植物生态学报 ›› 2024, Vol. 48 ›› Issue (5): 561-576.DOI: 10.17521/cjpe.2023.0155 cstr: 32100.14.cjpe.2023.0155
陈以恒1, 玉素甫江•如素力1,2,*(), 阿卜杜热合曼•吾斯曼1
收稿日期:
2023-05-31
接受日期:
2024-01-16
出版日期:
2024-05-20
发布日期:
2024-06-13
通讯作者:
(基金资助:
CHEN Yi-Heng1, Yusufujiang RUSULI1,2,*(), Abdureheman WUSIMAN1
Received:
2023-05-31
Accepted:
2024-01-16
Online:
2024-05-20
Published:
2024-06-13
Contact:
(Supported by:
摘要:
草地在天山生态系统中起着重要作用, 与区域畜牧业发展息息相关。为阐明天山新疆段草地植被时空演变格局及其影响因素, 该研究基于2001-2020年MODIS NDVI遥感影像, 使用Sen+Mann-Kendall趋势分析法和变异系数、土地利用动态, 对天山新疆段草地植被覆盖度(FVC)的时空动态特征进行分析, 并通过地理探测器和相关性分析法探究草地FVC变化的驱动因素, 结果表明: (1) FVC整体变化较稳定, 多年平均草地FVC在0.33-0.42之间波动, FVC面积显著增加的区域分布在天山东北部和西南部低海拔地区, 占总面积的3.14%, FVC面积显著减少的区域主要分布在伊犁河沟, 占总面积的15.81%。(2)草地FVC的变化主要受植被类型和畜牧业总产值的影响, 其影响力均在29.85%以上。其中, 年降水量和年平均气温与植被类型相互作用后, 影响力均提升到48.70%以上。(3)研究时段内, 草地FVC与年降水量、年平均气温均呈正相关关系, 与年降水量正相关区域面积占总面积的80.84%, 主要分布在天山南北两侧的盆地周围; 与年平均气温正相关区域面积占总面积的71.69%, 主要分布在海拔较高的山区。
陈以恒, 玉素甫江•如素力, 阿卜杜热合曼•吾斯曼. 2001-2020年天山新疆段草地植被覆盖度时空变化及驱动因素分析. 植物生态学报, 2024, 48(5): 561-576. DOI: 10.17521/cjpe.2023.0155
CHEN Yi-Heng, Yusufujiang RUSULI, Abdureheman WUSIMAN. Analysis of spatial and temporal variation in grassland vegetation cover in Xinjiang section of Tianshan Mountains and the driving factors from 2001 to 2020. Chinese Journal of Plant Ecology, 2024, 48(5): 561-576. DOI: 10.17521/cjpe.2023.0155
图1 天山新疆段年平均草地植被覆盖度(FVC) (A), 博斯腾湖区无人机遥感影像(B)及天山北坡中段诸河流域实验点无人机遥感影像(C)。ENT, 天山北坡东段诸河流域; MNT, 天山北坡中段诸河流域。
Fig. 1 Average annual grassland fractional vegetation cover (FVC) in Xinjiang section of Tianshan Mountains (A), unmanned aerial vehicle (UAV) remote sensing image of Bosten Lake area (B), and UAV remote sensing image of river basins in the middle section of the northen slope of Tianshan Mountains side (C). ENT, river basins in the eastern section of the northern slope of Tianshan Mountains; MNT, river basins in the middle section of the northern slope of Tianshan Mountains.
类别 Category | 因素 Factor | 空间分辨率 Spatial resolution | 数据来源 Data sources | ||
---|---|---|---|---|---|
自然因素 Natural factor | X1 | 高程 Digital elevation model | 30 m | | |
X2 | 坡度 Slope | 30 m | | ||
X3 | 坡向 Aspect | 30 m | | ||
X4 | 地形 Topography | 1 km | | ||
X5 | 年降水量 Mean annual precipitation | 1 km | http://www.geodata.cn/ | ||
X6 | 年平均气温 Mean annual air temperature | 1 km | http://www.geodata.cn/ | ||
X7 | 土壤类型 Soil type | 1 km | | ||
X8 | 植被类型 Vegetation type | 1 km | | ||
X9 | 土地利用 Land use and land cover change | 30 m | http://www.geodata.cn/ | ||
人为因素 Human factor | X10 | 畜牧业生产总值 Gross livestock production | 1 km | http://www.gisrs.cn/ | |
X11 | 家畜存栏数 Livestock stock | 1 km | | ||
X12 | 人口密度 Population density | 1 km | |
表1 影响草地植被覆盖度的自然因素和人为因素
Table 1 Natural and anthropogenic factors affecting grassland vegetation cover
类别 Category | 因素 Factor | 空间分辨率 Spatial resolution | 数据来源 Data sources | ||
---|---|---|---|---|---|
自然因素 Natural factor | X1 | 高程 Digital elevation model | 30 m | | |
X2 | 坡度 Slope | 30 m | | ||
X3 | 坡向 Aspect | 30 m | | ||
X4 | 地形 Topography | 1 km | | ||
X5 | 年降水量 Mean annual precipitation | 1 km | http://www.geodata.cn/ | ||
X6 | 年平均气温 Mean annual air temperature | 1 km | http://www.geodata.cn/ | ||
X7 | 土壤类型 Soil type | 1 km | | ||
X8 | 植被类型 Vegetation type | 1 km | | ||
X9 | 土地利用 Land use and land cover change | 30 m | http://www.geodata.cn/ | ||
人为因素 Human factor | X10 | 畜牧业生产总值 Gross livestock production | 1 km | http://www.gisrs.cn/ | |
X11 | 家畜存栏数 Livestock stock | 1 km | | ||
X12 | 人口密度 Population density | 1 km | |
判断准则 Judgement criteria | 交互作用类型 Type of interaction |
---|---|
P(Xi∩Xj) < min[P(Xi), P(Xj)] | 非线性减弱 Nonlinear weakening |
min[P(Xi), P(Xj)] < P(Xi∩Xj) < max[P(Xi), P(Xj)] | 线性减弱 linear weakening |
P(Xi∩Xj) > max[P(Xi), P(Xj)] | 线性增强 linear enhancement |
P(Xi∩Xj) > P(Xi) + P(Xj) | 独立 Independent |
P(Xi∩Xj) = P(Xi) + P(Xj) | 非线性增强 Nonlinear enhancement |
表2 交互作用探测中的因子关系
Table 2 Factor relationships in interaction detection
判断准则 Judgement criteria | 交互作用类型 Type of interaction |
---|---|
P(Xi∩Xj) < min[P(Xi), P(Xj)] | 非线性减弱 Nonlinear weakening |
min[P(Xi), P(Xj)] < P(Xi∩Xj) < max[P(Xi), P(Xj)] | 线性减弱 linear weakening |
P(Xi∩Xj) > max[P(Xi), P(Xj)] | 线性增强 linear enhancement |
P(Xi∩Xj) > P(Xi) + P(Xj) | 独立 Independent |
P(Xi∩Xj) = P(Xi) + P(Xj) | 非线性增强 Nonlinear enhancement |
覆盖度等级 FVC class | 面积 Area (×104 km2) | 百分比 Percentage (%) | 土地利用动态度 LUCC dynamic (K, %) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2001 | 2005 | 2010 | 2015 | 2020 | 2001 | 2005 | 2010 | 2015 | 2020 | 2001-2020 | |
极低 Lowest | 8.16 | 6.44 | 5.66 | 5.91 | 6.03 | 31.99 | 25.25 | 22.20 | 23.19 | 23.63 | -1.31 |
较低 Lower | 8.47 | 8.78 | 8.13 | 7.79 | 7.43 | 33.22 | 34.44 | 31.88 | 30.56 | 29.11 | -0.61 |
中等 Medium | 5.40 | 6.44 | 6.91 | 7.10 | 6.79 | 21.18 | 25.27 | 27.11 | 27.85 | 26.63 | 1.28 |
较高 Higher | 3.11 | 3.44 | 4.45 | 4.51 | 5.09 | 12.20 | 13.50 | 17.48 | 17.67 | 19.95 | 3.17 |
极高 Highest | 0.35 | 0.39 | 0.33 | 0.18 | 0.16 | 1.41 | 1.54 | 1.33 | 0.73 | 0.64 | -2.69 |
表3 2001-2020年天山新疆段草地植被覆盖度(FVC)面积统计
Table 3 Area statistics of grassland fractional vegetation cover (FVC) from 2001 to 2020 in Xinjiang section of Tianshan Mountains
覆盖度等级 FVC class | 面积 Area (×104 km2) | 百分比 Percentage (%) | 土地利用动态度 LUCC dynamic (K, %) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2001 | 2005 | 2010 | 2015 | 2020 | 2001 | 2005 | 2010 | 2015 | 2020 | 2001-2020 | |
极低 Lowest | 8.16 | 6.44 | 5.66 | 5.91 | 6.03 | 31.99 | 25.25 | 22.20 | 23.19 | 23.63 | -1.31 |
较低 Lower | 8.47 | 8.78 | 8.13 | 7.79 | 7.43 | 33.22 | 34.44 | 31.88 | 30.56 | 29.11 | -0.61 |
中等 Medium | 5.40 | 6.44 | 6.91 | 7.10 | 6.79 | 21.18 | 25.27 | 27.11 | 27.85 | 26.63 | 1.28 |
较高 Higher | 3.11 | 3.44 | 4.45 | 4.51 | 5.09 | 12.20 | 13.50 | 17.48 | 17.67 | 19.95 | 3.17 |
极高 Highest | 0.35 | 0.39 | 0.33 | 0.18 | 0.16 | 1.41 | 1.54 | 1.33 | 0.73 | 0.64 | -2.69 |
图3 天山新疆段草地植被覆盖度时空变化(A)和变化趋势显著性(B)。ENT, 天山北坡东段诸河流域; MNT, 天山北坡中段诸河流域。
Fig. 3 Spatial and temporal variation (A) and trend significance (B) of grassland fractional vegetation cover (FVC) in Xinjiang section of Tianshan Mountains. ENT, river basins in the eastern section of the northern slope of Tianshan Mountains; MNT, river basins in the middle section of the northern slope of Tianshan Mountains.
图4 2001-2020年天山新疆段草地不同等级覆盖度(FVC)逐年变化趋势。
Fig. 4 Yearly trend of grassland fractional vegetation cover (FVC) of different classes in Xinjiang section of Tianshan Mountains from 2001 to 2020.
变异程度 Variation | 面积 Area (×104 km2) | 百分比 Percentage (%) | ||||||
---|---|---|---|---|---|---|---|---|
2001-2005 | 2006-2010 | 2011-2015 | 2016-2020 | 2001-2005 | 2006-2010 | 2011-2015 | 2016-2020 | |
极不显著 Highly insignificant | 4.47 | 5.29 | 5.18 | 5.07 | 27.36 | 32.40 | 31.71 | 31.09 |
不显著 Insignificant | 5.47 | 5.39 | 5.58 | 4.58 | 33.53 | 33.00 | 34.20 | 28.08 |
适中 Intermediate | 3.40 | 2.97 | 3.25 | 3.02 | 20.81 | 18.22 | 19.89 | 18.53 |
显著 Significant | 1.44 | 1.32 | 1.25 | 1.63 | 8.84 | 8.10 | 7.64 | 9.97 |
极显著 Highly significant | 1.54 | 1.35 | 1.07 | 2.01 | 9.46 | 8.29 | 6.56 | 12.33 |
表4 天山新疆段草地植被覆盖度变异系数分级
Table 4 Grassland fractional vegetation cover (FVC) variation coefficient classification in Xinjiang section of Tianshan Mountains
变异程度 Variation | 面积 Area (×104 km2) | 百分比 Percentage (%) | ||||||
---|---|---|---|---|---|---|---|---|
2001-2005 | 2006-2010 | 2011-2015 | 2016-2020 | 2001-2005 | 2006-2010 | 2011-2015 | 2016-2020 | |
极不显著 Highly insignificant | 4.47 | 5.29 | 5.18 | 5.07 | 27.36 | 32.40 | 31.71 | 31.09 |
不显著 Insignificant | 5.47 | 5.39 | 5.58 | 4.58 | 33.53 | 33.00 | 34.20 | 28.08 |
适中 Intermediate | 3.40 | 2.97 | 3.25 | 3.02 | 20.81 | 18.22 | 19.89 | 18.53 |
显著 Significant | 1.44 | 1.32 | 1.25 | 1.63 | 8.84 | 8.10 | 7.64 | 9.97 |
极显著 Highly significant | 1.54 | 1.35 | 1.07 | 2.01 | 9.46 | 8.29 | 6.56 | 12.33 |
图5 2001-2020年天山新疆段草地植被覆盖度变异系数各等级时空分布。ENT, 天山北坡东段诸河流域; MNT, 天山北坡中段诸河流域。
Fig. 5 Spatial and temporal distribution of degrades of coefficients of variation of grassland fractional vegetation cover (FVC) in Xinjiang section of the Tianshan Mountains from 2001 to 2020. ENT, river basins in the eastern section of the northern slope of Tianshan Mountains; MNT, river basins in the middle section of the northern slope of Tianshan Mountains.
图6 天山新疆段草地植被覆盖度空间分异驱动因素最优离散化。equal, 相等间隔; geometric, 几何间隔; natural, 自然间断点分级法; quantile, 分位数。
Fig. 6 Optimal discretization of the drivers of spatial variation in grassland fractional vegetation cover in Xinjiang section of the Tianshan Mountains.
图7 天山新疆段草地植被覆盖度空间分异因子探测。
Fig. 7 Detection of spatial differentiation factors of fractional vegetation cover of grasslands in Xinjiang section of Tianshan Mountains.
图8 天山新疆段草地植被覆盖度空间分异驱动因子交互探测。X1-X10, 驱动因子名称, 具体见表1。圆圈尺寸表示交互力大小, 圈中的数字表示交互力的影响力(q值)。
Fig. 8 Detection of spatial variation drivers of grassland fractional vegetation cover in the middle part of Xinjiang section of Tianshan Mountains. X1-X10, names of driving factors, see Table 1 for details. Circle size indicates interaction force magnitude, and the number in the circle indicates the impact value (q) of the interaction force.
图9 2001-2020年天山新疆段草地植被覆盖度与年平均气温(A)和年降水量(B)逐年变化。
Fig. 9 Annual variation of fractional vegetation cover (FVC) and mean annual air temperature (A) and mean annual precipitation (B) in Xinjiang section of Tianshan Mountains grasslands from 2001 to 2020.
图10 2001-2020年天山新疆段年平均气温、年降水量多年均值(A、C)及气温和降水变化率(B、D)。ENT, 天山北坡东段诸河流域; MNT, 天山北坡中段诸河流域。
Fig. 10 Multi-year averages of mean annual air temperature and annual precipitation (A, C) and rates of change of temperature and precipitation (B, D) in Xinjiang section of Tianshan Mountains from 2001 to 2020. ENT, river basins in the eastern section of the northern slope of Tianshan Mountains; MNT, river basins in the middle section of the northern slope of Tianshan Mountains.
图11 2001-2020年天山新疆段草地植被覆盖度与同期年平均气温(A)、年降水量(B)的相关性。ENT, 天山北坡东段诸河流域; MNT, 天山北坡中段诸河流域。
Fig. 11 Correlation of fractional vegetation cover (FVC) with temperature (A) and precipitation (B) in the same period in Xinjiang section of the Tianshan Mountains grasslands from 2001 to 2020. ENT, river basins in the eastern section of the northern slope of Tianshan Mountains; MNT, river basins in the middle section of the northern slope of Tianshan Mountains.
[1] | Aizizi Y, Kasimu A, Liang H, Zhang X, Zhao Y, Wei B (2023). Evaluation of ecological space and ecological quality changes in urban agglomeration on the northern slope of the Tianshan Mountains. Ecological Indicators, 146, 109896. DOI: 10.1016/j.ecolind.2023.109896. |
[2] | Bian HQ, Wang XM (2018). Analysis of dynamic change in the past 13 years in vegetation covering the delta oasis of Weigan-Kuqa River. Pratacultural Science, 35, 2845-2854. |
[边慧芹, 王雪梅 (2018). 近13年渭干河-库车河绿洲植被覆盖动态变化分析. 草业科学, 35, 2845-2854.] | |
[3] | Chen CB, Li GY, Peng J (2023). Spatio-temporal characteristics of Xinjiang grassland NDVI and its response to climate change from 1981 to 2018. Acta Ecologica Sinica, 43, 1537-1552. |
[陈春波, 李刚勇, 彭建 (2023). 1981-2018年新疆草地归一化植被指数时空特征及其对气候变化的响应. 生态学报, 43, 1537-1552.] | |
[4] | Chen K, Yang CC, Bai LG, Chen Y, Liu R, Chao LM (2021). Effects of natural and human factors on vegetation normalized difference vegetation index based on geographical detectors in Inner Mongolia. Acta Ecologica Sinica, 41, 4963-4975. |
[陈宽, 杨晨晨, 白力嘎, 陈瑜, 刘锐, 潮洛濛 (2021). 基于地理探测器的内蒙古自然和人为因素对植被NDVI变化的影响. 生态学报, 41, 4963-4975.] | |
[5] | Chen XP, Zhao XY, Zhang J, Wang RX, Lu JN (2023). Ariation of NDVI spatio-temporal characteristics and its driving factors based on geodetector model in Horqin Sandy Land, China. Chinese Journal of Plant Ecology, 47, 1082-1093. |
[陈雪萍, 赵学勇, 张晶, 王瑞雄, 卢建男 (2023). 基于地理探测器的科尔沁沙地植被NDVI时空变化特征及其驱动因素. 植物生态学报, 47, 1082-1093.]
DOI |
|
[6] | Department of Rural Surveys, National Bureau of Statistics of China (2020). China Statistical Yearbook (County-Level)- 2020. China Statistics Press, Beijing. |
[国家统计局农村社会经济调查司 (2020). 中国县域统计年鉴(县市卷)-2020. 中国统计出版社, 北京.] | |
[7] | Fan MT, Xu JH, Yu WZ, Chen YN, Wang MH, Dai W, Wang YW (2023). Recent Tianshan warming in relation to large-scale climate teleconnections. Science of the Total Environment, 856, 159201. DOI: 10.1016/j.scitotenv.2022.159201. |
[8] | Fang XQ, Yu WH (2002). Progress in the studies on the phenological responding to global warming. Advance In Earth Sciences, 17, 714-719. |
[方修琦, 余卫红 (2002). 物候对全球变暖响应的研究综述. 地球科学进展, 17, 714-719.]
DOI |
|
[9] | Hasimu D (2013). Present situation and ecological protection of grassland resources in Xinjiang. Xinjiang Environmental Protection, 35(S1), 41-44. |
[迪利夏提•哈斯木 (2013). 新疆草地资源现状与生态保护. 新疆环境保护, 35(S1), 41-44.] | |
[10] |
He J, He L, Lü D, Cheng Z, Xue F, Liu BY, Zhang XP (2023). Spatiotemporal variation and its driving mechanism of photosynthetic vegetation in the Loess Plateau from 2001 to 2020. Chinese Journal of Plant Ecology, 47, 306-318.
DOI |
[贺洁, 何亮, 吕渡, 程卓, 薛帆, 刘宝元, 张晓萍 (2023). 2001-2020年黄土高原光合植被时空变化及驱动机制. 植物生态学报, 47, 306-318.]
DOI |
|
[11] | Huang RJ, Chen JJ, Feng ZH, Yang YP, You HT, Han XW (2023). Fitness for purpose of several fractional vegetation cover products on monitoring vegetation cover dynamic change—A case study of an alpine grassland ecosystem. Remote Sensing, 15, 1312. DOI: 10.3390/rs15051312. |
[12] | Ji YH, Zhou GS, Wang SD, Wang LX, Zhou MZ (2021). Evolution characteristics and its driving forces analysis of vegetation ecological quality in Qinling Mountains Region from 2000 to 2019. Chinese Journal of Plant Ecology, 45, 617-625. |
[汲玉河, 周广胜, 王树东, 王丽霞, 周梦子 (2021). 2000-2019年秦岭地区植被生态质量演变特征及驱动力分析. 植物生态学报, 45, 617-625.] | |
[13] | Kendall MG (1975). Rank Correlation Measures. Charles Griffin, London. |
[14] | Leng RL, Zhang YY, Xie JQ, Li FN, Xu G, Cui X (2019). An analysis of fractional vegetation cover of the Gannan grassland in the non-growing season based on Multispectral data and small UVAs. Pratacultural Science, 36, 2742-2751. |
[冷若琳, 张瑶瑶, 谢建全, 李芙凝, 胥刚, 崔霞 (2019). 基于多光谱数据与小型无人机的甘南草地非生长季植被覆盖度分析. 草业科学, 36, 2742-2751.] | |
[15] | Li FF, Lu HL, Wang GQ, Yao ZY, Li Q, Qiu J (2022). Zoning of precipitation regimes on the Qinghai-Tibet Plateau and its surrounding areas responded by the vegetation distribution. Science of the Total Environment, 838, 155844. DOI: 10.1016/j.scitotenv.2022.155844. |
[16] | Li H, Jiang KW, Yang YQ, Sun HB, Wang YF, Zhang QQ (2023). Response of vegetation characteristics and soil nutrients to grazing in mountain meadows on the north slope of the Tianshan Mountains. Pratacultural Science, 40, 874-884. |
[李宏, 江康威, 杨永强, 孙瀚博, 王亚菲, 张青青 (2023). 天山北坡山地草甸植被特征和土壤养分对放牧的响应. 草业科学, 40, 874-884.] | |
[17] | Li J, Tang ZG, Deng G, Sang GQ, Wang JW (2023). Remote sensing monitoring of grassland phenological changes in the Qinghai-Tibetan Plateau during 2001-2020. Research of Soil and Water Conservation, 30(4), 265-274. |
[李佳, 唐志光, 邓刚, 桑国庆, 王靖文 (2023). 2001-2020年青藏高原草地物候变化遥感监测. 水土保持研究, 30(4), 265-274.] | |
[18] | Li XL, Li RP, Wang XQ, Wang SN, Wang CK (2023). Spatiotemporal change and analysis of factors driving forest-grass vegetation coverage in Hetao Irrigation District based on geographical detector. Arid Zone Research, 40, 623-635. |
[李鑫磊, 李瑞平, 王秀青, 王思楠, 王成坤 (2023). 基于地理探测器的河套灌区林草植被覆盖度时空变化与驱动力分析. 干旱区研究, 40, 623-635.] | |
[19] | Li XQ, He XL, Li XL, Du YJ, Yang G, Tian H, Yu JW (2023). Construction of high-resolution precipitation dataset and its implication to drought over the Tianshan Mountains, China. Frontiers in Earth Science, 11, 1128990. DOI: 10.3389/feart.2023.1128990. |
[20] | Lin XC, Chen JJ, Lou PQ, Yi SH, Qin Y, You HT, Han XW (2021). Improving the estimation of alpine grassland fractional vegetation cover using optimized algorithms and multi-dimensional features. Plant Methods, 17, 96. DOI: 10.1186/s13007-021-00796-5. |
[21] | Lou AR, Zhou GF (2001). Relationships between environment and spatial pattern of vegetation types in the mid Tianshan Mountains. Chinese Journal of Plant Ecology, 25, 385-391. |
[娄安如, 周国法 (2001). 中国天山中段主要植被类型中种群的空间分布格局与环境的关系. 植物生态学报, 25, 385-391.] | |
[22] |
Maimaiti A, Rusuli Y, He H, Abudukerimu B (2019). Spatio-temporal characteristics of vegetation water use efficiency and its relationship with climate factors in Tianshan Mountains in Xinjiang from 2000 to 2017. Chinese Journal of Plant Ecology, 43, 490-500.
DOI |
[艾则孜提约麦尔•麦麦提, 玉素甫江•如素力, 何辉, 拜合提尼沙•阿不都克日木(2019). 2000-2017年新疆天山植被水分利用效率时空特征及其与气候因子关系分析. 植物生态学报, 43, 490-500.]
DOI |
|
[23] | Mann HB (1945). Nonparametric tests against trend. Econometrica, 13, 245-259. |
[24] | Miao YL, Qin R, Zhang YH, Fu XH (2019). Spatiotemporal variations of temperature and precipitation on the north slope of the eastern Tianshan Mountain. Research of Soil and Water Conservation, 26, 219-223. |
[苗运玲, 秦榕, 张云惠, 伏晓慧 (2019). 东天山北坡气温与降水时空变化特征. 水土保持研究, 26, 219-223.] | |
[25] | National Forestry and Grassland Administration (2019). China Forestry and Grassland Statistical Yearbook. China Statistics Press, Beijing. China Forestry Publishing House, Beijing. |
[国家林业和草原局 (2019). 中国林业和草原统计年鉴. 中国林业出版社, 北京.] | |
[26] |
Qin SJ, Qian TL, Wu ZN, Li YH, Wang JC (2023). Simulation of the spatial pattern of human travel activity intensity based on geodetector and maximum entropy model: a case study of Yunnan Province. Scientia Geographica Sinica, 43, 1360-1370.
DOI |
[秦淑洁, 钱天陆, 吴朝宁, 李云昊, 王结臣 (2023). 基于地理探测器和最大熵模型的人类出行活动强度空间格局模拟: 以云南省域为例. 地理科学, 43, 1360-1370.]
DOI |
|
[27] | Ren LQ (2022). Spatiotemporal change and driving force of vegetation in Ebinur Lake Basin. Arid Land Geography, 45, 467-477. |
[任立清 (2022). 艾比湖流域植被时空变化及驱动力分析. 干旱区地理, 45, 467-477.] | |
[28] | Rondeaux G, Steven M, Baret F (1996). Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 55, 95-107. |
[29] | Roujean JL, Breon FM (1995). Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sensing of Environment, 51, 375-384. |
[30] | Sen PK (1968). Estimates of the regression coefficient based on Kendallʼs tau. Journal of the American Statistical Association, 63, 1379-1389. |
[31] | Shen BB, Wei YB, Ma LC, Xu DW, Ding L, Hou LL, Qin Q, Xin XP (2022). Spatiotemporal changes and drivers of fractional vegetation cover in Inner Mongolia grassland of China. Transactions of the Chinese Society of Agricultural Engineering, 38(12), 118-126. |
[沈贝贝, 魏一博, 马磊超, 徐大伟, 丁蕾, 侯路路, 秦琪, 辛晓平 (2022). 内蒙古草原植被覆盖度时空格局变化及驱动因素分析. 农业工程学报, 38(12), 118-126.] | |
[32] | Wang HJ, Guo YC, Bai YB, Wang N, Wei X, Zhou MT (2023). Dynamic pattern of vegetation in Xinjiang and its time-lag effect on climate. Transactions of the Chinese Society of Agricultural Engineering, 39(11), 137-145. |
[王会静, 郭玉川, 白运保, 王宁, 魏宣, 周明通 (2023). 新疆植被动态格局及其对气候的时滞效应. 农业工程学报, 39(11), 137-145.] | |
[33] | Wang JF, Zhang TL, Fu BJ (2016). A measure of spatial stratified heterogeneity. Ecological Indicators, 67, 250-256. |
[34] | Wang JG, Zhang F (2020). Spatial-temporal pattern and gravity center change of fractional vegetation cover in Xinjiang, China from 2000 to 2019. Transactions of the Chinese Society of Agricultural Engineering, 36(20), 188-194. |
[王建国, 张飞 (2020). 2000-2019年新疆植被覆盖度时空格局及重心变化分析. 农业工程学报, 36(20), 188-194.] | |
[35] | Wu CY, Zhang PZ, Zhang ZQ, Zheng WJ, Xu BB, Wang WT, Yu ZY, Dai XY, Zhang BX, Zang KZ (2023). Slip partitioning and crustal deformation patterns in the Tianshan orogenic belt derived from GPS measurements and their tectonic implications. Earth-Science Reviews, 238, 104362. DOI: 10.1016/j.earscirev.2023.104362. |
[36] | Wu HQ, Fan YM, Guan GY, Zhang SH, Ding R, Lan ZM (2018). Analysis on main physical and chemical properties of degraded mountain meadow soil in north slope of Tianshan Mountains. Shandong Agricultural Sciences, 50(1), 76-80. |
[武红旗, 范燕敏, 管光玉, 张少华, 丁锐, 兰志梅 (2018). 天山北坡退化山地草甸土壤的主要理化性质分析. 山东农业科学, 50(1), 76-80.] | |
[37] | Xia CF, Li J, Liu QH (2013). Review of advances in vegetation phenology monitoring by remote sensing. Journal of Remote Sensing, 17(1), 1-16. |
[夏传福, 李静, 柳钦火 (2013). 植被物候遥感监测研究进展. 遥感学报, 17(1), 1-16.] | |
[38] |
Yuan Y, Mu YM, Deng YJ, Li XH, Jiang XY, Gao SJ, Zha TS, Jia X (2022). Effects of land cover and phenology changes on the gross primary productivity in an Artemisia ordosica shrubland. Chinese Journal of Plant Ecology, 46, 162-175.
DOI |
[原媛, 母艳梅, 邓钰洁, 李鑫豪, 姜晓燕, 高圣杰, 查天山, 贾昕 (2022). 植被覆盖度和物候变化对典型黑沙蒿灌丛生态系统总初级生产力的影响. 植物生态学报, 46, 162-175.]
DOI |
|
[39] | Zhang WQ, Luo GP, Zheng HW, Wang H, Hamdi R, He HL, Cai P, Chen CB (2020). Analysis of vegetation index changes and driving forces in inland arid areas based on random forest model: a case study of the middle part of northern slope of the North Tianshan Mountains. Chinese Journal of Plant Ecology, 44, 1113-1126. |
[张文强, 罗格平, 郑宏伟, 王浩, HAMDI Rafiq, 何惠丽, 蔡鹏, 陈春波 (2020). 基于随机森林模型的内陆干旱区植被指数变化与驱动力分析: 以北天山北坡中段为例. 植物生态学报, 44, 1113-1126.] | |
[40] | Zhang XS, Tang HP, Dong XB, Li B, Huang YM, Gong JR (2016). The dilemma of steppe and it’s transformation in China. Chinese Science Bulletin, 61, 165-177. |
[张新时, 唐海萍, 董孝斌, 李波, 黄永梅, 龚吉蕊 (2016). 中国草原的困境及其转型. 科学通报, 61, 165-177.] | |
[41] | Zhang Y, An CB, Zheng LY, Liu LY, Zhang WS, Lu C, Zhang YZ (2023). Assessment of lake area in response to climate change at varying elevations: a case study of Mt. Tianshan, Central Asia. Science of the Total Environment, 869, 161665. DOI: 10.1016/j.scitotenv.2023.161665. |
[42] |
Zhang Y, Zhang CB, Wang ZQ, Yang Y, Zhang YZ, Li JL, An R (2017). Quantitative assessment of relative roles of climate change and human activities on grassland net primary productivity in the Three-River Source Region, China. Acta Prataculturae Sinica, 26(5), 1-14.
DOI |
[张颖, 章超斌, 王钊齐, 杨悦, 张艳珍, 李建龙, 安如 (2017). 气候变化与人为活动对三江源草地生产力影响的定量研究. 草业学报, 26(5), 1-14.]
DOI |
|
[43] | Zhao J, Deng CJ, Li WL, Zhao J, Gong YM, Li KH (2023). Evaluation of the degree of degradation of Xinjiang Tianshan Bayinbuluk grassland in 35 years. Arid Zone Research, 40, 636-646. |
[赵剑, 邓成军, 李文利, 赵金, 公延明, 李凯辉 (2023). 近35 a新疆天山巴音布鲁克草原退化程度评价. 干旱区研究, 40, 636-646.] | |
[44] |
Zhou W, Gang CC, Chen YZ, Mu SJ, Sun ZG, Li JL (2014). Grassland coverage inter-annual variation and its coupling relation with hydrothermal factors in China during 1982-2010. Journal of Geographical Sciences, 24, 593-611.
DOI |
[45] | Zhu LJ, Meng JJ, Zhu LK (2020). Applying geodetector to disentangle the contributions of natural and anthropogenic factors to NDVI variations in the middle reaches of the Heihe River Basin. Ecological Indicators, 117, 106545. DOI: 10.1016/j.ecolind.2020.106545. |
[46] | Zhu ZY, Alimjiang K (2020). Spatiotemporal evolution of habitat quality in the Ili River Valley and its influencing factors based on geographic detectors. Chinese Journal of Ecology, 39, 3408-3420. |
[朱增云, 阿里木江•卡斯木 (2020). 基于地理探测器的伊犁谷地生境质量时空演变及其影响因素. 生态学杂志, 39, 3408-3420.] | |
[47] | Zuo YF, Li YH, He KN, Wen YS (2022). Temporal and spatial variation characteristics of vegetation coverage and quantitative analysis of its potential driving forces in the Qilian Mountains, China, 2000-2020. Ecology Indicators, 143, 109429. DOI: 10.1016/j.ecolind.2022.109429. |
[1] | 史倩, 同小娟, 许玲玲, 孟平, 于裴洋, 李俊, 杨铭鑫. 油松早晚材径向生长对气候因子的响应[J]. 植物生态学报, 2024, 48(8): 988-1000. |
[2] | 张鹏, 焦亮, 薛儒鸿, 魏梦圆, 杜达石, 吴璇, 王旭鸽, 李倩. 干旱强度影响祁连山西段不同海拔青海云杉的生长恢复[J]. 植物生态学报, 2024, 48(8): 977-987. |
[3] | 白皓然, 侯盟, 刘艳杰. 少花蒺藜草入侵与干旱对羊草群落生产力的影响机制[J]. 植物生态学报, 2024, 48(5): 577-589. |
[4] | 陈科宇, 邢森, 唐玉, 孙佳慧, 任世杰, 张静, 纪宝明. 不同草地类型土壤丛枝菌根真菌群落特征及其驱动因素[J]. 植物生态学报, 2024, 48(5): 660-674. |
[5] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[6] | 臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎. 基于纬度移栽的落叶松叶、枝、根生态化学计量特征对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 469-482. |
[7] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[8] | 吴茹茹, 刘美珍, 谷仙, 常馨月, 郭立月, 蒋高明, 祁如意. 气候变化对巨柏适宜生境分布的潜在影响和预测[J]. 植物生态学报, 2024, 48(4): 445-458. |
[9] | 张启, 程雪寒, 王树芝. 北京西山老龄树记载的森林干扰历史[J]. 植物生态学报, 2024, 48(3): 341-348. |
[10] | 杨宇萌, 来全, 刘心怡. 气候变化和人类活动对内蒙古植被总初级生产力的定量影响[J]. 植物生态学报, 2024, 48(3): 306-316. |
[11] | 茹雅倩, 薛建国, 葛萍, 李钰霖, 李东旭, 韩鹏, 杨天润, 储伟, 陈章, 张晓琳, 李昂, 黄建辉. 高频轮牧对典型草原生产生态效果的影响[J]. 植物生态学报, 2024, 48(2): 171-179. |
[12] | 吴瀚, 白洁, 李均力, 古丽•加帕尔, 包安明. 新疆地区植被覆盖度时空变化及其影响因素分析[J]. 植物生态学报, 2024, 48(1): 41-55. |
[13] | 陈颖洁, 房凯, 秦书琪, 郭彦军, 杨元合. 内蒙古温带草地土壤有机碳组分含量和分解速率的空间格局及其影响因素[J]. 植物生态学报, 2023, 47(9): 1245-1255. |
[14] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[15] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19