植物生态学报 ›› 2020, Vol. 44 ›› Issue (5): 449-460.DOI: 10.17521/cjpe.2019.0355
• 编者评述 • 下一篇
收稿日期:
2019-12-22
接受日期:
2020-03-14
出版日期:
2020-05-20
发布日期:
2020-08-10
通讯作者:
牛书丽
基金资助:
Received:
2019-12-22
Accepted:
2020-03-14
Online:
2020-05-20
Published:
2020-08-10
Contact:
NIU Shu-Li
Supported by:
摘要:
全球变化与生态系统研究是一个宏观与微观相互交叉、多学科相互渗透的前沿科学领域, 重点研究生态系统结构和功能对全球变化的响应及反馈作用, 其目标是实现人类对生态系统服务的可持续利用。《植物生态学报》的《全球变化与生态系统》专辑在对国内外全球变化研究进行历史回顾和综合分析的基础上, 总结了全球变化与生态系统研究的阶段性重大进展及存在的主要问题, 并对全球变化研究的前沿方向进行展望和建议。根据研究内容和对象, 该专辑系统地综述了不同全球变化因子, 包括CO2和O3浓度升高、气候变暖、降水格局改变、氮沉降增加、土地利用变化等对陆地植物生理生态、群落结构及生态系统功能等的影响以及全球变化对海洋生态系统的影响; 探讨生态系统关键过程以及生物多样性的变化; 在明确全球变化生态效应的基础上, 阐明这些影响对气候和环境变化的反馈机制, 为构筑全球变化的适应对策提供生态学理论基础。
牛书丽, 陈卫楠. 全球变化与生态系统研究现状与展望. 植物生态学报, 2020, 44(5): 449-460. DOI: 10.17521/cjpe.2019.0355
NIU Shu-Li, CHEN Wei-Nan. Global change and ecosystems research progress and prospect. Chinese Journal of Plant Ecology, 2020, 44(5): 449-460. DOI: 10.17521/cjpe.2019.0355
序号 Number | 关键词1) | 频次 Frequency | 序号 Number | 关键词1) | 频次 Frequency |
---|---|---|---|---|---|
1 | Global change (全球变化) | 28 551 | 21 | Drought (干旱) | 1 917 |
2 | Ecosystem (生态系统) | 9 362 | 22 | Water (水) | 1 785 |
3 | Biodiversity (生物多样性) | 7 784 | 23 | Soil (土壤) | 1 763 |
4 | Carbon (碳) | 6 507 | 24 | Precipitation (降水) | 1 515 |
5 | Impact (影响) | 4 478 | 25 | Biome (生物群区) | 1 511 |
6 | Temperature (温度) | 3 934 | 26 | Productivity (生产力) | 1 442 |
7 | Dynamics (动态) | 3 738 | 27 | Elevated CO2 (CO2浓度上升) | 1 436 |
8 | Land use (土地利用) | 3 335 | 28 | Resilience (弹性) | 1 371 |
9 | Vegetation (植被) | 3 333 | 29 | Grassland (草地) | 1 362 |
10 | Management (管理) | 3 304 | 30 | United States (美国) | 1 327 |
11 | Model (模型) | 3 015 | 31 | Ecology (生态学) | 1 258 |
12 | Response (响应) | 3 000 | 32 | Disturbance (干扰) | 1 206 |
13 | Forest (森林) | 2 993 | 33 | Plant (植物) | 1 134 |
14 | Ecosystem service (生态系统服务) | 2 816 | 34 | Adaptation (适应) | 1 105 |
15 | Variability (变异) | 2 674 | 35 | Trend (趋势) | 1 075 |
16 | Conservation (保护) | 2 634 | 36 | China (中国) | 752 |
17 | Pattern (格局) | 2 453 | 37 | Population (种群) | 730 |
18 | Growth (增长) | 2 383 | 38 | Vulnerability (脆弱性) | 696 |
19 | Community (群落) | 2 264 | 39 | Photosynthesis (光合) | 677 |
20 | Nitrogen (氮) | 2 165 | 40 | Respiration (呼吸) | 620 |
Table 1 Top 40 keywords with the highest frequency in articles of Web of Science on global change and ecosystem during 2000-2019
序号 Number | 关键词1) | 频次 Frequency | 序号 Number | 关键词1) | 频次 Frequency |
---|---|---|---|---|---|
1 | Global change (全球变化) | 28 551 | 21 | Drought (干旱) | 1 917 |
2 | Ecosystem (生态系统) | 9 362 | 22 | Water (水) | 1 785 |
3 | Biodiversity (生物多样性) | 7 784 | 23 | Soil (土壤) | 1 763 |
4 | Carbon (碳) | 6 507 | 24 | Precipitation (降水) | 1 515 |
5 | Impact (影响) | 4 478 | 25 | Biome (生物群区) | 1 511 |
6 | Temperature (温度) | 3 934 | 26 | Productivity (生产力) | 1 442 |
7 | Dynamics (动态) | 3 738 | 27 | Elevated CO2 (CO2浓度上升) | 1 436 |
8 | Land use (土地利用) | 3 335 | 28 | Resilience (弹性) | 1 371 |
9 | Vegetation (植被) | 3 333 | 29 | Grassland (草地) | 1 362 |
10 | Management (管理) | 3 304 | 30 | United States (美国) | 1 327 |
11 | Model (模型) | 3 015 | 31 | Ecology (生态学) | 1 258 |
12 | Response (响应) | 3 000 | 32 | Disturbance (干扰) | 1 206 |
13 | Forest (森林) | 2 993 | 33 | Plant (植物) | 1 134 |
14 | Ecosystem service (生态系统服务) | 2 816 | 34 | Adaptation (适应) | 1 105 |
15 | Variability (变异) | 2 674 | 35 | Trend (趋势) | 1 075 |
16 | Conservation (保护) | 2 634 | 36 | China (中国) | 752 |
17 | Pattern (格局) | 2 453 | 37 | Population (种群) | 730 |
18 | Growth (增长) | 2 383 | 38 | Vulnerability (脆弱性) | 696 |
19 | Community (群落) | 2 264 | 39 | Photosynthesis (光合) | 677 |
20 | Nitrogen (氮) | 2 165 | 40 | Respiration (呼吸) | 620 |
关键词 | 中文 Chinese | 发表年份 Published year | 强度 Strength | 开始年份 Begin year | 结束年份 End year |
---|---|---|---|---|---|
El Nino | 厄尔尼诺 | 2000 | 57.34 | 2000 | 2004 |
Elevated CO2 | CO2浓度升高 | 2000 | 154.21 | 2000 | 2014 |
Forest ecosystem | 森林生态系统 | 2000 | 40.77 | 2000 | 2004 |
Simulation | 模拟 | 2000 | 39.49 | 2000 | 2004 |
Carbon cycle | 碳循环 | 2000 | 47.14 | 2000 | 2004 |
Net primary productivity | 净初级生产力 | 2000 | 140.50 | 2000 | 2009 |
Global change | 全球变化 | 2000 | 76.92 | 2000 | 2007 |
Soil respiration | 土壤呼吸 | 2000 | 114.42 | 2000 | 2009 |
Atmospheric CO2 | 大气CO2 | 2000 | 223.11 | 2000 | 2009 |
Photosynthesis | 光合作用 | 2000 | 138.90 | 2000 | 2014 |
Nitrogen | 氮 | 2000 | 17.94 | 2000 | 2002 |
Ocean | 海洋 | 2000 | 104.00 | 2000 | 2009 |
Carbon dioxide | 二氧化碳 | 2000 | 83.29 | 2000 | 2006 |
Decomposition | 分解 | 2000 | 120.64 | 2000 | 2014 |
Boreal forest | 北方森林 | 2000 | 147.81 | 2000 | 2009 |
Fire | 火烧 | 2000 | 122.93 | 2000 | 2014 |
United States | 美国 | 2000 | 55.06 | 2001 | 2008 |
Grassland | 草地 | 2000 | 4.11 | 2003 | 2004 |
Terrestrial ecosystem | 陆地生态系统 | 2000 | 5.87 | 2003 | 2006 |
Global warming | 全球变暖 | 2000 | 75.50 | 2005 | 2009 |
Long term | 长期 | 2000 | 78.38 | 2005 | 2009 |
Population | 种群 | 2000 | 129.29 | 2005 | 2014 |
Phytoplankton | 浮游植物 | 2000 | 102.34 | 2010 | 2014 |
Restoration | 恢复 | 2000 | 89.04 | 2015 | 2019 |
Landscape | 景观 | 2000 | 88.71 | 2015 | 2019 |
Vunerability | 脆弱性 | 2000 | 100.25 | 2015 | 2019 |
China | 中国 | 2000 | 110.83 | 2015 | 2019 |
Framework | 框架 | 2000 | 85.46 | 2015 | 2019 |
Sustainbility | 可持续性 | 2000 | 81.89 | 2015 | 2019 |
表2 2000-2019年间全球变化与生态系统方向Web of Science核心数据库文章关键词突变检测结果
Table 2 Keywords burst detection results of articles of Web of Science on global change and ecosystem during 2000-2019
关键词 | 中文 Chinese | 发表年份 Published year | 强度 Strength | 开始年份 Begin year | 结束年份 End year |
---|---|---|---|---|---|
El Nino | 厄尔尼诺 | 2000 | 57.34 | 2000 | 2004 |
Elevated CO2 | CO2浓度升高 | 2000 | 154.21 | 2000 | 2014 |
Forest ecosystem | 森林生态系统 | 2000 | 40.77 | 2000 | 2004 |
Simulation | 模拟 | 2000 | 39.49 | 2000 | 2004 |
Carbon cycle | 碳循环 | 2000 | 47.14 | 2000 | 2004 |
Net primary productivity | 净初级生产力 | 2000 | 140.50 | 2000 | 2009 |
Global change | 全球变化 | 2000 | 76.92 | 2000 | 2007 |
Soil respiration | 土壤呼吸 | 2000 | 114.42 | 2000 | 2009 |
Atmospheric CO2 | 大气CO2 | 2000 | 223.11 | 2000 | 2009 |
Photosynthesis | 光合作用 | 2000 | 138.90 | 2000 | 2014 |
Nitrogen | 氮 | 2000 | 17.94 | 2000 | 2002 |
Ocean | 海洋 | 2000 | 104.00 | 2000 | 2009 |
Carbon dioxide | 二氧化碳 | 2000 | 83.29 | 2000 | 2006 |
Decomposition | 分解 | 2000 | 120.64 | 2000 | 2014 |
Boreal forest | 北方森林 | 2000 | 147.81 | 2000 | 2009 |
Fire | 火烧 | 2000 | 122.93 | 2000 | 2014 |
United States | 美国 | 2000 | 55.06 | 2001 | 2008 |
Grassland | 草地 | 2000 | 4.11 | 2003 | 2004 |
Terrestrial ecosystem | 陆地生态系统 | 2000 | 5.87 | 2003 | 2006 |
Global warming | 全球变暖 | 2000 | 75.50 | 2005 | 2009 |
Long term | 长期 | 2000 | 78.38 | 2005 | 2009 |
Population | 种群 | 2000 | 129.29 | 2005 | 2014 |
Phytoplankton | 浮游植物 | 2000 | 102.34 | 2010 | 2014 |
Restoration | 恢复 | 2000 | 89.04 | 2015 | 2019 |
Landscape | 景观 | 2000 | 88.71 | 2015 | 2019 |
Vunerability | 脆弱性 | 2000 | 100.25 | 2015 | 2019 |
China | 中国 | 2000 | 110.83 | 2015 | 2019 |
Framework | 框架 | 2000 | 85.46 | 2015 | 2019 |
Sustainbility | 可持续性 | 2000 | 81.89 | 2015 | 2019 |
图1 2000-2019年间不同国家在全球变化与生态系统方向Web of Science核心数据库文章发表总量(A)及变化趋势(B)。其中B中的数据经过了以10为底的对数转换处理。0, 全球; 1, 中国; 2, 美国; 3, 英国; 4, 德国; 5, 加拿大; 6, 澳大利亚; 7, 法国; 8, 西班牙; 9, 瑞典; 10, 意大利。
Fig. 1 Total published papers (A) and temporal variation (B) of articles of Web of Science on global change and ecosystem from different countries during 2000-2019. Data in B were applied with a log transformation. 0, global; 1, China; 2, USA; 3, UK; 4, Germany; 5, Canada; 6, Australia; 7, France; 8, Spain; 9, Sweden; 10, Italy.
图2 2000-2019年间不同研究机构在全球变化与生态系统方向Web of Science核心数据库文章发表总量及引用情况。A, 中国科学院; B, 美国地质调查局; C, 中国科学院大学; D, 美国林务局; E, 美国科罗拉多州立大学; F, 美国华盛顿大学; G, 美国国家海洋大气局; H, 美国俄勒冈州立大学; I, 加拿大英属哥伦比亚大学; J, 美国加州大学伯克利分校。
Fig. 2 Total published papers and citations of Web of Science of different research institutes worldwide on global change and ecosystem during 2000-2019. A, Chinese Academy of Sciences; B, U.S. Geological Survey; C, University of Chinese Academy of Sciences; D, U.S. Forest Survey; E, Colorado State University, U.S.; F, University of Washington, U.S.; G, U.S. National Oceanic and Atmospheric Administration; H, Oregon State University, U.S.; I, University of British Columbia, Canada; J, University of California, Berkeley, U.S..
图3 2000-2019年间全球变化与生态系统研究方向在不同生态系统类型(A)、不同研究方法(B)、不同全球变化因子(C)、不同主流期刊(D)中Web of Science核心数据库文章发表量以及中国发文占比情况。1, 草地; 2, 森林; 3, 湿地; 4, 荒漠; 5, 灌丛; 6, 极地; 7, 海洋; 8, 淡水。AA, 整合分析; BB, 实验; CC, 模型; DD, 观测; EE, 综述。aa, CO2浓度上升; bb, 全球变暖; cc, 降水格局改变; dd, 氮沉降; ee, 臭氧; ff, 土地利用变化。
Fig. 3 Total published papers and percentage of Chinese publications of Web of Science on global change and ecosystem in different ecosystem types (A), different study methods (B), different global change factors (C), different top journals (D) during 2000-2019. 1, grassland; 2, forest; 3, wetland; 4, desert; 5, shrubland; 6, polar; 7, ocean; 8, freshwater. AA, meta-analysis; BB, experiment; CC, model; DD, observation; EE, review. aa, elevated CO2; bb, warming; cc, altered precipitation; dd, nitrogen deposition; ee, ozone; ff, land use change.
[1] | Aber J, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998). Nitrogen saturation in temperate forest ecosystems: hypotheses revisited. BioScience, 48, 921-934. |
[2] | Aber JD, Nadelhoffer KJ, Steudler P, Melillo JM (1989). Nitrogen Saturation in Temperate Forest Ecosystems. BioScience, 39, 378-386. |
[3] | Bai E, Xue B (2020). A review of influences of land use and land cover change on ecosystems. Chinese Journal of Plant Ecology, 44, 543-552. |
[ 白娥, 薛冰 (2020). 土地利用与土地覆盖变化对生态系统的影响. 植物生态学报, 44, 543-552.] | |
[4] | Baldocchi DD (2020). How eddy covariance flux measurements have contributed to our understanding of Global Change Biology. Global Change Biology, 26, 242-260. |
[5] | Castello L, Macedo M (2016). Large-scale degradation of Amazonian freshwater ecosystems. Global Change Biology, 22, 990-1007. |
[6] | Chen C, Chen Y, Hou J, Liang Y (2009). CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the China Society for Scientific and Technical Information, 28, 401-421. |
[ 陈超美, 陈悦, 侯剑华, 梁永霞 (2009). CiteSpace II: 科学文献中新趋势与新动态的识别与可视化. 情报学报, 28, 401-421.] | |
[7] | Craine JM, Brookshire ENJ, Cramer MD, Hasselquist NJ, Koba K, Marin-spiotta E, Wang L (2015). Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant and Soil, 296, 1-26. |
[8] | Denk TRA, Mohn J, Decock C, Lewicka-Szczebak D, Harris E, Butterbach-Bahl K, Kiese R, Wolf B (2017). The nitrogen cycle: a review of isotope effects and isotope modeling approaches. Soil Biology & Biochemistry, 105, 121-137. |
[9] |
Erb K-H, Lauk C, Kastner T, Mayer A, Theurl MC, Haberl H (2016). Exploring the biophysical option space for feeding the world without deforestation. Nature Communications, 7, 11382. DOI: 10.1038/ncomms11382.
DOI URL PMID |
[10] | Fang JY (2000). Global Ecology: Climate Change and Ecological Responses. Higher Education Press, Beijing. |
[ 方精云 (2000). 全球生态学: 气候变化与生态响应. 高等教育出版社, 北京.] | |
[11] | Fatichi S, Pappas C, Zscheischler J, Leuzinger S (2019). Modelling carbon sources and sinks in terrestrial vegetation. New Phytologist, 221, 652-668. |
[12] |
Fisher RA, Koven CD, Anderegg WRL, Christoffersen BO, Dietze MC, Farrior CE, Holm JA, Hurtt GC, Knox RG, Lawrence PJ, Lichstein JW, Longo M, Matheny AM, Medvigy D, Muller-Landau HC, Powell TL, Serbin SP, Sato H, Shuman JK, Smith B, Trugman AT, Viskari T, Verbeeck H, Weng E, Xu C, Xu X, Zhang T, Moorcroft PR (2018). Vegetation demographics in Earth System Models: a review of progress and priorities. Global Change Biology, 24, 35-54.
DOI URL PMID |
[13] | Feng ZZ, Li P, Zhang GY, Li ZZ, Ping Q, Peng JL, Liu S (2020a). Impacts of elevated carbon dioxide concentration on terrestrial ecosystems: problems and prospective. Chinese Journal of Plant Ecology, 44, 461-474. |
[ 冯兆忠, 李品, 张国友, 李征珍, 平琴, 彭金龙, 刘硕 (2020a). 二氧化碳浓度升高对陆地生态系统的影响: 问题与展望. 植物生态学报, 44, 461-474.] | |
[14] | Feng ZZ, Yuan XY, Li P, Shang B, Ping Q, Hu TJ, Liu S (2020b). Progress in the effects of elevated ground-level ozone on terrestrial ecosystems. Chinese Journal of Plant Ecology, 44, 526-542. |
[ 冯兆忠, 袁相洋, 李品, 尚博, 平琴, 胡廷剑, 刘硕 (2020b). 地表臭氧浓度升高对陆地生态系统影响的研究进展. 植物生态学报, 44, 526-542.] | |
[15] | Fu BJ, Niu D, Zhao SD (2005). Study on global change and terrestrial ecosystems history and prospect. Advances in Earth Science, 20, 556-560. |
[ 傅伯杰, 牛栋, 赵士洞 (2005). 全球变化与陆地生态系统研究: 回顾与展望. 地球科学进展, 20, 556-560.] | |
[16] | Fu W, Wu H, Zhao AH, Hao ZP, Chen BD (2020). Ecological impacts of nitrogen deposition on terrestrial ecosystems: research progresses and prospects. Chinese Journal of Plant Ecology, 44, 475-493. |
[ 付伟, 武慧, 赵爱花, 郝志鹏, 陈保冬 (2020). 陆地生态系统氮沉降的生态效应: 研究进展与展望. 植物生态学报, 44, 475-493.] | |
[17] |
Garcia-Palacios P, Gross N, Gaitan J, Maestre FT (2018). Climate mediates the biodiversity-ecosystem stability relationship globally. Proceedings of the National Academy of Sciences of the United States of America, 115, 8400-8405.
URL PMID |
[18] | Hallett LM, Hsu JS, Cleland EE, Collins SL, Dickson TL, Farrer EC, Gherardi LA, Gross KL, Hobbs RJ, Turnbull L, Suding KN (2014). Biotic mechanisms of community stability shift along a precipitation gradient. Ecology, 95, 1693-1700. |
[19] |
Huang M, Piao S, Ciais P, Peñuelas J, Wang X, Keenan TF, Peng S, Berry JA, Wang K, Mao J, Alkama R, Cescatti A, Cuntz M, De Deurwaerder H, Gao M, He Y, Liu Y, Luo Y, Myneni RB, Niu S, Shi X, Yuan W, Verbeeck H, Wang T, Wu J, Janssens IA (2019). Air temperature optima of vegetation productivity across global biomes. Nature Ecology & Evolution, 3, 772-779.
URL PMID |
[20] | IPCC (2014). The Physical Science Basis—Summary for Policymakers. Contribution of WG1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[21] |
Knapp AK, Ciais P, Smith MD (2017). Reconciling inconsistencies in precipitation-productivity relationships: implications for climate change. New Phytologist, 214, 41-47.
URL PMID |
[22] |
Kyaschenko J, Ovaskainen O, Ekblad A, Hagenbo A, Karltun E, Clemmensen KE, Lindahl BD (2019). Soil fertility in boreal forest relates to root-driven nitrogen retention and carbon sequestration in the mor layer. New Phytologist, 221, 1492-1502.
DOI URL PMID |
[23] | Leng SY (2016). The Geographical Sciences During 1986-2015: from the Classics to the Frontiers. Science Press, Beijing. |
[ 冷疏影 (2016). 地理科学三十年: 从经典到前沿. 科学出版社, 北京.] | |
[24] | Luo Y, Hui D (2009). In Real World Ecology, Large-Scale and Long-Term Case Studies and Methods. Springer, New York. |
[25] |
Luo Y, Schuur EAG (2020). Model parameterization to represent processes at unresolved scales and changing properties of evolving systems. Global Change Biology, 26, 1109-1117.
DOI URL PMID |
[26] | Luo Y, Su B, Currie WS, Dukes JS, Finzi A, Hartwig U, Hungate B, McMurtrie RE, Oren R, Parton WJ, Pataki DE, Shaw RM, Zak DR, Field CB (2004). Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. BioScience, 54, 731-739. |
[27] |
Luo Y, Wan S, Hui D, Wallace LL (2001). Acclimatization of soil respiration to warming in a tall grass prairie. Nature, 413, 622-625.
DOI URL PMID |
[28] | Mei Z, Li Y (2018). Knowledge mapping analysis on subject service research in China’s Libraries based on CiteSpace II. Journal of Library and Information Sciences in Agriculture, 30, 88-93. |
[ 梅振荣, 李杨 (2018). 基于CiteSpace II的国内图书馆学科服务研究知识图谱分析. 农业图书情报学刊, 30, 88-93.] | |
[29] | Melillo JM, Field CB, Moldan B (2003). Interactions of the Major Biogeochemical Cycles: Global Change and Human Impacts. Island Press, Washington DC. |
[30] |
Oro D, Genovart M, Tavecchia G, Fowler MS, Martínez- Abraín A (2013). Ecological and evolutionary implications of food subsidies from humans. Ecology Letters, 16, 1501-1514.
DOI URL PMID |
[31] | Post E (2013). Ecology of Climate Change: the Importance of Biotic Interactions . Princeton University Press, Princeton. |
[32] |
Quan Q, Tian DS, Luo YQ, Zhang FY, Crowther TW, Zhu K, Chen HYH, Zhou QP, Niu SL (2019). Water scaling of ecosystem carbon cycle feedback to climate warming. Science Advances, 5, eaav1131. DOI: 10.1126/sciadv.aav1131.
URL PMID |
[33] |
Rands MRW, Adams WM, Bennun L, Butchart SHM, Clements A, Coomes D, Entwistle A, Hodge I, Kapos V, Scharlemann JPW, Sutherland WJ, Vira B (2010). Biodiversity conservation: challenges beyond 2010. Science, 329, 1298-1303.
DOI URL PMID |
[34] | Reich PB, Sendall KM, Stefanski A, Rich RL, Hobbie SE, Montgomery RA (2018). Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture. Nature, 562, 263-267. |
[35] | Schimel D, Schneider FD, JPL Carbon and Ecosystem Participants (2019). Flux towers in the sky: global ecology from space. New Phytologist, 224, 570-584. |
[36] | Shugart HH, Woodward FI (2011). Global Change and the Terrestrial Biosphere: Achievements and Challenges. Wiley-Blackwell Press, Oxford. |
[37] |
Song J, Wan S, Piao S, Knapp AK, Classen AT, Vicca S, Ciais P, Hovenden MJ, Leuzinger S, Beier C, Kardol P, Xia J, Liu Q, Ru J, Zhou ZX, Luo Y, Guo D, Langley JA, Zscheischler J, Dukes JS, Tang J, Chen J, Hofmockel KS, Kueppers LM, Rustad L, Liu L, Smith MD, Templer PH, Thomas RQ, Norby RJ, Phillips RP, Niu S, Fatichi S, Wang Y, Shao P, Han H, Wang D, Lei L, Wang J, Li XN, Zhang Q, Li XM, Su FL, Liu B, Yang F, Ma G, Li G, Liu Y, Liu Y, Yang Z, Zhang K, Miao Y, Hu M, Yan C, Zhang A, Zhong M, Hui Y, Li Y, Zheng M (2019). A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nature Ecology & Evolution, 3, 1309-1320.
URL PMID |
[38] | Sun Y, Frankenberg C, Jung M, Joiner J, Guanter L, Köhler P, Magney T (2018). Overview of Solar-Induced Chlorophyll Fluorescence (SIF) from the Orbiting Carbon Observatory- 2: retrieval, cross-mission comparison, and global monitoring for GPP. Remote Sensing of Environment, 209, 808-823. |
[39] | Tian HQ, Wan SQ, Ma KP (2007). Global change biology: global change and terrestrial ecosystems. Journal of Plant Ecology (Chinese Version), 31, 173-174. |
[ 田汉勤, 万师强, 马克平 (2007). 全球变化生态学: 全球变化与陆地生态系统. 植物生态学报, 31, 173-174.] | |
[40] |
Tilman D, Clark M, Williams DR, Kimmel K, Polasky S, Packer C (2017). Future threats to biodiversity and pathways to their prevention. Nature, 546, 73-81.
URL PMID |
[41] |
Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošík V, Maron JL, Pergl J, Schaffner U, Sun Y, Pyšek P (2011). Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecology Letters, 14, 702-708.
URL PMID |
[42] | Vitousek PM (1992). Global environmental-change—An introduction. Annual Review of Ecology and Systematics, 23, 1-14. |
[43] | Vitousek PM (1994). Beyond global warming—Ecology and global change. Ecology, 75, 1861-1876. |
[44] |
Walther G-R, Roques A, Hulme PE, Sykes MT, Pyšek P, Kühn I, Zobel M, Bacher S, Botta-Dukát Z, Bugmann H, Czúcz B, Dauber J, Hickler T, Jarošík V, Kenis M, Klotz S, Minchin D, Moora M, Nentwig W, Ott J, Panov VE, Reineking B, Robinet C, Semenchenko V, Solarz W, Thuiller W, Vilà M, Vohland K, Settele J (2009). Alien species in a warmer world: risks and opportunities. Trends in Ecology & Evolution, 24, 686-693.
DOI URL PMID |
[45] |
Way DA, Oren R, Kroner Y (2015). The space-time continuum: the effects of elevated CO2 and temperature on trees and the importance of scaling. Plant, Cell & Environment, 38, 991-1007.
URL PMID |
[46] |
Wehr R, Munger JW, McManus JB, Nelson DD, Zahniser MS, Davidson EA, Wofsy SC, Saleska SR (2016). Seasonality of temperate forest photosynthesis and daytime respiration. Nature, 534, 680-683.
URL PMID |
[47] | Xia JY, Lu RL, Zhu C, Cui EQ, Du Y, Huang K, Sun BY (2020). Response and adaptation of terrestrial ecosystem processes to climate warming. Chinese Journal of Plant Ecology, 44, 494-514. |
[ 夏建阳, 鲁芮伶, 朱辰, 崔二乾, 杜莹, 黄昆, 孙宝玉 (2020). 陆地生态系统过程对气候变暖的响应与适应. 植物生态学报, 44, 494-514.] | |
[48] | Xiao J, Chevallier F, Gomez C, Guanter L, Hicke JA, Huete AR, Ichii K, Ni W, Pang Y, Rahman AF, Sun G, Yuan W, Zhang L, Zhang X (2019). Remote sensing of the terrestrial carbon cycle: a review of advances over 50 years. Remote Sensing of Environment, 233, 111383. DOI: 10.1016/j.rse.2019.111383. |
[49] | Xing P, Li B, Han YX, Gu QJ, Wan HX (2020). Responses of freshwater ecosystems to global change: research progress and outlook. Chinese Journal of Plant Ecology, 44, 565-574. |
[ 邢鹏, 李彪, 韩一萱, 顾秋锦, 万洪秀 (2020). 淡水生态系统对全球变化的响应: 研究进展与展望. 植物生态学报, 44, 565-574.] | |
[50] | Ye YT, Shi DL (2020). Effects of global change on key processes of primary production in marine ecosystems. Chinese Journal of Plant Ecology, 44, 575-582. |
[ 叶幼亭, 史大林 (2020). 全球变化对海洋生态系统初级生产关键过程的影响. 植物生态学报, 44, 575-582.] | |
[51] | Yu GR (2003). Global Change, Carbon Cycle and Storage in Terrestrial Ecosystem. China Meteorological Press, Beijing. |
[ 于贵瑞 (2003). 全球变化与陆地生态系统碳循环和碳蓄积. 气象出版社, 北京.] | |
[52] | Yu ZL (2017). Ecology: Current Knowledge and Future Challenges. Higher Education Press, Beijing. |
[ 于振良 (2017). 生态学的现状与发展趋势. 高等教育出版社, 北京.] | |
[53] |
Zellweger F, Frenne PD, Lenoir J, Rocchini D, Coomes D (2019). Advances in microclimate ecology arising from remote sensing. Trends in Ecology & Evolution, 34, 327-341.
DOI URL PMID |
[54] | Zhang YJ, Zhu JT, Shen RN, Wang L (2020). Research progress on the effects of grazing on grassland ecosystem. Chinese Journal of Plant Ecology, 44, 553-564. |
[ 张扬建, 朱军涛, 沈若楠, 王荔 (2020). 放牧对草地生态系统影响的研究进展. 植物生态学报, 44, 553-564.] | |
[55] | Zhou GY, Zhou LY, Shao JJ, Zhou XH (2020). Effects of extreme drought on terrestrial ecosystems: review and prospects. Chinese Journal of Plant Ecology, 44, 515-525. |
[ 周贵尧, 周灵燕, 邵钧炯, 周旭辉 (2020). 极端干旱对陆地生态系统的影响: 进展与展望. 植物生态学报, 44, 515-525.] | |
[56] |
Zhou X, Weng E, Luo Y (2008). Modeling patterns of nonlinearity in ecosystem responses to temperature, CO2, and precipitation changes. Ecological Applications, 18, 453-466.
DOI URL PMID |
[1] | 俞庆水 倪晓凤 吉成均 朱江玲 唐志尧 方精云. 10年氮磷添加对海南尖峰岭两种热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 陈科宇 邢森 唐玉 孙佳慧 任世杰 张静 纪宝明. 不同草地型土壤丛枝菌根真菌群落特征及其驱动因素[J]. 植物生态学报, 2024, 48(5): 660-674. |
[3] | 陈以恒 玉素甫江·如素力 阿卜杜热合曼·吾斯曼. 2001-2020年天山新疆段草地植被覆盖度时空变化及驱动因素分析[J]. 植物生态学报, 2024, 48(5): 561-576. |
[4] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[5] | 臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎. 基于纬度移栽的落叶松叶、枝、根生态化学计量特征对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 469-482. |
[6] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[7] | 吴茹茹, 刘美珍, 谷仙, 常馨月, 郭立月, 蒋高明, 祁如意. 气候变化对巨柏适宜生境分布的潜在影响和预测[J]. 植物生态学报, 2024, 48(4): 445-458. |
[8] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[9] | 杨宇萌, 来全, 刘心怡. 气候变化和人类活动对内蒙古植被总初级生产力的定量影响[J]. 植物生态学报, 2024, 48(3): 306-316. |
[10] | 张启, 程雪寒, 王树芝. 北京西山老龄树记载的森林干扰历史[J]. 植物生态学报, 2024, 48(3): 341-348. |
[11] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[12] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[13] | 李冰, 朱湾湾, 韩翠, 余海龙, 黄菊莹. 降水量变化下荒漠草原土壤呼吸及其影响因素[J]. 植物生态学报, 2023, 47(9): 1310-1321. |
[14] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[15] | 白雨鑫, 苑丹阳, 王兴昌, 刘玉龙, 王晓春. 东北地区3种桦木木质部导管特征对气候变化响应的趋同与差异[J]. 植物生态学报, 2023, 47(8): 1144-1158. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19