植物生态学报 ›› 2023, Vol. 47 ›› Issue (5): 687-698.DOI: 10.17521/cjpe.2022.0124
所属专题: 凋落物
郑炀1,2, 孙学广1,2,*(), 熊洋阳2, 袁贵云1,2, 丁贵杰1,2
收稿日期:
2022-04-08
接受日期:
2022-06-09
出版日期:
2023-05-20
发布日期:
2022-07-15
通讯作者:
* 孙学广: ORCID:0000-0002-7895-6702(xgsun@gzu.edu.cn)
基金资助:
ZHENG Yang1,2, SUN Xue-Guang1,2,*(), XIONG Yang-Yang2, YUAN Gui-Yun1,2, DING Gui-Jie1,2
Received:
2022-04-08
Accepted:
2022-06-09
Online:
2023-05-20
Published:
2022-07-15
Supported by:
摘要:
叶际微生物作为最先定殖在凋落叶上的微生物类群, 可能直接参与凋落叶的分解。为验证此猜想, 该研究通过扩增子高通量测序技术和室内分解实验, 探究了马尾松(Pinus massoniana)叶际微生物多样性及叶际微生物对马尾松凋落物的分解影响。结果表明: (1)马尾松的叶际存在着丰富而多样的微生物群体, 针叶在凋亡后, 叶际微生物群落发生变化。成熟针叶、凋落针叶、分解层针叶共有大量可操作分类单元(OTUs)。(2)马尾松针叶分解过程可分为两个阶段: 快速分解期(前8个月)和缓慢分解期(8个月以后)。衰亡针叶(刚凋落但未接触土壤)叶际微生物可直接参与马尾松凋落针叶分解, 且分解速率表现为叶际微生物+土壤微生物处理>叶际微生物处理>土壤微生物处理。在马尾松针叶分解过程中叶际微生物与土壤微生物存在协同作用。(3)凋落针叶分解速率与木质素和纤维素分解速率呈极显著正相关关系, 但与木质素和纤维素分解酶活性无显著相关关系。木质素分解酶——多酚氧化酶与过氧化物酶活性极显著负相关, 纤维素分解酶——β葡萄糖苷酶活性与纤维二糖苷酶活性则呈极显著正相关关系。综上, 该研究结果表明叶际微生物可直接参与凋落针叶的分解, 且其对马尾松凋落针叶分解速率的影响高于土壤微生物, 这为进一步阐明马尾松凋落针叶的分解机理和后续分解过程中发挥主要作用的核心微生物组的发掘提供了理论依据。
郑炀, 孙学广, 熊洋阳, 袁贵云, 丁贵杰. 叶际微生物对马尾松凋落针叶分解的影响. 植物生态学报, 2023, 47(5): 687-698. DOI: 10.17521/cjpe.2022.0124
ZHENG Yang, SUN Xue-Guang, XIONG Yang-Yang, YUAN Gui-Yun, DING Gui-Jie. Effects of phyllospheric microorganisms on litter decomposition of Pinus massoniana. Chinese Journal of Plant Ecology, 2023, 47(5): 687-698. DOI: 10.17521/cjpe.2022.0124
图1 细菌(A)及真菌(B)优势目在不同马尾松针叶样品中的分布情况。F、L、NM分别表示分解层针叶、凋落针叶和成熟针叶。
Fig. 1 Distribution of dominant orders of bacteria (A) and fungi (B) in different needle samples of Pinus massoniana. F, L, NM represent the needles of decomposition layer, litter, mature, respectively.
图2 马尾松凋落针叶(L)、成熟针叶(NM)和分解层针叶(F)的韦恩图。数字代表可操作运算分类单元数。
Fig. 2 Venn diagram of littered needles (L), mature needles (NM), and decomposed needles (F) of Pinus massoniana. Arabic numbers represent the number of operational taxonomic units.
图3 不同分解时期马尾松针叶形态。图A-D分别代表N+S处理下第2、4、8、12个月时针叶的外部形态,图E-H分别代表N+S处理下第2、4、8、12个月时针叶的解剖结构;图A1-D1分别代表N+SS处理下第2、4、8、12个月时针叶的外部形态,图E1-H1分别代表N+SS处理下第2、4、8、12个月时针叶的解剖结构;图A2-D2分别代表SN+S处理下第2、4、8、12个月时针叶的外部形态,图E2-H2代表SN+S处理下第2、4、8、12个月时针叶的解剖结构。N+S、N+SS、SN+S分别表示叶际微生物+土壤微生物、叶际微生物和土壤微生物3种处理。比例尺= 50 μm。
Fig. 3 Morphological changes of Pinus massoniana needles at different decomposition stages. A-D show the surface morphologies of needles in N+S treatment after 2, 4, 8 and 12 months, respectively. E-H show the anatomical structures of needles in N+S treatment after 2, 4, 8 and 12 months, respectively; A1-D1 show the surface morphologies of needles in N+SS treatment after 2, 4, 8 and 12 months, respectively. E1-H1 show the anatomical structures of needles in N+SS treatment after 2, 4, 8 and 12 months, respectively; A2-D2 show the surface morphologies of needles in SN+S treatment after 2, 4, 8 and 12 months, respectively. E2-H2 show the anatomical structures of needles in SN+S treatment after 2, 4, 8 and 12 months, respectively.N+S、N+SS、SN+S represent the phyllospheric microbes + soil microbes treatment, the phyllospheric microbes treatment and the soil microorganism treatment, respectively. Scale bars = 50 μm.
图4 不同处理下马尾松凋落针叶的分解情况(平均值±标准差)。 N+S、N+SS、SN+S分别表示叶际微生物+土壤微生物、叶际微生物和土壤微生物3种处理。不同大写字母代表同一时间不同组间差异显著(p < 0.05), 不同小写字母表示不同时间组内差异显著(p < 0.05)
Fig. 4 Decomposition of Pinus massoniana leaf litter under different treatments (mean ± SD). N+S、N+SS、SN+S represent the phyllospheric microbes + soil microbes treatment, the phyllospheric microbes treatment and the soil microorganism treatment, respectively. Different uppercase letters represent significant differences among different treatments at the same time point, and different lowercase letters represent significant differences among the same treatment at different time points (p < 0.05).
图5 马尾松凋落针叶酶活性(平均值±标准差)。N+S、N+SS、SN+S分别表示叶际微生物+土壤微生物、叶际微生物和土壤微生物3种处理。不同大写字母为同一时间不同组间差异显著(p < 0.05), 不同小写字母表示不同时间组内差异显著(p < 0.05)
Fig. 5 Enzyme activity of Pinus massoniana leaf litter (mean ± SD). N+S, N+SS and SN+S represent treatment groups of phyllospheric microorganisms + soil microorganisms, phyllospheric microorganisms and soil microorganisms, respectively. Different uppercase letters represent significant differences among different treatments at the same time point, and different lowercase letters represent significant differences among the same treatment at different time points (p < 0.05).
针叶质量损失率 Mass loss rate of needles | 多酚氧化酶活性 Polyphenol oxidase activity | 过氧化物酶活性 Peroxidase activity | β葡萄糖苷酶活性 β glucosidase activity | 纤维二糖苷酶活性 Fibrodisosidase activity | 木质素质量损失率 Mass loss rate of lignin | 纤维素质量损失率 Mass loss rate of cellulose | |
---|---|---|---|---|---|---|---|
针叶质量损失率 Mass loss rate of needles | 1.000 | ||||||
多酚氧化酶活性 Polyphenol oxidase activity | 0.051 | 1.000 | |||||
过氧化物酶活性 Peroxidase activity | -0.013 | -0.368** | 1.000 | ||||
β葡萄糖苷酶活性 β glucosidase activity | -0.089 | -0.354** | 0.314** | 1.000 | |||
纤维二糖苷酶活性 Fibrodisosidase activity | -0.107 | -0.016 | 0.148 | 0.462** | 1.000 | ||
木质素质量损失率 Mass loss rate of lignin | 0.868** | 0.094 | -0.025 | -0.077 | -0.187 | 1.000 | |
纤维素质量损失率 Mass loss rate of cellulose | 0.455** | 0.060 | 0.114 | -0.145 | -0.208* | 0.442** | 1.000 |
表1 马尾松凋落针叶不同指标相关性分析
Table 1 Correlation analysis of different indicators of Pinus massoniana leaf litter
针叶质量损失率 Mass loss rate of needles | 多酚氧化酶活性 Polyphenol oxidase activity | 过氧化物酶活性 Peroxidase activity | β葡萄糖苷酶活性 β glucosidase activity | 纤维二糖苷酶活性 Fibrodisosidase activity | 木质素质量损失率 Mass loss rate of lignin | 纤维素质量损失率 Mass loss rate of cellulose | |
---|---|---|---|---|---|---|---|
针叶质量损失率 Mass loss rate of needles | 1.000 | ||||||
多酚氧化酶活性 Polyphenol oxidase activity | 0.051 | 1.000 | |||||
过氧化物酶活性 Peroxidase activity | -0.013 | -0.368** | 1.000 | ||||
β葡萄糖苷酶活性 β glucosidase activity | -0.089 | -0.354** | 0.314** | 1.000 | |||
纤维二糖苷酶活性 Fibrodisosidase activity | -0.107 | -0.016 | 0.148 | 0.462** | 1.000 | ||
木质素质量损失率 Mass loss rate of lignin | 0.868** | 0.094 | -0.025 | -0.077 | -0.187 | 1.000 | |
纤维素质量损失率 Mass loss rate of cellulose | 0.455** | 0.060 | 0.114 | -0.145 | -0.208* | 0.442** | 1.000 |
[1] | Allison SD, Vitousek PM (2004). Extracellular enzyme activities and carbon chemistry as drivers of tropical plant litter decomposition. Biotropica, 36, 285-296. |
[2] |
Austin AT, Vivanco L, González-Arzac A, Pérez LI (2014). There’s no place like home? An exploration of the mechanisms behind plant litter-decomposer affinity in terrestrial ecosystems. New Phytologist, 204, 307-314
DOI URL |
[3] | Bailey MJ, Lilley AK, Timms-Wilson TM, Spencer-Phillips PTN (2006). Microbial Ecology of Aerial Plant Surfaces. CABI, Wallingford. |
[4] |
Berg B, Ekbohm G (1991). Litter mass-loss rates and decomposition patterns in some needle and leaf litter types. Long-term decomposition in a Scots pine forest. VII. Canadian Journal of Botany, 69, 1449-1456.
DOI URL |
[5] | Chen MR, Lin YH, He XB, Han GM (2020). Effects of colonization by endophytic fungi of Cunninghamia lanceolata leaves on litter decomposition and associating microbial activities. Microbiology China, 47, 1404-1417. |
[陈明蓉, 林永慧, 何兴兵, 韩国民 (2020). 杉木叶片内生真菌定殖对凋落物分解及其微生物活性的影响. 微生物学通报, 47, 1404-1417.] | |
[6] | Chen Y, Dai CC, Wang XX, Zhang B, Ju Q (2010). Effects of endophytic fungus (Phomopsis sp.) on decomposition of plant (Atractylodes lancea (Thunb) DC.) litters and activity of degrading enzymes in soil. Acta Pedologica Sinica, 47, 537-544. |
[陈晏, 戴传超, 王兴祥, 张波, 鞠群 (2010). 施加内生真菌拟茎点霉(Phomopsis sp.)对茅苍术凋落物降解及土壤降解酶活性的影响. 土壤学报, 47, 537-544.] | |
[7] |
Chen YM, He RL, Deng CC, Yang WQ, Zhang J, Yang L, Liu Y (2015). Litter decomposition and lignocellulose enzyme activities of Actinothuidium hookeri and Cystopteris montana in alpine timberline ecotone of Western Sichuan, China. Chinese Journal of Applied Ecology, 26, 3251-3258.
PMID |
[陈亚梅, 和润莲, 邓长春, 杨万勤, 张健, 杨林, 刘洋 (2015). 川西高山林线交错带两种地被物分解的木质纤维素酶活性特征. 应用生态学报, 26, 3251-3258.]
PMID |
|
[8] | Chun ML, Xie ZQ, Zhao CM, Fan DY, Xu XW, Ping L (2009). Litter production and nutrient characteristics of Abies fargesii natural forest in Shennongjia nature reserve, Hubei, China. Chinese Journal of Plant Ecology, 33, 492-498. |
[春敏莉, 谢宗强, 赵常明, 樊大勇, 徐新武, 平亮 (2009). 神农架巴山冷杉天然林凋落量及养分特征. 植物生态学报, 33, 492-498.]
DOI |
|
[9] |
Crawford DL (1978). Lignocellulose decomposition by selected streptomyces strains. Applied and Environmental Microbiology, 35, 1041-1045.
DOI PMID |
[10] |
Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B, Schlapbach R, von Mering C, Vorholt JA (2009). Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proceedings of the National Academy of Sciences of the United States of America, 106, 16428-16433.
DOI PMID |
[11] | Dong XD, Gao P, Li T, Zhang JC, Dong JW, Xu JW, Dun XJ (2021). Effects of soil microbial community on the litter decomposition in mixed Quercus acutissima Carruth. and Robinia pseudoacacia L. forest. Acta Ecologica Sinica, 41, 2315-2325. |
[董学德, 高鹏, 李腾, 张佳辰, 董金伟, 许景伟, 囤兴建 (2021). 土壤微生物群落对麻栎-刺槐混交林凋落物分解的影响. 生态学报, 41, 2315-2325.] | |
[12] | Dresbøll DB, Magid J (2006). Structural changes of plant residues during decomposition in a compost environment. Bioresource Technology, 97, 973-981. |
[13] | Guo QW, Duan WB, Liu YP, Chen LX, Li CZ, Yu YY, Li SR, Li YF (2021). Effects of litter addition and simulated nitrogen and phosphorus deposition on lignin degradation and carbon release from Korean pine litter. Acta Ecologica Sinica, 41, 6621-6632. |
[郭绮雯, 段文标, 刘玉萍, 陈立新, 李常准, 于颖颖, 李少然, 李亦菲 (2021). 凋落物添加和模拟氮磷沉降对红松凋落物木质素降解和碳释放的影响. 生态学报, 41, 6621-6632.] | |
[14] | Hu K, Li Q, Zhang ZF, Wang W (2021). Research progress of litter decomposition enzyme. Northern Horticulture, (13), 134-140. |
[胡凯, 李倩, 张中发, 王微 (2021). 凋落物分解酶的研究进展. 北方园艺, (13), 134-140.] | |
[15] | Hu K, Tao JP, He DN, Huang K, Wang W (2019). Effects of root growth on dynamics of microbes and enzyme activities during litter decompo sition. Chinese Journal of Applied Ecology, 30, 1993-2001. |
[胡凯, 陶建平, 何丹妮, 黄科, 王微 (2019). 林下植物根系对森林凋落物分解过程中微生物及酶活性的影响. 应用生态学报, 30, 1993-2001.]
DOI |
|
[16] | Huang JX, Huang LM, Lin ZC, Chen GS (2010). Controlling factors of litter decomposition rate in China’s forests. Journal of Subtropical Resources and Environment, 5(3), 56-63. |
[黄锦学, 黄李梅, 林智超, 陈光水 (2010). 中国森林凋落物分解速率影响因素分析. 亚热带资源与环境学报, 5(3), 56-63.] | |
[17] | Li HY (2019). Effects of Litter on Soil Nutrients and Microorganisms in a Pure Old-Growth Pinus massoniana Plantation and Its Un-even Mixed Plantation. Master degree dissertation, Guangxi University, Nanning. |
[李海燕 (2019). 凋落物对过熟马尾松纯林及混交林土壤养分与微生物的影响. 硕士学位论文, 广西大学, 南宁.] | |
[18] | Li M, Ding GJ, Sun XG, Luo XM, Zhang RB (2016). Plant diversity and soil enzyme activity in 4 typical communities of Pinus massoniana in Guizhou. Journal of Forest and Environment, 36, 434-441. |
[李敏, 丁贵杰, 孙学广, 罗晓蔓, 张仁波 (2016). 贵州马尾松群落植物多样性与土壤酶活性. 森林与环境学报, 36, 434-441.] | |
[19] | Li X, Zhang Y, Song SM, Zhou Y, Zhang J (2022). Effects of mixed leaf litter on nitrogen and phosphorus release in Pinus massoniana and native broad-leaved tree species. Chinese Journal of Applied and Environmental Biology, 28, 308-318. |
[李勋, 张艳, 宋思梦, 周扬, 张健 (2022). 马尾松与乡土阔叶树种凋落叶分解氮磷释放的混合效应. 应用与环境生物学报, 28, 308-318.] | |
[20] | Lin B, Liu Q, Wu Y, He H (2004). Advances in the studies of forest litter. Chinese Journal of Ecology, 23, 60-64. |
[林波, 刘庆, 吴彦, 何海 (2004). 森林凋落物研究进展. 生态学杂志, 23, 60-64.] | |
[21] | Lindahl B, Boberg J (2008). D istribution and function of litter basidiomycetes in coniferous forests//Boddy L, Frankland JC, van West P. Ecology of Saprotrophic Basidiomycetes. Academic Press, Boston, USA. |
[22] | Ling H, Chen GS, Chen ZQ (2009). Controlling factors of litterfall in China’s forests. Journal of Subtropical Resources and Environment, 4(4), 66-71. |
[凌华, 陈光水, 陈志勤 (2009). 中国森林凋落量的影响因素. 亚热带资源与环境学报, 4(4), 66-71.] | |
[23] | Lu XH (2017). Litter Characteristics and Pine Needle Decomposition Process and the Impact of Control Measures on Iits Decomposition Under the Pinus massoniana Forests. PhD dissertation, Guizhou University, Guiyang. |
[陆晓辉 (2017). 马尾松凋落物特性及松针分解过程与调控研究. 博士学位论文, 贵州大学, 贵阳.] | |
[24] | Meng YY, Zhang LM, Yuan YS, Jia X, Cheng H, Huangfu CH (2021). Effects of soil moisture content and litter quality on decomposition of Carex thunbergii fine roots and leaf litter. Research of Environmental Sciences, 34, 707-714. |
[孟盈盈, 张黎明, 远勇帅, 贾璇, 程桦, 皇甫超河 (2021). 土壤水分含量和凋落物特性对陌上菅细根和叶片凋落物分解的影响. 环境科学研究, 34, 707-714.] | |
[25] |
Müller MM, Valjakka R, Suokko A, Hantula J (2001). Diversity of endophytic fungi of single Norway spruce needles and their role as pioneer decomposers. Molecular Ecology, 10, 1801-1810.
PMID |
[26] |
Olson JS (1963). Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 44, 322-331.
DOI URL |
[27] |
Osono T (2002). Phyllosphere fungi on leaf litter of Fagus crenata: occurrence, colonization, and succession. Canadian Journal of Botany, 80, 460-469.
DOI URL |
[28] |
Osono T, Fukasawa Y, Takeda H (2003). Roles of diverse fungi in larch needle-litter decomposition. Mycologia, 95, 820-826.
PMID |
[29] |
Osono T, Takeda H (2001). Effects of organic chemical quality and mineral nitrogen addition on lignin and holocellulose decomposition of beech leaf litter by Xylaria sp. European Journal of Soil Biology, 37, 17-23.
DOI URL |
[30] |
Peñuelas J, Terradas J (2014). The foliar microbiome. Trends in Plant Science, 19, 278-280.
DOI PMID |
[31] |
Sadaka N, Ponge JF (2003). Fungal colonization of phyllosphere and litter of Quercus rotundifolia Lam. in a holm oak forest (High Atlas, Morocco). Biology and Fertility of Soils, 39, 30-36.
DOI URL |
[32] |
Sinsabaugh RL, Antibus RK, Linkins AE (1991). An enzymic approach to the analysis of microbial activity during plant litter decomposition. Agriculture, Ecosystems & Environment, 34, 43-54.
DOI URL |
[33] | Song Y, Gu XR, Yan HY, Mao WT, Wu XL, Wan YX (2014). Dynamics of microbes and enzyme activities during litter decomposition of Pinus massoniana forest in mid-subtropical area. Environmental Science, 35, 1151-1158. |
[宋影, 辜夕容, 严海元, 毛文韬, 吴雪莲, 万宇轩 (2014). 中亚热带马尾松林凋落物分解过程中的微生物与酶活性动态. 环境科学, 35, 1151-1158.] | |
[34] | Sun SQ (2020). A Study on Three Forest Fuel-Beds Degradaton Accelerated by Efficient Cellulose-Degrading Fungi in Maoer Mountain. PhD dissertation, Northeast Forestry University, Harbin. |
[孙思琦 (2020). 纤维素高效降解菌对帽儿山三种人工林地表可燃物降解研究. 博士学位论文, 东北林业大学, 哈尔滨.] | |
[35] |
Sun XG, Zheng Y, Xu G, Guo QQ, Tan JH, Ding GJ (2021). Fungal diversity within the phyllosphere of Pinus massoniana and the possible involvement of phyllospheric fungi in litter decomposition. Fungal Biology, 125, 785-795.
DOI URL |
[36] | Tian XK (2020). Effects of Soil Fauna and Microbe in the Litter Decomposition Process of Four Subtropical Forests. PhD dissertation, Chinese Academy of Forestry, Beijing. |
[田晓堃 (2020). 亚热带四种森林凋落物分解过程中土壤动物与微生物的影响. 博士学位论文, 中国林业科学研究院, 北京.] | |
[37] |
Tláskal V, Voříšková J, Baldrian P (2016). Bacterial succession on decomposing leaf litter exhibits a specific occurrence pattern of cellulolytic taxa and potential decomposers of fungal mycelia. FEMS Microbiology Ecology, 92, fiw177. DOI: 10.1093/femsec/iw177.
DOI |
[38] |
Voříšková J, Baldrian P (2013). Fungal community on decomposing leaf litter undergoes rapid successional changes. The ISME Journal, 7, 477-486.
DOI |
[39] | Wang M (2021). Screening of Cellulose Degradation Bacteria in Inner Mongolia Grasslands and It’s Ethanol Fermentation from Corn Stalk. Master degree dissertation, Yangzhou University, Yangzhou, Jiangsu. |
[王明 (2021). 内蒙古草原纤维素分解菌的筛选及秸秆乙醇发酵. 硕士学位论文, 扬州大学, 江苏扬州.] | |
[40] |
Wang X, Xu ZW, Lü XT, Wang RZ, Cai JP, Yang S, Li MH, Jiang Y (2017). Responses of litter decomposition and nutrient release rate to water and nitrogen addition differed among three plant species dominated in a semi-arid grassland. Plant and Soil, 418, 241-253.
DOI URL |
[41] |
Watanabe K, Kohzu A, Suda W, Yamamura S, Takamatsu T, Takenaka A, Koshikawa MK, Hayashi S, Watanabe M (2016). Microbial nitrification in throughfall of a Japanese cedar associated with Archaea from the tree canopy. SpringerPlus, 5, 1596. DOI: 10.1186/s40064-016-3286-y.
DOI |
[42] | Xu CF, Zhang FZ, Zhang W, Shen GN, Yuan Y, Yan L, Wang WD (2020). Synthetic microbial consortia for lignocellulosic biomass conversion. Microbiology China, 47, 3431-3441. |
[许从峰, 张方政, 张伟, 申贵男, 袁媛, 晏磊, 王伟东 (2020). 合成微生物群落用于木质纤维素生物质转化的研究进展. 微生物学通报, 47, 3431-3441.] | |
[43] |
Yan PF, Zhan PF, Xiao DR, Wang Y, Yu R, Liu ZY, Wang H (2019). Effects of simulated warming and decomposition interface on the litter decomposition rate of Zizania latifolia and its phyllospheric microbial community structure and function. Chinese Journal of Plant Ecology, 43, 107-118.
DOI URL |
[闫鹏飞, 展鹏飞, 肖德荣, 王燚, 余瑞, 刘振亚, 王行 (2019). 模拟增温及分解界面对茭草凋落物分解速率及叶际微生物结构和功能的影响. 植物生态学报, 43, 107-118.]
DOI |
|
[44] | Yang K, Wang HL, Ye KH, Wang P, Meng GY, Luo C, Guo LW (2021). Advances in research on phyllosphere microorganisms and their interaction with plants. Journal of Yunnan Agricultural University (Natural Science), 36, 155-164. |
[杨宽, 王慧玲, 叶坤浩, 王佩, 孟广云, 罗成, 郭力维 (2021). 叶际微生物及与植物互作的研究进展. 云南农业大学学报(自然科学), 36, 155-164.] | |
[45] | Yang MY, Yan FF, Yan MC, Wang H, Piao RZ, Cui ZJ, Zhao HY (2021). Decomposition characteristics of corn stover by microbial consortium PLC-8 with lignocellulose- degradation at low temperature. Journal of Agricultural Science and Technology, 23(1), 73-81. |
[杨梦雅, 闫非凡, 闫美超, 王贺, 朴仁哲, 崔宗均, 赵洪颜 (2021). 低温木质纤维素分解复合菌系PLC-8对玉米秸秆的分解特性. 中国农业科技导报, 23(1), 73-81.]
DOI |
|
[46] |
Yao H, Sun X, He C, Maitra P, Li XC, Guo LD (2019). Phyllosphere epiphytic and endophytic fungal community and network structures differ in a tropical mangrove ecosystem. Microbiome, 7, 57. DOI: 10.1186/s40168-019-0671-0.
DOI |
[47] | Yu Q, Zhou Y, Qiao XW, Qin S, Wang J, Zhu JS (2008). Acetamiprid degradation by microbes of the soil and phyllosphere. Acta Scientiae Circumstantiae, 28, 132-137. |
[庾琴, 周育, 乔雄梧, 秦曙, 王静, 朱九生 (2008). 土壤和叶际微生物对啶虫脒的降解作用. 环境科学学报, 28, 132-137.] | |
[48] | Zeng F, Qiu ZJ, Xu XY (2010). Review on forest litter decomposition. Ecology and Environmental Sciences, 19, 239-243. |
[曾锋, 邱治军, 许秀玉 (2010). 森林凋落物分解研究进展. 生态环境学报, 19, 239-243.]
DOI |
|
[49] | Zhang L, Jia SX, Li XL, Lu YM, Lin WS, Guo JF (2022). Effects of litter and root inputs changes on soil phosphorus fractions in a subtropical natural forest of Castanopsis carlesii. Acta Ecologica Sinica, 42, 656-666. |
[张磊, 贾淑娴, 李啸灵, 陆宇明, 林伟盛, 郭剑芬 (2022). 亚热带米槠天然林凋落物和根系输入变化对土壤磷组分的影响. 生态学报, 42, 656-666.] | |
[50] | Zhang T (2016). Allelopathic Effect of Masson Pine (Pinus massoniana Lamb.) and Chinese Fir (Cunninghamia lanceolata (Lamb.) Hook.) on Target Plants. Master degree dissertation, Zhejiang University, Hangzhou. |
[张腾 (2016). 马尾松和杉木对植物的化感作用研究. 硕士学位论文, 浙江大学, 杭州.] | |
[51] | Zhang YJ, Wang KQ, Song YL, Zheng XR, Pan Y, Su MB, Li XL (2020). Response of litter decomposition of zonal vegetation to simulated nitrogen deposition in central Yunnan, China. Acta Ecologica Sinica, 40, 8274-8286. |
[张雨鉴, 王克勤, 宋娅丽, 郑兴蕊, 潘禹, 苏孟白, 李晓龙 (2020). 滇中亚高山地带性植被凋落物分解对模拟氮沉降的响应. 生态学报, 40, 8274-8286.] | |
[52] | Zhou ZX (2001). Chinese Masson Pine. China Forestry Publishing House, Beijing. |
[周政贤 (2001). 中国马尾松. 中国林业出版社, 北京.] | |
[53] |
Zhu WN, Zhang GL, Zhang PJ, Zhang QQ, Ren JT, Xu BY, Qing H (2021). Decomposition characteristics of leaf litters and roots of six main plant species and their relationships with functional traits in Stipa grandis steppe. Chinese Journal of Plant Ecology, 45, 606-616.
DOI URL |
[朱蔚娜, 张国龙, 张璞进, 张迁迁, 任瑾涛, 徐步云, 清华 (2021). 大针茅草原6种主要植物叶凋落物和根系分解特征与功能性状的关系. 植物生态学报, 45, 606-616.] |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 常晨晖 朱彪 朱江玲 吉成均 杨万勤. 森林粗木质残体分解研究进展[J]. 植物生态学报, 2024, 48(5): 541-560. |
[3] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[4] | 程可心, 杜尧, 李凯航, 王浩臣, 杨艳, 金一, 何晓青. 玉米与叶际微生物组的互作遗传机制[J]. 植物生态学报, 2024, 48(2): 215-228. |
[5] | 陈颖洁, 房凯, 秦书琪, 郭彦军, 杨元合. 内蒙古温带草地土壤有机碳组分含量和分解速率的空间格局及其影响因素[J]. 植物生态学报, 2023, 47(9): 1245-1255. |
[6] | 张琦, 冯可, 常智慧, 何双辉, 徐维启. 灌丛化对林草交错带植物和土壤微生物的影响[J]. 植物生态学报, 2023, 47(6): 770-781. |
[7] | 杜婷, 陈玉莲, 毕境徽, 杨玉婷, 张丽, 游成铭, 谭波, 徐振锋, 王丽霞, 刘思凝, 李晗. 林窗对川西亚高山凋落叶总酚和缩合单宁损失动态的影响[J]. 植物生态学报, 2023, 47(5): 660-671. |
[8] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[9] | 赖硕钿, 吴福忠, 吴秋霞, 朱晶晶, 倪祥银. 雪被去除减缓岷江冷杉凋落叶易分解碳释放[J]. 植物生态学报, 2023, 47(5): 672-686. |
[10] | 余继梅, 吴福忠, 袁吉, 金遐, 魏舒沅, 袁朝祥, 彭艳, 倪祥银, 岳楷. 全球尺度上凋落物初始酚类含量特征及影响因素[J]. 植物生态学报, 2023, 47(5): 608-617. |
[11] | 赵小祥, 朱彬彬, 田秋香, 林巧玲, 陈龙, 刘峰. 叶片凋落物分解的主场优势研究进展[J]. 植物生态学报, 2023, 47(5): 597-607. |
[12] | 李小玲, 朱道明, 余玉蓉, 吴浩, 牟利, 洪柳, 刘雪飞, 卜贵军, 薛丹, 吴林. 模拟氮沉降对鄂西南贫营养泥炭地两种藓类植物生长与分解的影响[J]. 植物生态学报, 2023, 47(5): 644-659. |
[13] | 李慧璇, 马红亮, 尹云锋, 高人. 亚热带天然阔叶林凋落物分解过程中活性、惰性碳氮的动态特征[J]. 植物生态学报, 2023, 47(5): 618-628. |
[14] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[15] | 曹珍, 刘永英, 宋世凯, 张莉娜, 高德. 陆地生境岛屿藓类植物小岛屿效应驱动因素分析——以太行山脉中段山顶为例[J]. 植物生态学报, 2023, 47(1): 65-76. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19