植物生态学报 ›› 2022, Vol. 46 ›› Issue (4): 461-472.DOI: 10.17521/cjpe.2021.0339
所属专题: 生态化学计量; 青藏高原植物生态学:群落生态学; 生物地球化学; 微生物生态学
吴赞1,2, 彭云峰2,*(), 杨贵彪2, 李秦鲁2,4, 刘洋2,3, 马黎华1, 杨元合2,4, 蒋先军1,*(
)
收稿日期:
2021-09-22
接受日期:
2022-01-08
出版日期:
2022-04-20
发布日期:
2022-02-16
通讯作者:
彭云峰,蒋先军
作者简介:
*(Peng YF, pengyf@ibcas.ac.cn; Jiang XJ, jiangxj@swu.edu.cn)基金资助:
WU Zan1,2, PENG Yun-Feng2,*(), YANG Gui-Biao2, LI Qin-Lu2,4, LIU Yang2,3, MA Li-Hua1, YANG Yuan-He2,4, JIANG Xian-Jun1,*(
)
Received:
2021-09-22
Accepted:
2022-01-08
Online:
2022-04-20
Published:
2022-02-16
Contact:
PENG Yun-Feng,JIANG Xian-Jun
摘要:
草地是我国陆地生态系统的重要组成部分, 具有重要的生产和生态功能。过去几十年来, 受气候变化和过度放牧等因素影响, 我国90%的天然草地发生不同程度退化。草地退化打破了土壤养分平衡, 影响草地生态系统的结构和功能。该研究以青藏高原高寒草地为研究对象, 基于三江源区多点采样和整个青藏高原高寒草地的meta分析相结合的手段, 解析了表层0-10 cm土壤和微生物碳氮磷含量及其化学计量特征随不同草地退化程度(未退化、中度和重度退化)的变化规律。结果显示, 草地退化整体上降低土壤有机碳、总氮和总磷含量及其化学计量比。土壤微生物碳氮含量随着退化程度的加剧而下降, 微生物磷含量不受退化的影响。微生物碳氮磷化学计量比沿退化梯度没有显著的变化规律, 且土壤和微生物元素化学计量比之间未呈现显著相关关系。以上结果表明, 草地退化致使土壤养分化学计量关系发生显著改变, 微生物群落自身却能维持一定的养分平衡。在长时间尺度上, 基于养分平衡的土壤质量提升技术可有效地促进退化高寒草地恢复, 改善其生态系统服务功能。
吴赞, 彭云峰, 杨贵彪, 李秦鲁, 刘洋, 马黎华, 杨元合, 蒋先军. 青藏高原高寒草地退化对土壤及微生物化学计量特征的影响. 植物生态学报, 2022, 46(4): 461-472. DOI: 10.17521/cjpe.2021.0339
WU Zan, PENG Yun-Feng, YANG Gui-Biao, LI Qin-Lu, LIU Yang, MA Li-Hua, YANG Yuan-He, JIANG Xian-Jun. Effects of land degradation on soil and microbial stoichiometry in Qingzang Plateau alpine grasslands. Chinese Journal of Plant Ecology, 2022, 46(4): 461-472. DOI: 10.17521/cjpe.2021.0339
图1 野外实地调查采样点和meta分析搜集的文献样点分布图。植被类型图来源于1:100万中国植被图(中国科学院中国植被图编辑委员会, 2001)。
Fig. 1 Distribution of the soil sampling sites and studies in the meta-analysis. Vegetation map was generated from China’s Vegetation Atlas with a scale of 1:1 000 000 (The Editorial Committee of Vegetation Map of China, Chinese Academy of Sciences, 2001).
草地类型 Grassland type | 采样地点 Sampling site | 经纬度 Longitude, latitude | 年平均气温 MAT (℃) | 年降水量 MAP (mm) | 退化程度 Degradation level | 植被盖度 Vegetation cover (%) | 地表状况 Soil surface condition | 优势种 Dominant species |
---|---|---|---|---|---|---|---|---|
高寒草甸 Alpine meadow | 玛查理镇 Machali Town | 97.84° E, 34.24° N | -5.5 | 504.8 | 未退化 Non-degradation | 100 | 无裸斑、无砾石 No bare patches and gravels | 矮生嵩草、西藏嵩草、高山嵩草等 Kobresia humilis, Kobresia tibetica, Kobresia pygmaea, et al. |
中度退化 Moderate degradation | 55 | 少量裸斑、无砾石 Few bare patches, no gravels | 矮生嵩草、西藏嵩草、唐古特虎耳草等 Kobresia humilis, Kobresia tibetica, Saxifraga tangutica, et al. | |||||
重度退化 Heavy degradation | 40 | 大面积裸斑、少量砾石 Numerous bare patches, few gravels | 唐古特虎耳草、星舌紫菀、紫红假龙胆等 Saxifraga tangutica, Aster asteroides, Gentianella arenaria, et al. | |||||
花石峡镇 Huashixia Town | 98.85° E, 35.04° N | -3.4 | 414.4 | 未退化 Non-degradation | 99 | 无裸斑、无砾石 No bare patches and gravels | 西藏嵩草、矮生嵩草、暗褐薹草等 Kobresia tibetica, Kobresia humilis, Carex atrofusca, et al. | |
中度退化 Moderate degradation | 55 | 少量裸斑、无砾石 Few bare patches, no gravels | 西藏嵩草、矮生嵩草、细叶亚菊等 Kobresia tibetica, Kobresia humilis, Ajania tenuifolia, et al. | |||||
重度退化 Heavy degradation | 30 | 大面积裸斑、较多砾石、零星鼠洞 Numerous bare patches and gravels, scattered rodent burrows | 细叶亚菊、西伯利亚蓼、美丽风毛菊等 Ajania tenuifolia, Polygonum sibiricum, Saussurea pulchra, et al. | |||||
上贡麻乡 Shanggongma Town | 99.93° E, 33.93° N | -3.0 | 588.0 | 未退化 Non-degradation | 100 | 无裸斑、无砾石 No bare patches and gravels | 矮生嵩草、高山嵩草、暗褐薹草等 Kobresia humilis, Kobresia pygmaea, Carex atrofusca, et al. | |
中度退化 Moderate degradation | 55 | 少量裸斑、无砾石 Few bare patches, no gravels | 矮生嵩草、高山嵩草、乳白香青等 Kobresia humilis, Kobresia pygmaea, Anaphalis lactea, et al. | |||||
重度退化 Heavy degradation | 40 | 大面积裸斑、少量砾石、零星鼠洞 Numerous bare patches, few gravels, scattered rodent burrows | 阿尔泰狗娃花、细叶亚菊、鹅绒委陵菜等 Aster altaicus, Ajania tenuifolia, Potentilla anserina, et al. | |||||
阿多乡 Adoi Town | 95.20° E, 32.91° N | -3.0 | 566.7 | 未退化 Non-degradation | 100 | 无裸斑、无砾石 No bare patches and gravels | 高山嵩草、矮生嵩草、紫花针茅等 Kobresia pygmaea, Kobresia humilis, Stipa purpurea, et al. | |
中度退化 Moderate degradation | 66 | 少量裸斑、零星砾石 Few bare patches, scattered gravels | 高山嵩草、矮生嵩草、矮火绒草等 Kobresia pygmaea, Kobresia humilis, Leontopodium nanum, et al. | |||||
重度退化 Heavy degradation | 42 | 大面积裸斑、少量砾石 Numerous bare patches, few gravels | 阿尔泰狗娃花、细叶亚菊、鹅绒委陵菜等 Aster altaicus, Ajania tenuifolia, Potentilla anserina, et al. | |||||
高寒草原 Alpine steppe | 曲麻河乡 Qumahe Town | 94.99° E, 34.82° N | -5.0 | 357.1 | 未退化 Non-degradation | 75 | 少量裸斑、少量砾石 Few bare patches and gravels | 紫花针茅、草地早熟禾、线叶嵩草等 Stipa purpurea, Poa pratensis, Kobresia capillifolia, et al. |
中度退化 Moderate degradation | 45 | 较多裸斑、较多砾石 Several bare patches and gravels | 紫花针茅、线叶嵩草、沙生风毛菊等 Stipa purpurea, Kobresia capillifolia, Saussurea arenaria, et al. | |||||
重度退化 Heavy degradation | 15 | 大面积裸斑、大量砾石 Numerous bare patches and gravels | 沙生风毛菊、细叶亚菊、阿尔泰狗娃花等 Saussurea arenaria, Ajania tenuifolia, Aster altaicus, et al. |
表1 青藏高原高寒草地5个采样点基本信息
Table 1 Basic information of five sampling sites in in Qingzang Plateau alpine grassland
草地类型 Grassland type | 采样地点 Sampling site | 经纬度 Longitude, latitude | 年平均气温 MAT (℃) | 年降水量 MAP (mm) | 退化程度 Degradation level | 植被盖度 Vegetation cover (%) | 地表状况 Soil surface condition | 优势种 Dominant species |
---|---|---|---|---|---|---|---|---|
高寒草甸 Alpine meadow | 玛查理镇 Machali Town | 97.84° E, 34.24° N | -5.5 | 504.8 | 未退化 Non-degradation | 100 | 无裸斑、无砾石 No bare patches and gravels | 矮生嵩草、西藏嵩草、高山嵩草等 Kobresia humilis, Kobresia tibetica, Kobresia pygmaea, et al. |
中度退化 Moderate degradation | 55 | 少量裸斑、无砾石 Few bare patches, no gravels | 矮生嵩草、西藏嵩草、唐古特虎耳草等 Kobresia humilis, Kobresia tibetica, Saxifraga tangutica, et al. | |||||
重度退化 Heavy degradation | 40 | 大面积裸斑、少量砾石 Numerous bare patches, few gravels | 唐古特虎耳草、星舌紫菀、紫红假龙胆等 Saxifraga tangutica, Aster asteroides, Gentianella arenaria, et al. | |||||
花石峡镇 Huashixia Town | 98.85° E, 35.04° N | -3.4 | 414.4 | 未退化 Non-degradation | 99 | 无裸斑、无砾石 No bare patches and gravels | 西藏嵩草、矮生嵩草、暗褐薹草等 Kobresia tibetica, Kobresia humilis, Carex atrofusca, et al. | |
中度退化 Moderate degradation | 55 | 少量裸斑、无砾石 Few bare patches, no gravels | 西藏嵩草、矮生嵩草、细叶亚菊等 Kobresia tibetica, Kobresia humilis, Ajania tenuifolia, et al. | |||||
重度退化 Heavy degradation | 30 | 大面积裸斑、较多砾石、零星鼠洞 Numerous bare patches and gravels, scattered rodent burrows | 细叶亚菊、西伯利亚蓼、美丽风毛菊等 Ajania tenuifolia, Polygonum sibiricum, Saussurea pulchra, et al. | |||||
上贡麻乡 Shanggongma Town | 99.93° E, 33.93° N | -3.0 | 588.0 | 未退化 Non-degradation | 100 | 无裸斑、无砾石 No bare patches and gravels | 矮生嵩草、高山嵩草、暗褐薹草等 Kobresia humilis, Kobresia pygmaea, Carex atrofusca, et al. | |
中度退化 Moderate degradation | 55 | 少量裸斑、无砾石 Few bare patches, no gravels | 矮生嵩草、高山嵩草、乳白香青等 Kobresia humilis, Kobresia pygmaea, Anaphalis lactea, et al. | |||||
重度退化 Heavy degradation | 40 | 大面积裸斑、少量砾石、零星鼠洞 Numerous bare patches, few gravels, scattered rodent burrows | 阿尔泰狗娃花、细叶亚菊、鹅绒委陵菜等 Aster altaicus, Ajania tenuifolia, Potentilla anserina, et al. | |||||
阿多乡 Adoi Town | 95.20° E, 32.91° N | -3.0 | 566.7 | 未退化 Non-degradation | 100 | 无裸斑、无砾石 No bare patches and gravels | 高山嵩草、矮生嵩草、紫花针茅等 Kobresia pygmaea, Kobresia humilis, Stipa purpurea, et al. | |
中度退化 Moderate degradation | 66 | 少量裸斑、零星砾石 Few bare patches, scattered gravels | 高山嵩草、矮生嵩草、矮火绒草等 Kobresia pygmaea, Kobresia humilis, Leontopodium nanum, et al. | |||||
重度退化 Heavy degradation | 42 | 大面积裸斑、少量砾石 Numerous bare patches, few gravels | 阿尔泰狗娃花、细叶亚菊、鹅绒委陵菜等 Aster altaicus, Ajania tenuifolia, Potentilla anserina, et al. | |||||
高寒草原 Alpine steppe | 曲麻河乡 Qumahe Town | 94.99° E, 34.82° N | -5.0 | 357.1 | 未退化 Non-degradation | 75 | 少量裸斑、少量砾石 Few bare patches and gravels | 紫花针茅、草地早熟禾、线叶嵩草等 Stipa purpurea, Poa pratensis, Kobresia capillifolia, et al. |
中度退化 Moderate degradation | 45 | 较多裸斑、较多砾石 Several bare patches and gravels | 紫花针茅、线叶嵩草、沙生风毛菊等 Stipa purpurea, Kobresia capillifolia, Saussurea arenaria, et al. | |||||
重度退化 Heavy degradation | 15 | 大面积裸斑、大量砾石 Numerous bare patches and gravels | 沙生风毛菊、细叶亚菊、阿尔泰狗娃花等 Saussurea arenaria, Ajania tenuifolia, Aster altaicus, et al. |
图2 青藏高原高寒草地5个采样点不同退化程度上土壤有机碳(SOC)、全氮(TN)、全磷(TP)含量及其化学计量比的变化(平均值±标准差)。不同小写字母表示各项指标在不同退化程度之间的差异显著(p < 0.05); NS, p > 0.05。
Fig. 2 Changes in soil organic carbon (SOC), total nitrogen (TN) and total phosphorus (TP) contents and their stoichiometric ratios along the degradation sequence for the five sampling sites in Qingzang Plateau alpine grassland (mean ± SD). HD, heavy degradation; MD, moderate degradation; ND, non-degradation. Different lowercase letters indicate significant differences among different grasslands degradation levels (p < 0.05); NS, p > 0.05.
图3 青藏高原高寒草地5个采样点不同退化程度上土壤微生物碳(MBC)、氮(MBN)、磷(MBP)含量及其化学计量比的变化(平均值±标准差)。不同小写字母表示各项指标在不同退化程度之间的差异性(p < 0.05); NS, p > 0.05。
Fig. 3 Changes in soil microbial biomass carbon (MBC), nitrogen (MBN) and phosphorus (MBP) and their stoichiometric ratios along the degradation sequence for the five sampling sites in Qingzang Plateau alpine grassland (mean ± SD). HD, heavy degradation; MD, moderate degradation; ND, non-degradation. Different lowercase letters indicate significant differences among different grasslands degradation levels (p < 0.05); NS, p > 0.05.
图4 青藏高原高寒草地不同采样点草地退化序列上微生物化学计量比与土壤理化性质的关系。A, 玛查理镇。B, 花石峡镇。C, 上贡麻乡。D, 阿多乡。E, 曲麻河乡。图中气泡的大小表示Pearson相关系数的大小, 气泡中的星号表示两个变量之间存在显著相关关系(*, p < 0.05)。MBC, 微生物生物量碳含量; MBN, 微生物生物量氮含量; MBP, 微生物生物量磷含量; Sand, 土壤砂粒含量; SM, 土壤含水量; SOC, 土壤有机碳含量; TN, 土壤全氮含量; TP, 土壤全磷含量。
Fig. 4 Correlations between microbial stoichiometry and soil properties along the degradation sequence for different sampling sites in Qingzang Plateau alpine grassland. A, Machali Town. B, Huashixia Town. C, Shanggongma Town. D, Adoi Town. E, Qumahe Town. The size of the bubble indicates the strength of the correlation. Asterisk indicates significant relationships between variables (*, p < 0.05). MBC, microbial biomass carbon content; MBN, microbial biomass nitrogen content; MBP, microbial biomass phosphorus content; Sand, soil sand content; SM, soil moisture; SOC, soil organic carbon content; TN, soil total nitrogen content; TP, soil total phosphorus content.
草地类型 Grassland type | 采样地点 Sampling sites | 退化程度 Degradation level | pH | 质量含水率 SM (%) | 砂粒含量 Sand content (%) | 无机氮含量 SIN content (mg·kg-1) | 速效磷含量 AP content (mg·kg-1) |
---|---|---|---|---|---|---|---|
高寒草甸 Alpine meadow | 玛查理镇 Machali Town | 未退化 ND | 6.6 ± 0.1b | 65.6 ± 6.9a | 49.2 ± 1.8a | 62.4 ± 2.2a | 18.6 ± 1.6b |
中度退化 MD | 6.6 ± 0.1b | 38.5 ± 1.7b | 51.6 ± 1.5a | 38.0 ± 5.5b | 25.7 ± 2.6a | ||
重度退化 HD | 7.0 ± 0.1a | 46.6 ± 5.4ab | 50.4 ± 0.9a | 40.8 ± 8.8ab | 17.4 ± 3.3b | ||
花石峡镇 Huashixia Town | 未退化 ND | 7.7 ± 0.0b | 30.2 ± 2.8ab | 54.2 ± 1.2a | 64.9 ± 5.3a | 19.5 ± 3.6ab | |
中度退化 MD | 7.7 ± 0.0b | 32.8 ± 3.8a | 51.1 ± 1.7a | 45.4 ± 6.3b | 16.2 ± 4.7b | ||
重度退化 HD | 8.0 ± 0.0a | 20.4 ± 0.9b | 52.2 ± 2.2a | 42.1 ± 2.0b | 25.9 ± 2.1a | ||
上贡麻乡 Shanggongma Town | 未退化 ND | 6.5 ± 0.1b | 31.6 ± 1.5a | 57.1 ± 1.0a | 69.1 ± 1.7a | 32.3 ± 1.3a | |
中度退化 MD | 6.8 ± 0.1b | 30.9 ± 1.1a | 60.4 ± 0.7a | 80.5 ± 7.5a | 9.3 ± 1.4b | ||
重度退化 HD | 7.7 ± 0.2a | 24.0 ± 2.4b | 58.0 ± 1.2a | 23.7 ± 3.2b | 8.3 ± 0.8b | ||
阿多乡 Adoi Town | 未退化 ND | 7.9 ± 0.0b | 24.0 ± 1.8a | 43.1 ± 4.2a | 46.2 ± 4.1a | 28.0 ± 3.3a | |
中度退化 MD | 8.0 ± 0.0a | 20.2 ± 0.8a | 41.7 ± 2.6a | 38.8 ± 4.1a | 20.3 ± 0.7b | ||
重度退化 HD | 8.0 ± 0.0a | 23.4 ± 1.0a | 40.6 ± 2.6a | 42.3 ± 4.2a | 30.2 ± 2.8a | ||
高寒草原 Alpine steppe | 曲麻河乡 Qumahe Town | 未退化 ND | 8.6 ± 0.1a | 2.6 ± 0.7a | 89.9 ± 0.1a | 9.7 ± 1.4a | 1.8 ± 0.1a |
中度退化 MD | 8.8 ± 0.0a | 3.5 ± 0.8a | 85.8 ± 1.5ab | 5.1 ± 0.3b | 1.6 ± 0.2a | ||
重度退化 HD | 8.7 ± 0.0a | 4.2 ± 0.3a | 79.4 ± 2.3b | 4.2 ± 0.2b | 1.9 ± 0.2a |
表2 青藏高原高寒草地5个采样点土壤理化性质(平均值±标准差)
Table 2 Soil physiochemical properties of five sampling sites in Qingzang Plateau alpine grassland (mean ± SD)
草地类型 Grassland type | 采样地点 Sampling sites | 退化程度 Degradation level | pH | 质量含水率 SM (%) | 砂粒含量 Sand content (%) | 无机氮含量 SIN content (mg·kg-1) | 速效磷含量 AP content (mg·kg-1) |
---|---|---|---|---|---|---|---|
高寒草甸 Alpine meadow | 玛查理镇 Machali Town | 未退化 ND | 6.6 ± 0.1b | 65.6 ± 6.9a | 49.2 ± 1.8a | 62.4 ± 2.2a | 18.6 ± 1.6b |
中度退化 MD | 6.6 ± 0.1b | 38.5 ± 1.7b | 51.6 ± 1.5a | 38.0 ± 5.5b | 25.7 ± 2.6a | ||
重度退化 HD | 7.0 ± 0.1a | 46.6 ± 5.4ab | 50.4 ± 0.9a | 40.8 ± 8.8ab | 17.4 ± 3.3b | ||
花石峡镇 Huashixia Town | 未退化 ND | 7.7 ± 0.0b | 30.2 ± 2.8ab | 54.2 ± 1.2a | 64.9 ± 5.3a | 19.5 ± 3.6ab | |
中度退化 MD | 7.7 ± 0.0b | 32.8 ± 3.8a | 51.1 ± 1.7a | 45.4 ± 6.3b | 16.2 ± 4.7b | ||
重度退化 HD | 8.0 ± 0.0a | 20.4 ± 0.9b | 52.2 ± 2.2a | 42.1 ± 2.0b | 25.9 ± 2.1a | ||
上贡麻乡 Shanggongma Town | 未退化 ND | 6.5 ± 0.1b | 31.6 ± 1.5a | 57.1 ± 1.0a | 69.1 ± 1.7a | 32.3 ± 1.3a | |
中度退化 MD | 6.8 ± 0.1b | 30.9 ± 1.1a | 60.4 ± 0.7a | 80.5 ± 7.5a | 9.3 ± 1.4b | ||
重度退化 HD | 7.7 ± 0.2a | 24.0 ± 2.4b | 58.0 ± 1.2a | 23.7 ± 3.2b | 8.3 ± 0.8b | ||
阿多乡 Adoi Town | 未退化 ND | 7.9 ± 0.0b | 24.0 ± 1.8a | 43.1 ± 4.2a | 46.2 ± 4.1a | 28.0 ± 3.3a | |
中度退化 MD | 8.0 ± 0.0a | 20.2 ± 0.8a | 41.7 ± 2.6a | 38.8 ± 4.1a | 20.3 ± 0.7b | ||
重度退化 HD | 8.0 ± 0.0a | 23.4 ± 1.0a | 40.6 ± 2.6a | 42.3 ± 4.2a | 30.2 ± 2.8a | ||
高寒草原 Alpine steppe | 曲麻河乡 Qumahe Town | 未退化 ND | 8.6 ± 0.1a | 2.6 ± 0.7a | 89.9 ± 0.1a | 9.7 ± 1.4a | 1.8 ± 0.1a |
中度退化 MD | 8.8 ± 0.0a | 3.5 ± 0.8a | 85.8 ± 1.5ab | 5.1 ± 0.3b | 1.6 ± 0.2a | ||
重度退化 HD | 8.7 ± 0.0a | 4.2 ± 0.3a | 79.4 ± 2.3b | 4.2 ± 0.2b | 1.9 ± 0.2a |
图5 Meta分析中青藏高原高寒草地退化对土壤和微生物化学计量比的影响(A), 以及土壤和微生物化学计量比的响应关系(RR)(B-D)。A中括号内的数字为化学计量比的响应比, 括号外的数字代表样本量, 误差棒代表95%置信区间。MBC, 微生物生物量碳含量; MBN, 微生物生物量氮含量; MBP, 微生物生物量磷含量; SOC, 土壤有机碳含量; TN, 土壤全氮含量; TP, 土壤全磷含量。
Fig. 5 Responses of soil and microbial stoichiometric ratios to grassland degradation in the meta-analysis (A), and correlation between the response ratio (RR) of soil and microbial stoichiometric ratios (B-D) in Qingzang Plateau alpine grassland. The percentages of change for each variable are shown in parentheses and the sample size is shown outside the parentheses in A, error bars represent 95% confidence intervals. MBC, microbial biomass carbon content; MBN, microbial biomass nitrogen content; MBP, microbial biomass phosphorus content; SOC, soil organic carbon content; TN, soil total nitrogen content; TP, soil total phosphorus content.
[1] |
Adams DC, Gurevitch J, Rosenberg MS (1997). Resampling tests for meta-analysis of ecological data. Ecology, 78, 1277-1283.
DOI URL |
[2] |
Allison SD, Vitousek PM (2005). Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biology & Biochemistry, 37, 937-944.
DOI URL |
[3] | Bao SD (2000). Soil Agricultural Chemistry Analysis. 3rd ed. China Agriculture Press, Beijing. |
[ 鲍士旦 (2000). 土壤农化分析. 3版. 中国农业出版社, 北京.] | |
[4] | Bardgett RD, Bullock JM, Lavorel S, Manning P, Schaffner U, Ostle N, Chomel M, Durigan G, Fry EL, Johnson D, Lavallee JM, Le Provost G, Luo S, Png K, Sankaran M, Hou X, et al. (2021). Combatting global grassland degradation. Nature Reviews Earth & Environment, 2, 720-735. |
[5] |
Bardgett RD, van der Putten W (2014). Belowground biodiversity and ecosystem functioning. Nature, 515, 505-511.
DOI URL |
[6] | Cathcart JB (1980). World phosphate reserves and resources// Khasawneh FE, Sample EC, Kamprath EJ. The Role of Phosphorus in Agriculture. Madison, Wesconsin, USA. |
[7] | Chen GC (2007). Ecological Protection and Construction of Sanjiangyuan Natural Protection Area. Qinghai Peopleʼs Publishing House, Xining. |
[ 陈桂琛 (2007). 三江源自然保护区生态保护与建设. 青海人民出版社, 西宁.] | |
[8] |
Chen J, Luo YQ, van Groenigen KJ, Hungate BA, Cao JJ, Zhou XH, Wang RW (2018). A keystone microbial enzyme for nitrogen control of soil carbon storage. Science Advances, 4, eaaq1689. DOI: 10.1126/sciadv.aaq1689.
DOI URL |
[9] | Fraser LH, Henry HAL, Carlyle CN, White SR, Beierkuhnlein C, Cahill Jr JF, Casper BB, Cleland E, Collins SL, Dukes JS, Knapp AK, Lind E, Long R, Luo Y, Reich PB, et al. (2013). Coordinated distributed experiments: an emerging tool for testing global hypotheses in ecology and environmental science. Frontiers in Ecology and the Environment, 11(3), 147-155. |
[10] |
Hall EK, Maixner F, Franklin O, Daims H, Richter A, Battin T (2011). Linking microbial and ecosystem ecology using ecological stoichiometry: a synthesis of conceptual and empirical approaches. Ecosystems, 14, 261-273.
DOI URL |
[11] | Han J (2011). Survey on Ecological Issues of China’s Grasslands. Shanghai Far East Publishers, Shanghai. |
[ 韩俊 (2011). 中国草原生态问题调查. 上海远东出版社, 上海.] | |
[12] | Hao AH, Xue X, Peng F, You QG, Liao J, Duan HC, Huang CH, Dong SY (2020). Different vegetation and soil degradation characteristics of a typical grassland in the Qinghai- Tibetan Plateau. Acta Ecologica Sinica, 40, 964-975. |
[ 郝爱华, 薛娴, 彭飞, 尤全刚, 廖杰, 段翰晨, 黄翠华, 董斯扬 (2020). 青藏高原典型草地植被退化与土壤退化研究. 生态学报, 40, 964-975.] | |
[13] |
Hedges LV, Gurevitch J, Curtis PS (1999). The meta-analysis of response ratios in experimental ecology. Ecology, 80, 1150-1156.
DOI URL |
[14] | Hu L, Wang CT, Wang GX, Ma L, Liu W, Xiang ZY (2014). Changes in the activities of soil enzymes and microbial community structure at different degradation successional stages of alpine meadows in the headwater region of Three Rivers, China. Acta Prataculturae Sinica, 23, 8-19. |
[ 胡雷, 王长庭, 王根绪, 马力, 刘伟, 向泽宇 (2014). 三江源区不同退化演替阶段高寒草甸土壤酶活性和微生物群落结构的变化. 草业学报, 23, 8-19.] | |
[15] | Lai CM, Xue X, Lai RW, Li CY, You QG, Zhang WJ, Liu FY, Peng F (2019). Alpine meadows at different levels of degradation in the Beiluhe Basin of Tibetan Plateau Characteristics of soil respiration. Pratacultural Science, 36, 952- 959. |
[ 赖炽敏, 薛娴, 赖日文, 李成阳, 尤全刚, 张文娟, 刘斐耀, 彭飞 (2019). 青藏高原北麓河流域不同退化程度高寒草甸土壤呼吸特征. 草业科学, 36, 952-959.] | |
[16] | Li HY, Yao T, Zhang JG, Gao YM, Ma YC, Lu XW, Zhang HR, Yang XL (2018a). Relationship between soil bacterial community and environmental factors in the degraded alpine grassland of eastern Qilian Mountains, China. Chinese Journal of Applied Ecology, 29, 3793-3801. |
[ 李海云, 姚拓, 张建贵, 高亚敏, 马亚春, 路晓雯, 张慧荣, 杨晓蕾 (2018a). 东祁连山退化高寒草地土壤细菌群落与土壤环境因子间的相互关系. 应用生态学报, 29, 3793- 3801.] | |
[17] | Li HY, Zhang JG, Yao T, Yang XM, Gao YM, Li CN, Li Q, Feng Y (2018b). Soil nutrients, enzyme activities and ecological stoichiometric characteristics in degraded alpine grasslands. Journal of Soil and Water Conservation, 32, 287-295. |
[ 李海云, 张建贵, 姚拓, 杨晓玫, 高亚敏, 李昌宁, 李琦, 冯影 (2018b). 退化高寒草地土壤养分、酶活性及生态化学计量特征. 水土保持学报, 32, 287-295.] | |
[18] |
Li YM, Wang SP, Jiang LL, Zhang LR, Cui SJ, Meng FD, Wang Q, Li XE, Zhou Y (2016). Changes of soil microbial community under different degraded gradients of alpine meadow. Agriculture, Ecosystems & Environment, 222, 213-222.
DOI URL |
[19] |
Lin L, Wu YN, Kenji T, Huo GW, Luo WT, Lv JZ (2013). Variation of soil physicochemical and microbial properties in degraded steppes in Hulunbeir of China. Chinese Journal of Applied Ecology, 24, 3407-3414.
PMID |
[ 林璐, 乌云娜, 田村宪司, 霍光伟, 雒文涛, 吕建洲 (2013). 呼伦贝尔典型退化草原土壤理化与微生物性状. 应用生态学报, 24, 3407-3414.]
PMID |
|
[20] |
Liu SB, Zamanian K, Schleuss PM, Zarebanadkouki M, Kuzyakov Y (2018). Degradation of Tibetan grasslands: consequences for carbon and nutrient cycles. Agriculture, Ecosystems & Environment, 252, 93-104.
DOI URL |
[21] | Luo YY, Zhang Y, Zhang JH, Ka ZJ, Shang LY, Wang SY (2012). Soil stoichiometry characteristics of alpine meadow at its different degradation stages. Chinese Journal of Ecology, 31, 254-260. |
[ 罗亚勇, 张宇, 张静辉, 卡召加, 尚伦宇, 王少影 (2012). 不同退化阶段高寒草甸土壤化学计量特征. 生态学杂志, 31, 254-260.] | |
[22] | Ma Y, Zhang DG, Zhou H, Zhou HC, Chen JG (2019). Effects of alpine meadow degradation on microbial biomass and enzyme activities in rhizosphere soil of dominant species. Grassland and Turf, 39(4), 44-52. |
[ 马源, 张德罡, 周恒, 周会程, 陈建纲 (2019). 高寒草甸退化对优势物种根际土壤微生物量及酶活性的影响. 草原与草坪, 39(4), 44-52.] | |
[23] | Ma YS, Lang BN, Li QY, Shi JJ, Dong QM (2002). Study on rehabilitating and rebuilding technologies for degenerated alpine meadow in the Changjiang and Yellow River source region. Pratacultural Science, 19(9), 1-5. |
[ 马玉寿, 郎百宁, 李青云, 施建军, 董全民 (2002). 江河源区高寒草甸退化草地恢复与重建技术研究. 草业科学, 19(9), 1-5.] | |
[24] |
Mooshammer M, Wanek W, Hämmerle I, Fuchslueger L, Hofhansl F, Knoltsh A, Schnecker J, Takriti M, Watzka M, Wild B, Keiblinger KM, Zechmeister-Boltenstern S, Richter A (2014). Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling. Nature Communications, 5, 3694. DOI: 10.1038/ncomms 4694.
DOI PMID |
[25] |
Peng YF, Guo DL, Yang YH (2017). Global patterns of root dynamics under nitrogen enrichment. Global Ecology and Biogeography, 26, 102-114.
DOI URL |
[26] | Peng YF, Wang GQ, Li F, Yang GB, Fang K, Liu L, Qin SQ, Zhang DY, Zhou GY, Fang HJ, Liu XJ, Liu CY, Yang YH (2019). Unimodal response of soil methane consumption to increasing nitrogen additions. Environmental Science & Technology, 53, 4150-4160. |
[27] | Shang ZH, Ding LL, Long RJ, Ma YS (2007). Relationship between soil microorganisms, above-ground vegetation, and soil environment of degraded alpine meadows in the headwater areas of the Yangtze and Yellow Rivers, Qinghai- Tibetan Plateau. Acta Prataculturae Sinica, 16, 34-40. |
[ 尚占环, 丁玲玲, 龙瑞军, 马玉寿 (2007). 江河源区退化高寒草地土壤微生物与地上植被及土壤环境的关系. 草业学报, 16, 34-40.] | |
[28] | Shen HH, Zhu YK, Zhao X, Geng XQ, Gao SQ, Fang JY (2016). Analysis of current grassland resources in China. Chinese Science Bulletin, 61, 139-154. |
[ 沈海花, 朱言坤, 赵霞, 耿晓庆, 高树琴, 方精云 (2016). 中国草地资源的现状分析. 科学通报, 61, 139-154.] | |
[29] | Sun FD, Qing Y, Zhu C, Lu H, Hu YX, Li Y, Chen WY (2016). Analysis of soil enzyme activities and microbial community characteristics in degraded alpine grassland, Zoige, southwest China. Journal of Arid Land Resources and Environment, 30(7), 119-125. |
[ 孙飞达, 青烨, 朱灿, 路慧, 胡亚茜, 李勇, 陈文业 (2016). 若尔盖高寒退化草地土壤水解酶活性和微生物群落数量特征分析. 干旱区资源与环境, 30(7), 119-125.] | |
[30] | The Editorial Committee of Vegetation Map of China, Chinese Academy of Sciences (2001). 1:1 000 000 Vegetation Atlas of China. Science Press, Beijing. |
[中国科学院中国植被图编辑委员会 (2001). 1:1 000 000中国植被图集. 科学出版社, 北京.] | |
[31] |
Tischer A, Potthast K, Hamer U (2014). Land-use and soil depth affect resource and microbial stoichiometry in a tropical mountain rainforest region of southern Ecuador. Oecologia, 175, 375-393.
DOI URL |
[32] |
Wang DJ, Zhou HK, Yao BQ, Wang WY, Dong SK, Shang ZH, She YD, Ma L, Huang XT, Zhang ZH, Zhang Q, Zhao FY, Zuo J, Mao Z (2020a). Effects of nutrient addition on degraded alpine grasslands of the Qinghai-Tibetan Plateau: a meta-analysis. Agriculture, Ecosystems & Environment, 301, 106970. DOI: 10.1016/j.agee.2020.106970.
DOI URL |
[33] |
Wang Y, Ren Z, Ma P, Wang Z, Elser JJ (2020b). Effects of grassland degradation on ecological stoichiometry of soil ecosystems on the Qinghai-Tibet Plateau. Science of the Total Environment, 722, 137910. DOI: 10.1016/j.scitotenv. 2020.137910.
DOI URL |
[34] | Wang YQ, Yin YL, Li SX (2019). Physicochemical properties and enzymatic activities of alpine meadow at different degradation degrees. Ecology and Environmental Sciences, 28, 1108-1116. |
[ 王玉琴, 尹亚丽, 李世雄 (2019). 不同退化程度高寒草甸土壤理化性质及酶活性分析. 生态环境学报, 28, 1108-1116.] | |
[35] |
Yin YL, Wang YQ, Bao GS, Wang HS, Li SX, Song ML, Shao BL, Wen YC (2017). Characteristics of soil microbes and enzyme activities in different degraded alpine meadows. Chinese Journal of Applied Ecology, 28, 3881-3890.
DOI PMID |
[ 尹亚丽, 王玉琴, 鲍根生, 王宏生, 李世雄, 宋梅玲, 邵宝莲, 温玉存 (2017). 退化高寒草甸土壤微生物及酶活性特征. 应用生态学报, 28, 3881-3890.]
PMID |
|
[36] | Yu LH, Wang J, Liao LR, Zhang C, Liu GB (2020). Soil microbial biomass, enzyme activities and ecological stoichiometric characteristics and influencing factors along degraded meadows on the Qinghai-Tibet Plateau. Acta Agrestia Sinica, 28, 1702-1710. |
[ 喻岚晖, 王杰, 廖李容, 张超, 刘国彬 (2020). 青藏高原退化草甸土壤微生物量、酶化学计量学特征及其影响因素. 草地学报, 28, 1702-1710.] | |
[37] |
Zhang ZC, Hou G, Liu M, Wei TX, Sun J (2019). Degradation induces changes in the soil C:N:P stoichiometry of alpine steppe on the Tibetan Plateau. Journal of Mountain Science, 16, 2348-2360.
DOI URL |
[38] |
Zhang T, Chen HYH, Ruan H (2018). Global negative effects of nitrogen deposition on soil microbes. The ISME Journal, 12, 1817-1825.
DOI URL |
[39] |
Zhou H, Zhang DG, Jiang ZH, Sun P, Xiao HL, Wu YX, Chen JG (2019). Changes in the soil microbial communities of alpine steppe at Qinghai-Tibetan Plateau under different degradation levels. Science of the Total Environment, 651, 2281-2291.
DOI URL |
[40] | Zhou HK, Yao BQ, Yu L (2016). Degraded Succession and Ecological Restoration of Alpine Grassland in the Three- River Source Region. Science Press, Beijing. |
[ 周华坤, 姚步青, 于龙 (2016). 三江源区高寒草地退化演替与生态恢复. 科学出版社, 北京] | |
[41] | Zhou HK, Zhao XQ, Wen J, Chen Z, Yao BQ, Yang YW, Xu WX, Duan JC (2012). The characteristics of soil and vegetation of degenerated alpine steppe in the Yellow River Source Region. Acta Prataculturae Sinica, 21, 4-14. |
[ 周华坤, 赵新全, 温军, 陈哲, 姚步青, 杨元武, 徐维新, 段吉闯 (2012). 黄河源区高寒草原的植被退化与土壤退化特征. 草业学报, 21, 4-14.] | |
[42] |
Zhou ZH, Wang CK (2016). Responses and regulation mechanisms of microbial decomposers to substrate carbon, nitrogen, and phosphorus stoichiometry. Chinese Journal of Plant Ecology, 40, 620-630.
DOI URL |
[ 周正虎, 王传宽 (2016). 微生物对分解底物碳氮磷化学计量的响应和调节机制. 植物生态学报, 40, 620-630.]
DOI |
[1] | 陈龙 郭柯 勾晓华 赵秀海 马泓若. 祁连圆柏林群落组成及特征[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 龙吉兰, 蒋铮, 刘定琴, 缪宇轩, 周灵燕, 冯颖, 裴佳宁, 刘瑞强, 周旭辉, 伏玉玲. 干旱下植物根系分泌物及其介导的根际激发效应研究进展[J]. 植物生态学报, 2024, 48(7): 817-827. |
[3] | 刘瑶, 钟全林, 徐朝斌, 程栋梁, 郑跃芳, 邹宇星, 张雪, 郑新杰, 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(6): 744-759. |
[4] | 张文瑾, 佘维维, 秦树高, 乔艳桂, 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[5] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[6] | 张琦, 冯可, 常智慧, 何双辉, 徐维启. 灌丛化对林草交错带植物和土壤微生物的影响[J]. 植物生态学报, 2023, 47(6): 770-781. |
[7] | 赵小祥, 朱彬彬, 田秋香, 林巧玲, 陈龙, 刘峰. 叶片凋落物分解的主场优势研究进展[J]. 植物生态学报, 2023, 47(5): 597-607. |
[8] | 郑炀, 孙学广, 熊洋阳, 袁贵云, 丁贵杰. 叶际微生物对马尾松凋落针叶分解的影响[J]. 植物生态学报, 2023, 47(5): 687-698. |
[9] | 师生波, 周党卫, 李天才, 德科加, 杲秀珍, 马家麟, 孙涛, 王方琳. 青藏高原高山嵩草光合功能对模拟夜间低温的响应[J]. 植物生态学报, 2023, 47(3): 361-373. |
[10] | 何茜, 冯秋红, 张佩佩, 杨涵, 邓少军, 孙小平, 尹华军. 基于叶片和土壤酶化学计量的川西亚高山岷江冷杉林养分限制海拔变化规律[J]. 植物生态学报, 2023, 47(12): 1646-1657. |
[11] | 师生波, 师瑞, 周党卫, 张雯. 低温对高山嵩草叶片光化学和非光化学能量耗散特征的影响[J]. 植物生态学报, 2023, 47(10): 1441-1452. |
[12] | 朱玉英, 张华敏, 丁明军, 余紫萍. 青藏高原植被绿度变化及其对干湿变化的响应[J]. 植物生态学报, 2023, 47(1): 51-64. |
[13] | 林马震, 黄勇, 李洋, 孙建. 高寒草地植物生存策略地理分布特征及其影响因素[J]. 植物生态学报, 2023, 47(1): 41-50. |
[14] | 李万年, 罗益敏, 黄则月, 杨梅. 望天树人工幼林混交对土壤微生物功能多样性与碳源利用的影响[J]. 植物生态学报, 2022, 46(9): 1109-1124. |
[15] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19