原草本植物物候变化空间换时间预测[J]. 植物生态学报, 2020, 44(7): 742-751. |
[14] | 夏建阳, 鲁芮伶, 朱辰, 崔二乾, 杜莹, 黄昆, 孙宝玉. 陆地生态系统过程对气候变暖的响应与适应[J]. 植物生态学报, 2020, 44(5): 494-514. |
[15] | 牛书丽, 陈卫楠. 全球变化与生态系统研究现状与展望[J]. 植物生态学报, 2020, 44(5): 449-460. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19