植物生态学报 ›› 2022, Vol. 46 ›› Issue (4): 473-483.DOI: 10.17521/cjpe.2021.0346
所属专题: 全球变化与生态系统; 生物地球化学; 微生物生态学
张英1,2, 张常洪1,2, 汪其同1,*(), 朱晓敏1, 尹华军1
收稿日期:
2021-09-29
接受日期:
2021-11-20
出版日期:
2022-04-20
发布日期:
2022-01-07
通讯作者:
汪其同
作者简介:
*(wangqt@cib.ac.cn) 汪其同: 0000-0001-9484-3540基金资助:
ZHANG Ying1,2, ZHANG Chang-Hong1,2, WANG Qi-Tong1,*(), ZHU Xiao-Min1, YIN Hua-Jun1
Received:
2021-09-29
Accepted:
2021-11-20
Online:
2022-04-20
Published:
2022-01-07
Contact:
WANG Qi-Tong
Supported by:
摘要:
长期氮(N)沉降诱导了土壤养分失衡, 深刻影响着森林生态系统养分循环过程、生态功能及其可持续发展。前期研究发现N沉降下西南森林树木生长受到不同程度的磷(P)限制, 而土壤微生物是否表现出与植物养分限制特征协同的响应仍未明确。基于此, 该研究以西南山地典型人工针叶林——华山松(Pinus armandii)林为对象, 通过野外原位模拟N沉降实验, 测定了土壤有效养分供给、土壤微生物生物量(碳(C)、N、P)含量以及胞外酶活性, 结合生态酶化学计量的3种模型(比值模型、矢量分析模型与阈值元素比率模型)验证森林根际/非根际土壤中微生物是否受P养分限制。结果表明: (1) N添加下两个土壤位置(根际和非根际土壤)酸性磷酸酶(AP)活性分别显著升高52.5%和53.2%, 导致土壤酶活性N:P分别降低7.8%和4.8%; (2)矢量模型分析发现N添加下两个土壤位置的矢量角度均大于45°, 根际土壤和非根际土壤的矢量角度分别为52.2°和49.0°; (3) N添加下两个土壤位置C:P阈值(TERC:P)显著降低, 导致C:P阈值与土壤有效C:P的比值(TERC:P/AvC:P)远小于1, 且根际土壤表现更明显。综上所述, 3个模型均表明N沉降加剧了土壤微生物代谢的P限制, 且根际土壤微生物P限制程度更强, 这与土壤和微生物养分含量及其化学计量特征密切相关。该研究结果可为全球气候变化下森林生态系统的适应性管理提供重要科学依据。
张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤微生物养分限制特征差异. 植物生态学报, 2022, 46(4): 473-483. DOI: 10.17521/cjpe.2021.0346
ZHANG Ying, ZHANG Chang-Hong, WANG Qi-Tong, ZHU Xiao-Min, YIN Hua-Jun. Difference of microbial nutrient limiting characteristics in rhizosphere and bulk soil of coniferous forests under nitrogen deposition in southwest mountain, China. Chinese Journal of Plant Ecology, 2022, 46(4): 473-483. DOI: 10.17521/cjpe.2021.0346
土壤位置 Soil position | 处理 Treatment | DOC (mmol·kg-1) | DIN (mmol·kg-1) | Available P (mmol·kg-1) | 有效C:N Available C:N | 有效C:P Available C:P | 有效N:P Available N:P | pH | EEAC (μmol·h-1·g-1 DOC) | EEAN (μmol·h-1·g-1 DOC) | EEAP (μmol·h-1·g-1 DOC) | MBC (mmol·kg-1) | MBN (mmol·kg-1) | MBP (mmol·kg-1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RS | 对照 CK | 21.71 ± 0.57a | 3.41 ± 0.06a | 0.31 ± 0.03 | 6.36 ± 0.17a | 70.16 ± 1.83a | 11.03 ± 0.21a | 5.79 ± 0.08a | 100.01 ± 2.19A | 185.11 ± 9.89a | 490.02 ± 9.19A | 47.31 ± 3.54 Aa | 7.60 ± 0.67 a | 0.55 ± 0.03 A |
施氮 N | 21.69 ± 1.91 | 3.54 ± 0.18 | 0.33 ± 0.05 | 6.13 ± 0.54 | 66.03 ± 5.80 | 10.77 ± 0.55 | 5.67 ± 0.01 | 56.51 ± 11.18B | 199.43 ± 23.25 | 747.26 ± 113.88B | 55.54 ± 2.07 B | 7.45 ± 0.59 | 0.70 ± 0.08 B | |
BS | 对照 CK | 17.18 ± 0.13Ab | 1.82 ± 0.14Ab | 0.37 ± 0.03A | 9.44 ± 0.07b | 46.62 ± 0.38Ab | 4.94 ± 0.38b | 6.03 ± 0.03b | 85.41 ± 5.88 | 249.10 ± 6.28b | 422.74 ± 5.85A | 25.48 ± 1.20 b | 3.14 ± 0.50 Ab | 0.57 ± 0.08 |
施氮 N | 13.87 ± 0.75B | 1.28 ± 0.02B | 0.22 ± 0.04B | 10.82 ± 0.59 | 64.10 ± 3.48B | 5.93 ± 0.08 | 5.84 ± 0.08 | 73.33 ± 15.86 | 277.46 ± 14.63 | 647.81 ± 32.33B | 26.49 ± 1.16 | 7.67 ± 0.26 B | 0.49 ± 0.04 | |
S | *** | *** | ns | *** | ns | ** | * | ns | ** | ns | *** | ** | ns | |
N | ns | ns | ns | ns | ns | ns | * | * | ns | ** | ns | ** | ns | |
S × N | ns | * | * | ns | ns | ns | ns | ns | ns | ns | ns | ** | * |
表1 西南山地华山松林根际和非根际土壤理化性质(平均值±标准误)
Table 1 Soil physicochemical properties of rhizosphere and bulk soil in Pinus armandii forest in southwest mountain, China (mean ± SE)
土壤位置 Soil position | 处理 Treatment | DOC (mmol·kg-1) | DIN (mmol·kg-1) | Available P (mmol·kg-1) | 有效C:N Available C:N | 有效C:P Available C:P | 有效N:P Available N:P | pH | EEAC (μmol·h-1·g-1 DOC) | EEAN (μmol·h-1·g-1 DOC) | EEAP (μmol·h-1·g-1 DOC) | MBC (mmol·kg-1) | MBN (mmol·kg-1) | MBP (mmol·kg-1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RS | 对照 CK | 21.71 ± 0.57a | 3.41 ± 0.06a | 0.31 ± 0.03 | 6.36 ± 0.17a | 70.16 ± 1.83a | 11.03 ± 0.21a | 5.79 ± 0.08a | 100.01 ± 2.19A | 185.11 ± 9.89a | 490.02 ± 9.19A | 47.31 ± 3.54 Aa | 7.60 ± 0.67 a | 0.55 ± 0.03 A |
施氮 N | 21.69 ± 1.91 | 3.54 ± 0.18 | 0.33 ± 0.05 | 6.13 ± 0.54 | 66.03 ± 5.80 | 10.77 ± 0.55 | 5.67 ± 0.01 | 56.51 ± 11.18B | 199.43 ± 23.25 | 747.26 ± 113.88B | 55.54 ± 2.07 B | 7.45 ± 0.59 | 0.70 ± 0.08 B | |
BS | 对照 CK | 17.18 ± 0.13Ab | 1.82 ± 0.14Ab | 0.37 ± 0.03A | 9.44 ± 0.07b | 46.62 ± 0.38Ab | 4.94 ± 0.38b | 6.03 ± 0.03b | 85.41 ± 5.88 | 249.10 ± 6.28b | 422.74 ± 5.85A | 25.48 ± 1.20 b | 3.14 ± 0.50 Ab | 0.57 ± 0.08 |
施氮 N | 13.87 ± 0.75B | 1.28 ± 0.02B | 0.22 ± 0.04B | 10.82 ± 0.59 | 64.10 ± 3.48B | 5.93 ± 0.08 | 5.84 ± 0.08 | 73.33 ± 15.86 | 277.46 ± 14.63 | 647.81 ± 32.33B | 26.49 ± 1.16 | 7.67 ± 0.26 B | 0.49 ± 0.04 | |
S | *** | *** | ns | *** | ns | ** | * | ns | ** | ns | *** | ** | ns | |
N | ns | ns | ns | ns | ns | ns | * | * | ns | ** | ns | ** | ns | |
S × N | ns | * | * | ns | ns | ns | ns | ns | ns | ns | ns | ** | * |
图1 氮添加对西南山地华山松林根际和非根际土壤胞外酶化学计量比的影响(平均值±标准误)。CK, 对照处理; N, 施氮处理; S, 土壤位置; S × N, 土壤位置与施氮处理的交互效应。*, p < 0.05; **, p < 0.01; ***, p < 0.001; ns, p > 0.05; n = 3。
Fig. 1 Effect of nitrogen addition on soil extracellular enzyme stoichiometry in rhizosphere and bulk soil in Pinus armandii forest in southwest mountain, China (mean ± SE). CK, control treatment; N, nitrogen addition treatment; S, soil position; S × N, interaction effect between soil position and nitrogen addition treatment. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ns, p > 0.05; n = 3.
图2 氮添加对西南山地华山松林根际和非根际土壤矢量角度的影响(平均值±标准误)。CK, 对照处理; N, 施氮处理; S, 土壤位置; S × N, 土壤位置与施氮处理的交互效应。*, p < 0.05; **, p < 0.01; ns, p > 0.05; n = 3。
Fig. 2 Effect of nitrogen addition on vector angle in rhizosphere and bulk soil in Pinus armandii forest in southwest mountain, China (mean ± SE). CK, control treatment; N, nitrogen addition treatment; S, soil position; S × N, interaction effect between soil position and nitrogen addition treatment. *, p < 0.05; **, p < 0.01; ns, p > 0.05; n = 3.
图3 氮添加下西南山地华山松林根际和非根际土壤微生物群落的阈值元素比率与相应土壤有效养分比的关系(平均值±标准误)。CK, 对照处理; N, 施氮处理; S, 土壤位置; S × N, 土壤位置与施氮处理的交互效应。CKB, 非根际土壤对照处理; CKR, 根际土壤对照处理; NB, 非根际土壤施氮处理; NR, 根际土壤施氮处理。*, p < 0.05; **, p < 0.01; ***, p < 0.001; ns, p > 0.05; n = 3。
Fig. 3 Relationships between element ratio threshold of microbial community and soil available nutrient ratio in rhizosphere and bulk soil under nitrogen addition in Pinus armandii forest in southwest mountain, China (mean ± SE). CK, control treatment; N, nitrogen addition treatment; S, soil position; S × N, interaction effect between soil position and nitrogen addition treatment. CKB, control in bulk soil; CKR, control in rhizosphere soil; NB, nitrogen addition in bulk soil; NR, nitrogen addition in rhizosphere soil. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ns, p > 0.05; n = 3.
磷限制相关因子 Relevant factors of P limitation | 土壤位置 Soil position | 土壤因素 Soil factor | 微生物因素 Microbial factor |
---|---|---|---|
矢量角度 Vector angle | 根际土壤 Rhizosphere soil | 0.304 | 0.532* |
非根际土壤 Bulk soil | 0.704* | 0.629 | |
碳磷阈值比/土壤养分比 TERC:P/AvC:P | 根际土壤 Rhizosphere soil | -0.232 | 0.889** |
非根际土壤 Bulk soil | 0.557* | 0.811** |
表2 西南山地华山松林根际和非根际土壤微生物磷(P)养分限制的影响因素
Table 2 Controlling factors of soil phosphorus (P) limitation in rhizosphere and bulk soil in Pinus armandii forest in southwest mountain, China
磷限制相关因子 Relevant factors of P limitation | 土壤位置 Soil position | 土壤因素 Soil factor | 微生物因素 Microbial factor |
---|---|---|---|
矢量角度 Vector angle | 根际土壤 Rhizosphere soil | 0.304 | 0.532* |
非根际土壤 Bulk soil | 0.704* | 0.629 | |
碳磷阈值比/土壤养分比 TERC:P/AvC:P | 根际土壤 Rhizosphere soil | -0.232 | 0.889** |
非根际土壤 Bulk soil | 0.557* | 0.811** |
图4 西南山地华山松林根际(A)和非根际(B)土壤有效养分、微生物生物量和胞外酶的化学计量特征与微生物磷(P)限制相关指标的Pearson相关系数矩阵。AvC:N, 有效碳氮比; AvC:P, 有效碳磷比; AvN:P, 有效氮磷比; EEAC:N, 酶碳氮比; EEAC:P, 酶碳磷比; EEAN:P, 酶氮磷比; MBC:MBN, 微生物生物量碳氮比; MBC:MBP, 微生物生物量碳磷比; MBN:MBP, 微生物生物量氮磷比; TERC:P, 碳磷阈值比; TERC:P/AvC:P, 碳磷阈值比/土壤碳磷养分比; VA, 矢量角度。*, p < 0.05; **, p < 0.01; ***, p < 0.001; n = 3。
Fig. 4 Pearson correlation coefficient matrix between stoichiometry characteristics of available nutrients, microbial biomass and enzyme in rhizosphere soil (A) and bulk soil (B) and microbial phosphorus (P) limiting related indicators in Pinus armandii forest in southwest mountain, China. AvC:N, available C:N ratio; AvC:P, available C:P ratio; AvN:P, available N:P ratio; EEAC:N, Enzyme C:N ratio; EEAC:P, Enzyme C:P ratio; EEAN:P, Enzyme N:P ratio; MBC:MBN, microbial biomass C:N ratio; MBC:MBP, microbial biomass C:P ratio; MBN:MBP, microbial biomass N:P ratio; TERC:P, C:P threshold ratio; TERC:P/AvC:P, C:P threshold ratio/available C:P ratio; VA, vector angle. *, p < 0.05; **, p < 0.01; ***, p < 0.001; n = 3.
[1] |
Bennett JA, Klironomos J (2019). Mechanisms of plant-soil feedback: interactions among biotic and abiotic drivers. New Phytologist, 222, 91-96.
DOI URL |
[2] |
Brzostek ER, Greco A, Drake JE, Finzi AC (2013). Root carbon inputs to the rhizosphere stimulate extracellular enzyme activity and increase nitrogen availability in temperate forest soils. Biogeochemistry, 115, 65-76.
DOI URL |
[3] |
Carrara JE, Walter CA, Freedman ZB, Hostetler AN, Hawkins JS, Fernandez IJ, Brzostek ER (2021). Differences in microbial community response to nitrogen fertilization result in unique enzyme shifts between arbuscular and ectomycorrhizal-dominated soils. Global Change Biology, 27, 2049-2060.
DOI PMID |
[4] |
Carrara JE, Walter CA, Hawkins JS, Peterjohn WT, Averill C, Brzostek ER (2018). Interactions among plants, bacteria, and fungi reduce extracellular enzyme activities under long-term N fertilization. Global Change Biology, 24, 2721-2734.
DOI PMID |
[5] |
Chai YN, Schachtman DP (2022). Root exudates impact plant performance under abiotic stress. Trends in Plant Science, 27, 80-91.
DOI URL |
[6] |
Chen H, Li DJ, Xiao KC, Wang KL (2018). Soil microbial processes and resource limitation in karst and non-karst forests. Functional Ecology, 32, 1400-1409.
DOI URL |
[7] | Chen Z, Yin HJ, Wei YY, Liu Q (2010). Short-term effects of night warming and nitrogen addition on soil available nitrogen and microbial properties in subalpine coniferous forest, Western Sichuan, China. Chinese Journal of Plant Ecology, 34, 1254-1264. |
[ 陈智, 尹华军, 卫云燕, 刘庆 (2010). 夜间增温和施氮对川西亚高山针叶林土壤有效氮和微生物特性的短期影响. 植物生态学报, 34, 1254-1264.]
DOI |
|
[8] |
Cui H, Ou Y, Lv D, Wang L, Liang A, Yan B, Li Y (2020). Aggregate-related microbial communities and nutrient stoichiometry under different croplands. Ecological Processes, 9, 33. DOI: 10.1186/s13717-020-00239-4.
DOI URL |
[9] |
Cui YX, Bing HJ, Fang LC, Jiang M, Shen GT, Yu JL, Wang X, Zhu H, Wu YH, Zhang XC (2021). Extracellular enzyme stoichiometry reveals the carbon and phosphorus limitations of microbial metabolisms in the rhizosphere and bulk soils in alpine ecosystems. Plant and Soil, 458, 7-20.
DOI URL |
[10] |
Cui YX, Fang LC, Guo XB, Wang X, Zhang YJ, Li PF, Zhang XC (2018). Ecoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the northern Loess Plateau, China. Soil Biology & Biochemistry, 116, 11-21.
DOI URL |
[11] |
Drake JE, Darby BA, Giasson MA, Kramer MA, Phillips RP, Finzi AC (2013). Stoichiometry constrains microbial response to root exudation-insights from a model and a field experiment in a temperate forest. Biogeosciences, 10, 821-838.
DOI URL |
[12] |
Eastman BA, Adams MB, Brzostek ER, Burnham MB, Carrara JE, Kelly C, McNeil BE, Walter CA, Peterjohn WT (2021). Altered plant carbon partitioning enhanced forest ecosystem carbon storage after 25 years of nitrogen additions. New Phytologist, 230, 1435-1448.
DOI PMID |
[13] |
Fenn ME, Jovan S, Yuan F, Geiser L, Meixner T, Gimeno BS (2008). Empirical and simulated critical loads for nitrogen deposition in California mixed conifer forests. Environmental Pollution, 155, 492-511.
DOI PMID |
[14] |
Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai ZC, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008). Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 320, 889-892.
DOI PMID |
[15] |
Gress SE, Nichols TD, Northcraft CC, Peterjohn WT (2007). Nutrient limitation in soils exhibiting differing nitrogen availabilities: What lies beyond nitrogen saturation? Ecology, 88, 119-130.
DOI URL |
[16] |
Guo WJ, Ding JX, Wang QT, Yin MZ, Zhu XM, Liu Q, Zhang ZL, Yin HJ (2021). Soil fertility controls ectomycorrhizal mycelial traits in alpine forests receiving nitrogen deposition. Soil Biology & Biochemistry, 161, 108386. DOI: 10.1016/j.soilbio.2021.108386.
DOI URL |
[17] |
Heuck C, Smolka G, Whalen ED, Frey S, Gundersen P, Moldan F, Fernandez IJ, Spohn M (2018). Effects of long-term nitrogen addition on phosphorus cycling in organic soil horizons of temperate forests. Biogeochemistry, 141, 167-181.
DOI URL |
[18] |
Jenkinson DS, Brookes PC, Powlson DS (2004). Measuring soil microbial biomass. Soil Biology & Biochemistry, 36, 5-7.
DOI URL |
[19] |
Jones DL, Nguyen C, Finlay RD (2009). Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant and Soil, 321, 5-33.
DOI URL |
[20] |
Kuzyakov Y (2002). Review: factors affecting rhizosphere priming effects. Journal of Plant Nutrition and Soil Science, 165, 382-396.
DOI URL |
[21] |
Kuzyakov Y (2010). Priming effects: interactions between living and dead organic matter. Soil Biology & Biochemistry, 42, 1363-1371.
DOI URL |
[22] |
LeBauer DS, Treseder KK (2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 89, 371-379.
PMID |
[23] |
Liu JX, Huang WJ, Zhou GY, Zhang DQ, Liu SZ, Li YY (2013a). Nitrogen to phosphorus ratios of tree species in response to elevated carbon dioxide and nitrogen addition in subtropical forests. Global Change Biology, 19, 208-216.
DOI URL |
[24] | Liu Q, Wu Y, He H (2001). Ecological problems of subalpine coniferous forest in the southwest of China. World Sci-Tech R&D, 23(2), 63-69. |
[ 刘庆, 吴彦, 何海 (2001). 中国西南亚高山针叶林的生态学问题. 世界科技研究与发展, 23(2), 63-69.] | |
[25] |
Liu X, Zhang Y, Han W, Tang A, Shen J, Cui Z, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmeier A, Zhang F (2013b). Enhanced nitrogen deposition over China. Nature, 494, 459-462.
DOI URL |
[26] | Lu RK (2000). Analytical Methods for Soil and Agriculture Chemistry. China Agricultural Scientech Press, Beijing. |
[ 鲁如坤 (2000). 土壤农业化学分析方法. 中国农业科技出版社, 北京.] | |
[27] |
Midgley MG, Phillips RP (2016). Resource stoichiometry and the biogeochemical consequences of nitrogen deposition in a mixed deciduous forest. Ecology, 97, 3369-3378.
DOI PMID |
[28] |
Moorhead DL, Rinkes ZL, Sinsabaugh RL, Weintraub MN (2013). Dynamic relationships between microbial biomass, respiration, inorganic nutrients and enzyme activities: informing enzyme-based decomposition models. Frontiers in Microbiology, 4, 223. DOI: 10.3389/fmicb.2013.00223.
DOI PMID |
[29] |
Peñuelas J, Poulter B, Sardans J, Ciais P, van der Velde M, Bopp L, Boucher O, Godderis Y, Hinsinger P, Llusia J, Nardin E, Vicca S, Obersteiner M, Janssens IA (2013). Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe. Nature Communications, 4, 2934-2944.
DOI PMID |
[30] |
Philippot L, Raaijmakers JM, Lemanceau P, Putten WH (2013). Going back to the roots: the microbial ecology of the rhizosphere. Nature Reviews Microbiology, 11, 789-799.
DOI PMID |
[31] |
Phillips RP, Finzi AC, Bernhardt ES (2011). Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecology Letters, 14, 187-194.
DOI PMID |
[32] |
Richardson AE, Simpson RJ (2011). Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiology, 156, 989-996.
DOI PMID |
[33] |
Saiya-Cork KR, Sinsabaugh RL, Zak DR (2002). The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology & Biochemistry, 34, 1309-1315.
DOI URL |
[34] |
Sinsabaugh RL, Hill BH, Follstad Shah JJ, (2009). Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature, 462, 795-798.
DOI URL |
[35] |
Sinsabaugh RL, Turner BL, Talbot JM, Waring BG, Powers JS, Kuske CR, Moorhead DL, Follstad Shah JJ (2016). Stoichiometry of microbial carbon use efficiency in soils. Ecological Monographs, 86, 172-189.
DOI URL |
[36] | Sterner RW, Elser JJ (2002). Ecological Stoichiometry: the Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton. |
[37] |
Vance ED, Brookes PC, Jenkinson DS (1987). An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry, 19, 703-707.
DOI URL |
[38] |
Wu J, He ZL, Wei WX, OʼDonnell AG, Syers JK (2000). Quantifying microbial biomass phosphorus in acid soils. Biology and Fertility of Soils, 32, 500-507.
DOI URL |
[39] |
Xu Z, Wan C, Xiong P, Tang Z, Hu R, Cao G, Liu Q (2010). Initial responses of soil CO2 efflux and C, N pools to experimental warming in two contrasting forest ecosystems, Eastern Tibetan Plateau, China. Plant and Soil, 336, 183-195.
DOI URL |
[40] | Yin MZ, Guo WJ, Zhu XM, Zhang ZL, Liu Q, Yin HJ (2021). Nutrient limiting characteristics of subalpine coniferous forests under conditions of nitrogen deposition in the southwest mountain of China. Chinese Journal of Applied and Environmental Biology, 27, 1-7. |
[ 尹明珍, 郭婉玑, 朱晓敏, 张子良, 刘庆, 尹华军 (2021). 氮沉降下西南亚高山针叶林生长的养分限制特征. 应用与环境生物学报, 27, 1-7.] | |
[41] |
Yu G, Jia Y, He N, Zhu J, Chen Z, Wang Q, Piao S, Liu X, He H, Guo X, Wen Z, Li P, Ding G, Goulding K (2019). Stabilization of atmospheric nitrogen deposition in China over the past decade. Nature Geoscience, 12, 424-429.
DOI URL |
[42] |
Yue K, Fornara DA, Yang W, Peng Y, Li Z, Wu F, Peng C (2017). Effects of three global change drivers on terrestrial C:N:P stoichiometry: a global synthesis. Global Change Biology, 23, 2450-2463.
DOI URL |
[43] |
Zechmeister-Boltenstern S, Keiblinger KM, Mooshammer M, Peñuelas J, Richter A, Sardans J, Wanek W (2015). The application of ecological stoichiometry to plant-microbial- soil organic matter transformations. Ecological Monographs, 85, 133-155.
DOI URL |
[44] |
Zhang R, Mu Y, Li X, Li S, Sang P, Wang X, Wu H, Xu N (2020). Response of the arbuscular mycorrhizal fungi diversity and community in maize and soybean rhizosphere soil and roots to intercropping systems with different nitrogen application rates. Science of the Total Environment, 740, 139810. DOI: 10.1016/j.scitotenv.2020.139810.
DOI URL |
[45] |
Zhou ZH, Wang CK (2016). Responses and regulation mechanisms of microbial decomposers to substrate carbon, nitrogen, and phosphorus stoichiometry. Chinese Journal of Plant Ecology, 40, 620-630.
DOI URL |
[ 周正虎, 王传宽 (2016). 微生物对分解底物碳氮磷化学计量的响应和调节机制. 植物生态学报, 40, 620-630.]
DOI |
|
[46] |
Zhu JX, He NP, Wang QF, Yuan GF, Wen D, Yu GR, Jia YL (2015). The composition, spatial patterns, and influencing factors of atmospheric wet nitrogen deposition in Chinese terrestrial ecosystems. Science of the Total Environment, 511, 777-785.
DOI URL |
[47] |
Zhu XM, Liu M, Kou YP, Liu DY, Liu Q, Zhang ZL, Jiang Z, Yin HJ (2020). Differential effects of N addition on the stoichiometry of microbes and extracellular enzymes in the rhizosphere and bulk soils of an alpine shrubland. Plant and Soil, 449, 285-301.
DOI URL |
[1] | 俞庆水 倪晓凤 吉成均 朱江玲 唐志尧 方精云. 10年氮磷添加对海南尖峰岭两种热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[3] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[4] | 何茜, 冯秋红, 张佩佩, 杨涵, 邓少军, 孙小平, 尹华军. 基于叶片和土壤酶化学计量的川西亚高山岷江冷杉林养分限制海拔变化规律[J]. 植物生态学报, 2023, 47(12): 1646-1657. |
[5] | 樊凡, 赵联军, 马添翼, 熊心雨, 张远彬, 申小莉, 李晟. 川西王朗亚高山暗针叶林25.2 hm2动态监测样地物种组成与群落结构特征[J]. 植物生态学报, 2022, 46(9): 1005-1017. |
[6] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[7] | 田磊, 朱毅, 李欣, 韩国栋, 任海燕. 不同降水条件下内蒙古荒漠草原主要植物物候对长期增温和氮添加的响应[J]. 植物生态学报, 2022, 46(3): 290-299. |
[8] | 谢欢, 张秋芳, 曾泉鑫, 周嘉聪, 马亚培, 吴玥, 刘苑苑, 林惠瑛, 尹云锋, 陈岳民. 氮添加对杉木苗期磷转化和分解类真菌的影响[J]. 植物生态学报, 2022, 46(2): 220-231. |
[9] | 朱湾湾, 王攀, 许艺馨, 李春环, 余海龙, 黄菊莹. 降水量变化与氮添加下荒漠草原土壤酶活性及其影响因素[J]. 植物生态学报, 2021, 45(3): 309-320. |
[10] | 张宏锦, 王娓. 生态系统多功能性对全球变化的响应: 进展、问题与展望[J]. 植物生态学报, 2021, 45(10): 1112-1126. |
[11] | 冯继广, 朱彪. 氮磷添加对树木生长和森林生产力影响的研究进展[J]. 植物生态学报, 2020, 44(6): 583-597. |
[12] | 牛书丽, 陈卫楠. 全球变化与生态系统研究现状与展望[J]. 植物生态学报, 2020, 44(5): 449-460. |
[13] | 付伟, 武慧, 赵爱花, 郝志鹏, 陈保冬. 陆地生态系统氮沉降的生态效应: 研究进展与展望[J]. 植物生态学报, 2020, 44(5): 475-493. |
[14] | 陈思路, 蔡劲松, 林成芳, 宋豪威, 杨玉盛. 亚热带不同树种凋落叶分解对氮添加的响应[J]. 植物生态学报, 2020, 44(3): 214-227. |
[15] | 邹安龙,李修平,倪晓凤,吉成均. 模拟氮沉降对北京东灵山辽东栎林树木生长的影响[J]. 植物生态学报, 2019, 43(9): 783-792. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19