植物生态学报 ›› 2023, Vol. 47 ›› Issue (9): 1234-1244.DOI: 10.17521/cjpe.2022.0207
张英1,2, 张常洪1,2, 汪其同1,*(), 朱晓敏1, 尹华军1
收稿日期:
2022-05-19
接受日期:
2022-10-31
出版日期:
2023-09-20
发布日期:
2022-11-02
通讯作者:
* 汪其同 ORCID: 0000-0001-9484-3540 (基金资助:
ZHANG Ying1,2, ZHANG Chang-Hong1,2, WANG Qi-Tong1,*(), ZHU Xiao-Min1, YIN Hua-Jun1
Received:
2022-05-19
Accepted:
2022-10-31
Online:
2023-09-20
Published:
2022-11-02
Contact:
* WANG Qi-Tong(Supported by:
摘要:
由于复杂的根系-土壤互作过程, 根际土壤碳(C)动态对氮(N)沉降的响应可能与非根际土壤存在较大差异, 但目前关于N沉降下根际和非根际土壤C动态响应差异及其对土壤C固存的贡献方向与大小尚不明晰。基于此, 该研究以西南山地典型云杉(Picea asperata)人工林为研究对象, 依托研究团队前期建立的模拟N沉降(对照: 0 kg·hm-2·a-1; N添加: 25 kg·hm-2·a-1)实验样地, 分别测定了根际与非根际土壤有机碳(SOC)及其物理组分和化学组分含量, 并借助于根际空间数值模型, 区分和量化了N添加下根际、非根际SOC和不同组分C库含量差异及其对土壤总C增量的贡献效应。研究结果表明: 1)尽管N添加处理同时增加了根际、非根际SOC及其物理、化学组分含量, 但仅在根际区达到显著水平。具体地, 与对照相比, N添加导致根际SOC含量增加了23.64%, 其中颗粒有机碳(POC)、矿物结合态有机碳(MAOC)和活性碳(LP-C)、惰性碳(RP-C)含量分别增加了19.63%、18.01%和30.48%、15.01%。2)通过云杉林总SOC库增量(0.88 kg·m-2)与根际空间数值模型结果相互印证, 确定西南山地针叶林根际有效范围为1.6 mm。在该范围内, N添加导致根际和非根际SOC储量分别增加了33.37%和7.38%, 分别贡献了总SOC库增量的45.45%和54.55%。其中, 活性C组分(POC和LP-C)是N添加下根际SOC累积的主要贡献者。上述结果表明, 西南山地针叶林根际和非根际土壤在N沉降下均发挥重要的土壤C汇作用, 但根际土壤C汇效应更为显著。该研究充分强调了未来N沉降下应将根际C过程纳入森林土壤C循环模型参数构建之中, 以更准确评估和预测全球变化下森林生态系统土壤C源/汇功能变化。
张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异. 植物生态学报, 2023, 47(9): 1234-1244. DOI: 10.17521/cjpe.2022.0207
ZHANG Ying, ZHANG Chang-Hong, WANG Qi-Tong, ZHU Xiao-Min, YIN Hua-Jun. Difference of soil carbon sequestration between rhizosphere and bulk soil in a mountain coniferous forest in southwestern China under nitrogen deposition. Chinese Journal of Plant Ecology, 2023, 47(9): 1234-1244. DOI: 10.17521/cjpe.2022.0207
图1 氮添加对西南山地针叶林根际和非根际土壤有机碳及组分碳含量的影响(平均值±标准误)。CK, 对照处理; N, 氮添加处理。*, p < 0.05。
Fig. 1 Effects of nitrogen addition on the concentrations of soil organic carbon and its fractions in the rhizosphere and bulk soil in a mountain coniferous forest in southwestern China (mean ± SE). CK, control treatment; N, nitrogen addition treatment. LP-C, labile carbon; MAOC, mineral-associated organic carbon; POC, particulate organic carbon; RP-C, recalcitrant carbon. *, p < 0.05.
因子 Factor | 处理 Treatment | 土壤位置 Soil position | |
---|---|---|---|
根际土壤 Rhizosphere soil | 非根际土壤 Bulk soil | ||
β-葡萄糖苷酶活性 BG activity (μmol·h-1·g-1 SOC) | CK | 1.16 ± 0.14a | 0.54 ± 0.04a |
N | 0.81 ± 0.09b | 0.27 ± 0.04b | |
多酚氧化酶活性 PPO activity (μmol·h-1·g-1 SOC) | CK | 35.83 ± 6.97a | 24.84 ± 9.01a |
N | 11.58 ± 1.65b | 21.02 ± 4.72a | |
金属有机复合体铁离子含量 MOC-Fe content (g·kg-1) | CK | 0.91 ± 0.04a | 0.87 ± 0.02a |
N | 1.21 ± 0.07b | 0.88 ± 0.04a |
表1 氮添加和对照处理下西南山地针叶林根际和非根际土壤微生物胞外酶活性和金属有机复合体铁离子含量(平均值±标准误)
Table 1 Extracellular enzyme activities and content of Fe bound in metal-organic complexes in rhizosphere and bulk soil under nitrogen addition and control treatment in a mountain coniferous forest in southwestern China (mean ± SE)
因子 Factor | 处理 Treatment | 土壤位置 Soil position | |
---|---|---|---|
根际土壤 Rhizosphere soil | 非根际土壤 Bulk soil | ||
β-葡萄糖苷酶活性 BG activity (μmol·h-1·g-1 SOC) | CK | 1.16 ± 0.14a | 0.54 ± 0.04a |
N | 0.81 ± 0.09b | 0.27 ± 0.04b | |
多酚氧化酶活性 PPO activity (μmol·h-1·g-1 SOC) | CK | 35.83 ± 6.97a | 24.84 ± 9.01a |
N | 11.58 ± 1.65b | 21.02 ± 4.72a | |
金属有机复合体铁离子含量 MOC-Fe content (g·kg-1) | CK | 0.91 ± 0.04a | 0.87 ± 0.02a |
N | 1.21 ± 0.07b | 0.88 ± 0.04a |
图2 西南山地针叶林根际和非根际土壤有机碳含量与金属有机复合体铁离子含量(A)、β-葡萄糖苷酶活性(B)和多酚氧化酶活性(C)的线性回归分析。CKB, 非根际对照处理; CKR, 根际对照处理; NB, 非根际氮添加处理; NR, 根际氮添加处理。
Fig. 2 Results of linear regressions among soil organic carbon (SOC) content and iron ions bound in metal-organic complexes content (A) β-1,4-glucosidase activity (B) and polyphenol oxidase activity (C) in the rhizosphere and bulk soils in a mountain coniferous forest in southwestern China. CKB, bulk soil under control treatment; CKR, rhizosphere under control treatment; NB, bulk soil under nitrogen addition treatment; NR, rhizosphere under nitrogen addition treatment. BG, beta-glucosidase; MOC-Fe, metal-organic complex iron ions; PPO, polyphenol oxidase.
图3 氮添加下西南山地针叶林总土壤有机碳储量(A)和基于模型估算的根际和非根际土壤有机碳储量(B) (平均值±标准误)。0.5-2.0 mm为根系分泌物扩散距离。BS, 非根际土壤; RS, 根际土壤。CK, 对照处理; N, 氮添加处理。不同大写字母表示对照处理与氮添加处理之间根际土壤有机碳储量在p < 0.05水平上差异显著。*, p < 0.05。
Fig. 3 Total soil organic carbon (SOC) stock (A) and model-simulated SOC stock in rhizosphere and bulk soil (B) under nitrogen addition. 0.5-2.0 mm means root exudates diffusion distance in a mountain coniferous forest in southwestern China (mean ± SE). BS, bulk soil; RS, rhizosphere soil. CK, control treatment; N, nitrogen addition treatment. Different uppercase letters indicate a significant difference of SOC stock in rhizosphere between the control and nitrogen treatments at p < 0.05 level. *, p < 0.05.
图4 基于1.6 mm根际范围估算的西南山地针叶林根际土壤有机碳物理组分储量(A)及其对总土壤有机碳库增量的贡献(B) (平均值±标准误)。CK, 对照处理; N, 氮添加处理。MAOC, 矿物结合态有机碳; POC, 颗粒有机碳。*, p < 0.05。
Fig. 4 Soil organic carbon (SOC) stock of physical fractions in rhizosphere estimated based on the 1.6 mm rhizosphere extent (A) and its contribution to the increase of total SOC pool (B) in a mountain coniferous forest in southwestern China (mean ± SE). CK, control treatment; N, nitrogen addition treatment. MAOC, mineral-associated organic carbon; POC, particulate organic carbon. *, p < 0.05.
图5 基于1.6 mm根际范围估算的西南山地针叶林根际土壤化学组分有机碳储量(A)及其对总有机碳库增量的贡献(B) (平均值±标准误)。CK, 对照处理; N, 氮添加处理。LP-C, 土壤活性碳库; RP-C, 土壤惰性碳库。*, p < 0.05。
Fig. 5 Soil organic carbon (SOC) stock of chemical fractions in rhizosphere estimated based on the 1.6 mm rhizosphere extent (A) and its contribution to the increase of total SOC pool (B) in a mountain coniferous forest in southwestern China (mean ± SE). CK, control treatment; N, nitrogen addition treatment. LP-C, labile carbon; RP-C, recalcitrant carbon. *, p < 0.05.
图6 氮(N)沉降下山地森林根际和非根际土壤碳固存潜力变化概念框架图。Bsoc, 非根际有机碳储量; LP-C, 活性碳库; MAOC, 矿物结合态有机碳; POC, 颗粒态有机碳; RP-C, 惰性碳库; Rsoc, 根际有机碳储量; SOC, 土壤有机碳储量。实线箭头代表响应显著, 虚线箭头代表响应不显著。
Fig. 6 A conceptual framework of how the rhizosphere and bulk soil affect soil carbon sequestration potential in a coniferous forest under nitrogen (N) deposition on the southwest mountain, China. Bsoc, organic carbon stock in bulk soil; LP-C, labile organic carbon pool; MAOC, mineral-associated organic carbon; POC, particulate organic carbon; RP-C, recalcitrant organic carbon pool; Rsoc, organic carbon stock in rhizosphere; SOC, soil organic carbon stock. Solid arrows represent significant responses, and dashed arrows represent non-significant responses.
[1] | Bonan GB (2008). Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science, 320, 1444-1449. |
[2] |
Brookes PC, Landman A, Pruden G, Jenkinson DS (1985). Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology & Biochemistry, 17, 837-842.
DOI URL |
[3] |
Brzostek ER, Greco A, Drake JE, Finzi AC (2013). Root carbon inputs to the rhizosphere stimulate extracellular enzyme activity and increase nitrogen availability in temperate forest soils. Biogeochemistry, 115, 65-76.
DOI URL |
[4] |
Carrara JE, Walter CA, Hawkins JS, Peterjohn WT, Averill C, Brzostek ER (2018). Interactions among plants, bacteria, and fungi reduce extracellular enzyme activities under long-term N fertilization. Global Change Biology, 24, 2721-2734.
DOI PMID |
[5] |
Carreiro MM, Sinsabaugh RL, Repert DA, Parkhurst DF (2000). Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology, 81, 2359-2365.
DOI URL |
[6] |
Chen H, Li D, Feng W, Niu S, Plante A, Luo Y, Wang K (2018). Different responses of soil organic carbon fractions additions of nitrogen. European Journal of Soil Science, 69, 1098-1104.
DOI URL |
[7] |
Chen Z, Yin HJ, Wei YY, Liu Q (2010). Short-term effects of night warming and nitrogen addition on soil available nitrogen and microbial properties in subalpine coniferous forest, Western Sichuan, China. Chinese Journal of Plant Ecology, 34, 1254-1264.
DOI |
[陈智, 尹华军, 卫云燕, 刘庆 (2010). 夜间增温和施氮对川西亚高山针叶林土壤有效氮和微生物特性的短期影响. 植物生态学报, 34, 1254-1264.]
DOI |
|
[8] |
Drake JE, Darby BA, Giasson MA, Kramer MA, Phillips RP, Finzi AC (2013). Stoichiometry constrains microbial response to root exudation-insights from a model and a field experiment in a temperate forest. Biogeosciences, 10, 821-838.
DOI URL |
[9] |
Fenn ME, Jovan S, Yuan F, Geiser L, Meixner T, Gimeno BS (2008). Empirical and simulated critical loads for nitrogen deposition in California mixed conifer forests. Environmental Pollution, 155, 492-511.
DOI PMID |
[10] |
Finzi AC, Abramoff RZ, Spiller KS, Brzostek ER, Darby BA, Kramer MA, Phillips RP (2015). Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles. Global Change Biology, 21, 2082-2094.
DOI PMID |
[11] | Gross CD, Harrison RB (2019). The case for digging deeper: soil organic carbon storage, dynamics, and controls in our changing world. Soil Systems, 3, 28. DOI: 10.3390/soilsystems3020028. |
[12] |
Guenet B, Camino-Serrano M, Ciais P, Tifafi M, Maignan F, Soong JL, Janssens IA (2018). Impact of priming on global soil carbon stocks. Global Change Biology, 24, 1873-1883.
DOI PMID |
[13] | Guo XM, Wu HH, Luo M, He GP (2007). The morphological change of Fe/Al-oxide minerals in red soils in the process of acidification and its environmental significance. Acta Petrologica et Mineralogica, 26, 515-521. |
[郭杏妹, 吴宏海, 罗媚, 何广平 (2007). 红壤酸化过程中铁铝氧化物矿物形态变化及其环境意义. 岩石矿物学杂志, 26, 515-521.] | |
[14] | IPCC Intergovernmental Panel on Climate Change (2014). Climate Change 2013—The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[15] |
Jian S, Li J, Chen J, Wang G, Mayes MA, Dzantor KE, Hui D, Luo Y (2016). Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: a meta-analysis. Soil Biology & Biochemistry, 101, 32-43.
DOI URL |
[16] |
Kaiser C, Koranda M, Kitzler B, Fuchslueger L, Schnecker J, Schweiger P, Rasche F, Zechmeister-Boltenstern S, Sessitsch A, Richter A (2010). Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil. New Phytologist, 187, 843-858.
DOI PMID |
[17] |
Keenan RJ, Reams GA, Achard F, de Freitas JV, Grainger A, Lindquist E (2015). Dynamics of global forest area: results from the FAO Global Forest Resources Assessment 2015. Forest Ecology and Management, 352, 9-20.
DOI URL |
[18] |
Keiluweit M, Bougoure JJ, Nico PS, Pett-Ridge J, Weber PK, Kleber M (2015). Mineral protection of soil carbon counteracted by root exudates. Nature Climate Change, 5, 588-595.
DOI |
[19] |
Kuzyakov Y, Blagodatskaya E (2015). Microbial hotspots and hot moments in soil: concept and review. Soil Biology & Biochemistry, 83, 184-199.
DOI URL |
[20] |
Lehmann J, Kleber M (2015). The contentious nature of soil organic matter. Nature, 528, 60-68.
DOI |
[21] | Liang C, Schimel JP, Jastrow JD (2017). The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2, 1-6. |
[22] |
Liu L, Greaver TL (2010). A global perspective on belowground carbon dynamics under nitrogen enrichment. Ecology Letters, 13, 819-828.
DOI PMID |
[23] |
Liu X, Zhang Y, Han W, Tang A, Shen J, Cui Z, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmeier A, Zhang F (2013). Enhanced nitrogen deposition over China. Nature, 494, 459-462.
DOI |
[24] | Lu X, Vitousek PM, Mao Q, Gilliam FS, Luo Y, Turner BL, Zhou G, Mo J (2021). Nitrogen deposition accelerates soil carbon sequestration in tropical forests. Proceedings of the National Academy of Sciences of the United States of America, 118, e2020790118. DOI: 10.1073/pnas.2020790118. |
[25] |
Lugato E, Lavallee JM, Haddix ML, Panagos P, Cotrufo MF (2021). Different climate sensitivity of particulate and mineral-associated soil organic matter. Nature Geoscience, 14, 295-300.
DOI |
[26] |
Lützow MV, Kögel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H (2006). Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—A review. European Journal of Soil Science, 57, 426-445.
DOI URL |
[27] | Magill AH, Aber JD, Currie WS, Nadelhoffer KJ, Martin ME, McDowell WH, Melillo JM, Steudler P (2004). Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA. Forest Ecology & Management, 196, 7-28. |
[28] |
Meier IC, Pritchard SG, Brzostek ER, McCormack ML, Phillips RP (2015). The rhizosphere and hyphosphere differ in their impacts on carbon and nitrogen cycling in forests exposed to elevated CO2. New Phytologist, 205, 1164-1174.
DOI PMID |
[29] |
Midgley MG, Phillips RP (2016). Resource stoichiometry and the biogeochemical consequences of nitrogen deposition in a mixed deciduous forest. Ecology, 97, 3369-3378.
DOI PMID |
[30] |
Phillips RP, Finzi AC, Bernhardt ES (2011). Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecology Letters, 14, 187-194.
DOI PMID |
[31] |
Rovira P, Vallejo VR (2002). Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: an acid hydrolysis approach. Geoderma, 107, 109-141.
DOI URL |
[32] |
Saiya-Cork KR, Sinsabaugh RL, Zak DR (2002). The effects of long-term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology & Biochemistry, 34, 1309-1315.
DOI URL |
[33] |
Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478, 49-56.
DOI |
[34] |
Sinsabaugh RL, Lauber CL, Weintraub MN, Ahmed B, Allison SD, Crenshaw C, Contosta AR, Cusack D, Frey S, Gallo ME, Gartner TB, Hobbie SE, Holland K, Keeler BL, Powers JS, et al. (2008). Stoichiometry of soil enzyme activity at global scale. Ecology Letters, 11, 1252-1264.
DOI PMID |
[35] |
Six J, Elliott ET, Paustian K (2000). Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biology & Biochemistry, 32, 2099-2103.
DOI URL |
[36] |
Sokol NW, Bradford MA (2019). Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. Nature Geoscience, 12, 46-53.
DOI |
[37] |
Sokol NW, Slessarev E, Marschmann GL, Nicolas A, Blazewicz SJ, Brodie EL, Firestone MK, Foley MM, Hestrin R, Hungate BA, Koch BJ, Stone BW, Sullivan MB, Zablocki O, Trubl G, et al. (2022). Life and death in the soil microbiome: How ecological processes influence biogeochemistry. Nature Reviews Microbiology, 20, 415-430.
DOI PMID |
[38] | Wang J, Liao LR, Wang GL, Liu HF, Wu Y, Liu GB, Zhang C (2022). N-induced root exudates mediate the rhizosphere fungal assembly and affect species coexistence. Science of the Total Environment, 804, 150148. |
[39] |
Xu ZF, Wan C, Xiong P, Tang Z, Hu R, Cao G, Liu Q (2010). Initial responses of soil CO2 efflux and C, N pools to experimental warming in two contrasting forest ecosystems, Eastern Tibetan Plateau, China. Plant and Soil, 336, 183-195.
DOI URL |
[40] |
Yan Y, Kuramae EE, de Hollander M, Klinkhamer PGL, van Veen JA (2017). Functional traits dominate the diversity-related selection of bacterial communities in the rhizosphere. The ISME Journal, 11, 56-66.
DOI |
[41] |
Yang YH, Shi Y, Sun WJ, Chang JF, Zhu JX, Chen LY, Wang X, Guo YP, Zhang HT, Yu LF, Zhao SQ, Xu K, Zhu JL, Shen HH, Wang YY, et al. (2022). Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. Science China: Life Sciences, 65, 861-895.
DOI |
[42] |
Yu G, Jia Y, He N, Zhu J, Chen Z, Wang Q, Piao S, Liu X, He H, Guo X, Wen Z, Li P, Ding G, Goulding K (2019). Stabilization of atmospheric nitrogen deposition in China over the past decade. Nature Geoscience, 12, 424-429.
DOI |
[43] | Yuan X, Qin WK, Xu H, Zhang ZH, Zhou HK, Zhu B (2020). Sensitivity of soil carbon dynamics to nitrogen and phosphorus enrichment in an alpine meadow. Soil Biology & Biochemistry, 150, 107984. DOI: 10.1016/j.soilbio.2020.107984. |
[44] |
Zhang ZL, Qiao MF, Li DD, Zhao CZ, Li YJ, Yin HJ, Liu Q (2015). Effects of two root-secreted phenolic compounds from a subalpine coniferous species on soil enzyme activity and microbial biomass. Chemistry and Ecology, 31, 636-649.
DOI URL |
[45] |
Zhu S, Vivanco JM, Manter DK (2016). Nitrogen fertilizer rate affects root exudation, the rhizosphere microbiome and nitrogen-use-efficiency of maize. Applied Soil Ecology, 107, 324-333.
DOI URL |
[46] |
Zhu XM, Zhang ZL, Liu DY, Kou YP, Zheng Q, Liu M, Xiao J, Liu Q, Yin HJ (2020). Differential impacts of nitrogen addition on rhizosphere and bulk-soil carbon sequestration in an alpine shrubland. Journal of Ecology, 108, 2309-2320.
DOI URL |
[1] | 俞庆水 倪晓凤 吉成均 朱江玲 唐志尧 方精云. 10年氮磷添加对海南尖峰岭两种热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[4] | 陈颖洁, 房凯, 秦书琪, 郭彦军, 杨元合. 内蒙古温带草地土壤有机碳组分含量和分解速率的空间格局及其影响因素[J]. 植物生态学报, 2023, 47(9): 1245-1255. |
[5] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[6] | 张尧, 陈岚, 王洁莹, 李益, 王俊, 郭垚鑫, 任成杰, 白红英, 孙昊田, 赵发珠. 太白山不同海拔森林根际土壤微生物碳利用效率差异性及其影响因素[J]. 植物生态学报, 2023, 47(2): 275-288. |
[7] | 何茜, 冯秋红, 张佩佩, 杨涵, 邓少军, 孙小平, 尹华军. 基于叶片和土壤酶化学计量的川西亚高山岷江冷杉林养分限制海拔变化规律[J]. 植物生态学报, 2023, 47(12): 1646-1657. |
[8] | 樊凡, 赵联军, 马添翼, 熊心雨, 张远彬, 申小莉, 李晟. 川西王朗亚高山暗针叶林25.2 hm2动态监测样地物种组成与群落结构特征[J]. 植物生态学报, 2022, 46(9): 1005-1017. |
[9] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[10] | 甘子莹, 王浩, 丁驰, 雷梅, 杨晓刚, 蔡敬琰, 丘清燕, 胡亚林. 亚热带森林不同植物及器官来源的可溶性有机质输入对土壤激发效应的影响及其作用机理[J]. 植物生态学报, 2022, 46(7): 797-810. |
[11] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤微生物养分限制特征差异[J]. 植物生态学报, 2022, 46(4): 473-483. |
[12] | 田磊, 朱毅, 李欣, 韩国栋, 任海燕. 不同降水条件下内蒙古荒漠草原主要植物物候对长期增温和氮添加的响应[J]. 植物生态学报, 2022, 46(3): 290-299. |
[13] | 谢欢, 张秋芳, 曾泉鑫, 周嘉聪, 马亚培, 吴玥, 刘苑苑, 林惠瑛, 尹云锋, 陈岳民. 氮添加对杉木苗期磷转化和分解类真菌的影响[J]. 植物生态学报, 2022, 46(2): 220-231. |
[14] | 孙建, 王毅, 刘国华. 青藏高原高寒草地地上植物碳积累速率对生态系统多功能性的影响机制[J]. 植物生态学报, 2021, 45(5): 496-506. |
[15] | 董利军, 李金花, 陈珊, 张瑞, 孙建, 马妙君. 若尔盖湿地高寒草甸退化过程中土壤有机碳含量变化及成因分析[J]. 植物生态学报, 2021, 45(5): 507-515. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19