植物生态学报 ›› 2023, Vol. 47 ›› Issue (5): 672-686.DOI: 10.17521/cjpe.2022.0111
所属专题: 凋落物
赖硕钿1, 吴福忠1,2,3, 吴秋霞1, 朱晶晶1, 倪祥银1,2,3,*()
收稿日期:
2022-04-01
接受日期:
2022-09-04
出版日期:
2023-05-20
发布日期:
2022-09-06
通讯作者:
* (nixy@fjnu.edu.cn)
基金资助:
LAI Shuo-Tian1, WU Fu-Zhong1,2,3, WU Qiu-Xia1, ZHU Jing-Jing1, NI Xiang-Yin1,2,3,*()
Received:
2022-04-01
Accepted:
2022-09-04
Online:
2023-05-20
Published:
2022-09-06
Supported by:
摘要:
气候变化已经并将持续改变寒冷生物区季节性雪被厚度和覆盖时间, 雪被厚度的减少可能影响高山森林凋落物分解, 尤其是其早期分解过程中易分解碳的释放。该文研究了川西高山森林雪被去除处理后优势树种岷江冷杉(Abies fargesii var. faxoniana)凋落叶总有机碳、热水/冷水可溶性有机碳、非结构性碳(可溶性糖、淀粉)在冬季(雪被形成期、覆盖期、融化期)和生长季(初期、中期、后期)的释放规律。结果表明: (1)经过一年的分解, 对照和雪被去除处理的凋落叶质量残留量分别为76.4%和86.2%, 总有机碳残留量分别为60.5%和74.8%。(2)经过一个冬季分解后, 雪被去除处理降低了凋落叶热水溶性有机碳和可溶性糖的释放, 而增加了总有机碳、可溶性有机碳、非结构性碳和淀粉的富集。(3)经过生长季分解后, 雪被去除处理降低了凋落叶易分解碳释放, 其中总有机碳、热水溶性有机碳、可溶性有机碳、非结构性碳、可溶性糖和淀粉的释放分别降低了36.3%、0.8%、43.7%、28.3%、21.7%和33.7%。偏最小二乘法分析表明, 岷江冷杉凋落叶易分解碳释放受土壤冻融循环次数、脲酶活性、土壤温度和可溶性有机碳含量影响显著。以上结果说明冬季雪被覆盖促进了高山森林凋落叶易分解碳释放, 表明高山森林冬季雪被格局的改变将显著影响地表凋落叶分解过程, 且这种影响将持续作用于生长季凋落叶碳释放, 深刻影响高山森林土壤生物地球化学过程。
赖硕钿, 吴福忠, 吴秋霞, 朱晶晶, 倪祥银. 雪被去除减缓岷江冷杉凋落叶易分解碳释放. 植物生态学报, 2023, 47(5): 672-686. DOI: 10.17521/cjpe.2022.0111
LAI Shuo-Tian, WU Fu-Zhong, WU Qiu-Xia, ZHU Jing-Jing, NI Xiang-Yin. Reduced release of labile carbon from Abies fargesii var. faxoniana needle litter after snow removal in an alpine forest. Chinese Journal of Plant Ecology, 2023, 47(5): 672-686. DOI: 10.17521/cjpe.2022.0111
图1 研究期间川西高山森林环境因子的变化。A, 雪被厚度。B, 土壤表面温度。C, 土壤有机层日平均温度。D, 凋落叶含水量。A、C和D数值为平均值±标准误(n = 5)。p表示基于重复测量方差分析的雪被和不同分解时期对凋落叶含水量的影响, 星号表示t检验下不同雪被处理之间差异显著(*, p < 0.05; **, p < 0.01; ***, p < 0.001)。EG, 生长季初期; LG, 生长季后期; MG, 生长季中期; SC, 雪被覆盖期; SF, 雪被形成期; SM, 雪被融化期。
Fig. 1 Changes in environmental factors in an alpine forest on the eastern Qingzang Plateau during the study period. A, Snow depth. B, Soil surface temperature. C, Daily mean temperature of soil organic layer. D, Gravimetric water content in decomposing litter. Values are mean ± SE (n = 5) in A, C and D. p shows results from repeated measures ANOVA testing for the effect of snow removal in different decomposition periods, and asterisks denote significant differences between control and snow removal plots based on t-test (*, p < 0.05; **, p < 0.01; ***, p < 0.001). EG, early growing season period; LG, late growing season period; MG, middle growing season period; SC, snow coverage period; SF, snow formation period; SM, snow melt period.
分解时期 Decomposition period | 对照 Control | 雪被去除 Snow removal |
---|---|---|
雪被形成期 Snow formation period | 13 | 16 |
雪被覆盖期 Snow coverage period | 6 | 3 |
雪被融化期 Snow melt period | 5 | 31 |
生长季初期 Early growing season period | 0 | 0 |
生长季中期 Middle growing season period | 0 | 0 |
生长季后期 Late growing season period | 1 | 3 |
表1 不同雪被处理下川西高山森林土壤有机层冻融循环次数
Table 1 Number of freeze-thaw cycles of soil organic layer in the control and snow removal plots in an alpine forest on the eastern Qingzang Plateau
分解时期 Decomposition period | 对照 Control | 雪被去除 Snow removal |
---|---|---|
雪被形成期 Snow formation period | 13 | 16 |
雪被覆盖期 Snow coverage period | 6 | 3 |
雪被融化期 Snow melt period | 5 | 31 |
生长季初期 Early growing season period | 0 | 0 |
生长季中期 Middle growing season period | 0 | 0 |
生长季后期 Late growing season period | 1 | 3 |
图2 雪被去除处理对岷江冷杉凋落叶质量的影响(平均值±标准误, n = 5)。A中p表示基于重复测量方差分析的雪被和不同分解时期对凋落叶质量的影响, 星号表示t检验下不同雪被处理之间差异显著(*, p < 0.05; ***, p < 0.001)。EG, 生长季初期; Initial, 初始时期; LG, 生长季后期; MG, 生长季中期; SC, 雪被覆盖期; SF, 雪被形成期; SM, 雪被融化期。
Fig. 2 Effects of snow removal on mass of Abies fargesii var. faxoniana needle litter during the study period (mean ± SE, n = 5). p in A shows results from repeated measures ANOVA testing for the effect of snow removal in different decomposition periods and asterisks denote significant differences between control and snow removal plots based on t-test (*, p < 0.05; ***, p < 0.001). EG, early growing season period; Initial, initial period; LG, late growing season period; MG, middle growing season period; SC, snow coverage period; SF, snow formation period; SM, snow melt period.
处理 Treatment | 回归方程 Regression equation | 相关系数 Correlation coefficient (R2) | 分解速率 Decomposition rate (a-1) | 50%分解时间 Time of half decomposition (a) | 95%分解时间 Time of 95% decomposition (a) | |
---|---|---|---|---|---|---|
对照 Control | y = 101.3e-0.264x | 0.956 ± 0.021 | 0.266 ± 0.033a | 2.60 ± 0.281b | 11.25 ± 1.22b | |
雪被去除 Snow removal | y = 99.5e-0.134x | 0.934 ± 0.013 | 0.134 ± 0.006b | 5.17 ± 0.233a | 22.32 ± 1.01a |
表2 不同雪被处理下岷江冷杉凋落叶分解回归方程、相关系数、分解速率、50%分解和95%分解时间(平均值±标准误, n = 5)
Table 2 Regression equation, correlation coefficient, decomposition coefficient, 50% and 95% decomposition time of leaf litter of Abies fargesii var. faxoniana in snow removal and control plots (mean ± SE, n = 5)
处理 Treatment | 回归方程 Regression equation | 相关系数 Correlation coefficient (R2) | 分解速率 Decomposition rate (a-1) | 50%分解时间 Time of half decomposition (a) | 95%分解时间 Time of 95% decomposition (a) | |
---|---|---|---|---|---|---|
对照 Control | y = 101.3e-0.264x | 0.956 ± 0.021 | 0.266 ± 0.033a | 2.60 ± 0.281b | 11.25 ± 1.22b | |
雪被去除 Snow removal | y = 99.5e-0.134x | 0.934 ± 0.013 | 0.134 ± 0.006b | 5.17 ± 0.233a | 22.32 ± 1.01a |
图3 雪被去除处理对岷江冷杉凋落叶总有机碳的影响(平均值±标准误, n = 5)。p表示基于重复测量方差分析的雪被和不同分解时期对凋落叶总有机碳的影响, 星号表示t检验下不同雪被处理之间差异显著(*, p < 0.05; **, p < 0.01; ***, p < 0.001)。EG, 生长季初期; Initial, 初始时期; LG, 生长季后期; MG, 生长季中期; SC, 雪被覆盖期; SF, 雪被形成期; SM, 雪被融化期。
Fig. 3 Effects of snow removal on total organic carbon (TOC) in litter of Abies fargesii var. faxoniana during the decomposition period (mean ± SE, n = 5). p in A and B show results from repeated measures ANOVA testing for the effect of snow removal in different decomposition periods. Asterisks denote significant differences between control and snow removal plots based on t-test (*, p < 0.05; **, p < 0.01; ***, p < 0.001). EG, early growing season period; Initial, initial period; LG, late growing season period; MG, middle growing season period; SC, snow coverage period; SF, snow formation period; SM, snow melt period.
图4 环境因子对岷江冷杉凋落叶易分解碳组分的影响(平均值±标准误)。A, 各变量偏最小二乘(PLS)系数。PLS系数大于0表示正作用, 小于0表示负作用。红色表示变量作用显著(p < 0.05)。B, 各变量重要值。变量重要值大于1表示作用显著(p < 0.05, 红色标注)。DMT, 土壤有机层日平均温度; DOC, 土壤有机层可溶性有机碳含量; DON, 土壤可溶性有机氮含量; Invertase, 蔗糖酶活性; MBC, 微生物生物量碳含量; MBN, 微生物生物量氮含量; Microbial Res, 微生物呼吸速率; NFTC, 土壤冻融循环次数; NH4+, 土壤铵态氮含量; NO3-, 土壤硝态氮含量; Snow, 雪被厚度; Soil moisture, 土壤有机层湿度; Urease, 土壤脲酶活性。
Fig. 4 Environmental factors in explaining labile carbon during litter decomposition of Abies fargesii var. faxoniana (mean ± SE). A, Partial least squares (PLS) coefficient. PLS coefficients greater than 0 show positive effect and those less than 0 show negative effect. Red indicates that the variable had a significant effect (p < 0.05). B, Variable importance. The values greater than 1 represent significant effect (p < 0.05, red). DMT, daily mean temperature in soil organic layer; DOC, dissolved organic carbon concentration in soil organic layer; DON, soil dissolved organic nitrogen concentration; Invertase, soil invertase activity; MBC, microbial biomass carbon concentration; MBN, microbial biomass nitrogen concentration; Microbial Res, microbial respiration rate; NFTC, soil freeze-thaw cycle; NH4+, Soil NH4+ concentration; NO3-, soil NO3- concentration; Snow, snow depth; Soil moisture, soil organic layer moisture; Urease, soil urease activity.
图5 环境因子与岷江冷杉凋落叶易分解碳组分相关性。A, 对照。B, 雪被去除处理。DMT, 土壤有机层日平均温度; DOC, 凋落叶可溶性有机碳含量; HWEC, 热水溶性有机碳含量; MBC, 微生物生物量碳含量; MBN, 微生物生物量氮含量; Microbial Res, 微生物呼吸速率; NFTC, 土壤冻融循环次数; NO3-, 土壤硝态氮含量; NSC, 非结构性碳含量; Snow, 雪被厚度; Soil DOC, 土壤有机层可溶性有机碳含量; Soil moisture, 土壤有机层湿度; Starch, 淀粉含量; Sugar, 可溶性糖含量; TOC, 总有机碳含量; Urease, 脲酶活性; Water, 凋落叶含水量。星号表示变量之间显著相关(*, p < 0.05; **, p < 0.01)。
Fig. 5 Correlations between litter labile carbon of Abies fargesii var. faxoniana and environmental factors. A, Control; B, Snow removal. DMT, daily mean temperature in soil organic layer; DOC, dissolved organic carbon concentration of needle litter; HWEC, hot water-extraction carbon concentration; MBC, microbial biomass carbon concentration; MBN, microbial biomass nitrogen concentration; Microbial Res, microbial respiration rate; NFTC, soil freeze-thaw cycle; NO3-, soil NO3- concentration; NSC, non-structural carbon concentration; Snow, snow depth; Soil DOC, dissolved organic carbon concentration in soil organic layer; Soil moisture, soil organic layer moisture; Starch, starch concentration; Sugar, soluble sugar concentration; TOC, total organic carbon concentration; Urease, soil urease activity; Water, water content of litter. Asterisks denote significant correlations between variables (*, p < 0.05; **, p < 0.01).
图6 雪被去除处理对岷江冷杉凋落叶热水溶性有机碳(HWEC)的影响(平均值±标准误, n = 5)。p表示基于重复测量方差分析的雪被和不同分解时期对凋落叶HWEC的影响, 星号表示t检验下不同雪被处理之间差异显著(*, p < 0.05; **, p < 0.01)。EG, 生长季初期; Initial, 初始时期; LG, 生长季后期; MG, 生长季中期; SC, 雪被覆盖期; SF, 雪被形成期; SM, 雪被融化期。
Fig. 6 Effects of snow removal on hot water-extraction organic carbon (HWEC) in litter of Abies fargesii var. faxoniana during the decomposition period (mean ± SE, n = 5). p in A and B show results from repeated measures ANOVA testing for the effect of snow removal in different decomposition periods. Asterisks denote significant differences between control and snow removal plots based on t-test (*, p < 0.05; **, p < 0.01). EG, early growing season period; Initial, initial period; LG, late growing season period; MG, middle growing season period; SC, snow coverage period; SF, snow formation period; SM, snow melt period.
图7 雪被去除处理对岷江冷杉凋落叶可溶性有机碳的影响(平均值±标准误, n = 5)。p表示基于重复测量方差分析的雪被和不同分解时期对凋落叶可溶性有机碳的影响, 星号表示t检验下不同雪被处理之间差异显著(*, p < 0.05; **, p < 0.01; ***, p < 0.001)。EG, 生长季初期; Initial, 初始时期; LG, 生长季后期; MG, 生长季中期; SC, 雪被覆盖期; SF, 雪被形成期; SM, 雪被融化期。
Fig. 7 Effects of snow removal on dissolved organic carbon (DOC) in litter of Abies fargesii var. faxoniana during the decomposition period (mean ± SE, n = 5). p in A and B show results from repeated measures ANOVA testing for the effect of snow removal in different decomposition periods. Asterisks denote significant differences between control and snow removal plots based on t-test (*, p < 0.05; **, p < 0.01; ***, p < 0.001). EG, early growing season period; Initial, initial period; LG, late growing season period; MG, middle growing season period; SC, snow coverage period; SF, snow formation period; SM, snow melt period.
图8 雪被去除处理对岷江冷杉凋落叶非结构性碳的影响(平均值±标准误, n = 5)。p表示基于重复测量方差分析的雪被和不同分解时期对凋落叶非结构性碳的影响, 星号表示t检验下不同雪被处理之间差异显著(*, p < 0.05; **, p < 0.01)。EG, 生长季初期; Initial, 初始时期; LG, 生长季后期; MG, 生长季中期; SC, 雪被覆盖期; SF, 雪被形成期; SM, 雪被融化期。
Fig. 8 Effects of snow removal on non-structural carbon (NSC) in litter of Abies fargesii var. faxoniana during the decomposition period (mean ± SE, n = 5). p in A and B show results from repeated measures ANOVA testing for the effect of snow removal in different decomposition periods. Asterisks denote significant differences between control and snow removal plots based on t-test (*, p < 0.05; **, p < 0.01). EG, early growing season period; Initial, initial period; LG, late growing season period; MG, middle growing season period; SC, snow coverage period; SF, snow formation period; SM, snow melt period.
图9 雪被去除处理对岷江冷杉凋落叶可溶性糖的影响(平均值±标准误, n = 5)。p表示基于重复测量方差分析的雪被和不同分解时期对凋落叶可溶性糖的影响, 星号表示t检验下不同雪被处理之间差异显著(*, p < 0.05)。EG, 生长季初期; Initial, 初始时期; LG, 生长季后期; MG, 生长季中期; SC, 雪被覆盖期; SF, 雪被形成期; SM, 雪被融化期。
Fig. 9 Effects of snow removal on soluble sugar in litter of Abies fargesii var. faxoniana during the decomposition period (mean ± SE, n = 5). p in A and B show results from repeated measures ANOVA testing for the effect of snow removal in different decomposition periods. Asterisks denote significant differences between control and snow removal plots based on t-test (*, p < 0.05; **, p < 0.01; ***, p < 0.001). EG, early growing season period; Initial, initial period; LG, late growing season period; MG, middle growing season period; SC, snow coverage period; SF, snow formation period; SM, snow melt period.
图10 雪被去除处理对岷江冷杉凋落叶淀粉的影响(平均值±标准误, n = 5)。p表示基于重复测量方差分析的雪被和不同分解时期对凋落叶淀粉的影响, 星号表示t检验下不同雪被处理之间差异显著(*, p < 0.05; **, p < 0.01; ***, p < 0.001)。EG, 生长季初期; Initial, 初始时期; LG, 生长季后期; MG, 生长季中期; SC, 雪被覆盖期; SF, 雪被形成期; SM, 雪被融化期。
Fig. 10 Effects of snow removal on starch in litter of Abies fargesii var. faxoniana during the decomposition period (mean ± SE, n = 5). p in A and B show results from repeated measures ANOVA testing for the effect of snow removal in different decomposition periods. Asterisks denote significant differences between control and snow removal plots based on t-test (*, p < 0.05; **, p < 0.01; ***, p < 0.001). EG, early growing season period; Initial, initial period; LG, late growing season period; MG, middle growing season period; SC, snow coverage period; SF, snow formation period; SM, snow melt period.
[1] |
Aerts R (2006). The freezer defrosting: global warming and litter decomposition rates in cold biomes. Journal of Ecology, 94, 713-724.
DOI URL |
[2] | Berger TW, Duboc O, Djukic I, Tatzber M, Gerzabek MH, Zehetner F (2015). Decomposition of beech (Fagus sylvatica) and pine (Pinus nigra) litter along an alpine elevation gradient: decay and nutrient release. Geoderma, 251- 252, 92-104. |
[3] |
Bernard L, Foulquier A, Gallet C, Lavorel S, Clément JC (2019). Effects of snow pack reduction and drought on litter decomposition in subalpine grassland communities. Plant and Soil, 435, 225-238.
DOI |
[4] |
Blagodatskaya E, Kuzyakov Y (2013). Active microorganisms in soil: critical review of estimation criteria and approaches. Soil Biology & Biochemistry, 67, 192-211.
DOI URL |
[5] |
Blok D, Elberling B, Michelsen A (2016). Initial stages of tundra shrub litter decomposition may be accelerated by deeper winter snow but slowed down by spring warming. Ecosystems, 19, 155-169.
DOI URL |
[6] | Bokhorst S, Metcalfe DB, Wardle DA (2013). Reduction in snow depth negatively affects decomposers but impact on decomposition rates is substrate dependent. Soil Biology & Biochemistry, 62, 157-164. |
[7] |
Campbell JL, Mitchell MJ, Groffman PM, Christenson LM, Hardy JP (2005). Winter in northeastern north America: a critical period for ecological processes. Frontiers in Ecology and the Environment, 3, 314-322.
DOI URL |
[8] |
Chen X, Gong L, Liu YT (2018). The ecological stoichiometry and interrelationship between litter and soil under seasonal snowfall in Tianshan Mountain. Ecosphere, 9, e02520. DOI: 10.1002/ecs2.2520.
DOI |
[9] | Christenson LM, Mitchell MJ, Groffman PM, Lovett GM (2010). Winter climate change implications for decomposition in northeastern forests: comparisons of sugar maple litter with herbivore fecal inputs. Global Change Biology, 16, 2589-2601. |
[10] |
Cotrufo MF, Soong JL, Horton AJ, Campbell EE, Haddix ML, Wall DH, Parton WJ (2015). Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nature Geoscience, 8, 776-779.
DOI |
[11] | Deng CC, Chen YM, He RL, Liu Y, Zhang J, Song XY, Li JP (2014). Leaching of dissolved organic carbon from decomposing litter during the snow cover period at an alpine timberline ectone in western Sichuan, China. Chinese Journal of Ecology, 33, 2921-2929. |
[邓长春, 陈亚梅, 和润莲, 刘洋, 张健, 宋小艳, 李建平 (2014). 雪被期川西高山林线交错带凋落物可溶性有机碳的淋失特征. 生态学杂志, 33, 2921-2929.] | |
[12] | Deng RJ, Yang WQ, Zhang J, Wu FZ (2010). Changes in litter quality of subalpine forests during one freeze-thaw season. Acta Ecologica Sinica, 30, 830-835. |
[邓仁菊, 杨万勤, 张健, 吴福忠 (2010). 季节性冻融期间亚高山森林凋落物的质量变化. 生态学报, 30, 830-835.] | |
[13] | Dou J, Wang CK, Wu QQ (2019). Influence of snow depth changes on leaf litter decomposition of Fraxinus mandshurica and Larix gmelinii. Chinese Journal of Applied Ecology, 30, 77-84. |
[窦佳, 王传宽, 武启骞 (2019). 模拟雪被变化对水曲柳和兴安落叶松凋落叶分解的影响. 应用生态学报, 30, 77-84.]
DOI |
|
[14] | Du JH, Shao JY, Li SF, Qin J (2020). Non-structural carbohydrate content of trees and its influencing factors at multiple spatial-temporal scales: a review. Chinese Journal of Applied Ecology, 31, 1378-1388. |
[杜建会, 邵佳怡, 李升发, 秦晶 (2020). 树木非结构性碳水化合物含量多时空尺度变化特征及其影响因素研究进展. 应用生态学报, 31, 1378-1388.]
DOI |
|
[15] | Edwards AC, Scalenghe R, Freppaz M (2007). Changes in the seasonal snow cover of alpine regions and its effect on soil processes: a review. Quaternary International, 162-163, 172-181. |
[16] |
Fuzhong W, Changhui P, Jianxiao Z, Jian Z, Bo T, Wanqin Y (2014). Impacts of freezing and thawing dynamics on foliar litter carbon release in alpine/subalpine forests along an altitudinal gradient in the eastern Tibetan Plateau. Biogeosciences, 11, 6471-6481.
DOI URL |
[17] | Gao J, Wei XY, Chen Y, Dong YL, Yang YL, Zhang DJ (2021). Litter decomposition rates and organic carbon dynamics in subalpine forest during freeze-thaw cycles. Acta Ecologica Sinica, 41, 3734-3743. |
[高嘉, 卫芯宇, 谌亚, 董玉梁, 杨玉莲, 张丹桔 (2021). 模拟冻融环境下亚高山森林凋落物分解速率及有机碳动态. 生态学报, 41, 3734-3743.] | |
[18] |
Gunina A, Kuzyakov Y (2015). Sugars in soil and sweets for microorganisms: review of origin, content, composition and fate. Soil Biology & Biochemistry, 90, 87-100.
DOI URL |
[19] |
He W, Wu FZ, Yang WQ, Wu QQ, He M, Zhao YY (2013). Effect of snow patches on leaf litter mass loss of two shrubs in an alpine forest. Chinese Journal of Plant Ecology, 37, 306-316.
DOI |
[何伟, 吴福忠, 杨万勤, 武启骞, 何敏, 赵野逸 (2013). 雪被斑块对高山森林两种灌木凋落叶质量损失的影响. 植物生态学报, 37, 306-316.]
DOI |
|
[20] |
Henry HAL (2008). Climate change and soil freezing dynamics: historical trends and projected changes. Climatic Change, 87, 421-434.
DOI URL |
[21] | IPCC Intergovernmental Panel on Climate Change (2021). Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[22] | Lemma B, Nilsson I, Kleja DB, Olsson M, Knicker H (2007). Decomposition and substrate quality of leaf litters and fine roots from three exotic plantations and a native forest in the southwestern highlands of Ethiopia. Soil Biology & Biochemistry, 39, 2317-2328. |
[23] | Liao S, Yang WQ, Peng Y, Li J, Tan Y, Tan B, Wu FZ (2016). Effects of soil fauna on the concentrations of dissolved organic carbon and total dissolved nitrogen in four types of foliar litters in different phenophases in Sichuan Basin. Chinese Journal of Ecology, 35, 3172-3182. |
[廖姝, 杨万勤, 彭艳, 李俊, 谭羽, 谭波, 吴福忠 (2016). 土壤动物对四川盆地四种树种凋落叶在不同物候时期可溶性碳和氮动态的影响. 生态学杂志, 35, 3172-3182.] | |
[24] |
Lipson DA, Schmidt SK, Monson RK (1999). Links between microbial population dynamics and nitrogen availability in an alpine ecosystem. Ecology, 80, 1623-1631.
DOI URL |
[25] |
Liu CZ, Jia J, Dai GH, Ma T, Feng XJ (2019). Origin and distribution of neutral sugars in soils. Chinese Journal of Plant Ecology, 43, 284-295.
DOI URL |
[刘程竹, 贾娟, 戴国华, 马田, 冯晓娟 (2019). 中性糖在土壤中的来源与分布特征. 植物生态学报, 43, 284-295.]
DOI |
|
[26] |
McTiernan KB, Coûteaux MM, Berg B, Berg MP, de Anta RC, Gallardo A, Kratz W, Piussi P, Remacle J, de Santo AV (2003). Changes in chemical composition of Pinus sylvestris needle litter during decomposition along a European coniferous forest climatic transect. Soil Biology & Biochemistry, 35, 801-812.
DOI URL |
[27] |
Ni XY, Yang WQ, Li H, Xu LY, He J, Wu FZ (2014). Effects of snowpack on early foliar litter humification during winter in a subalpine forest of western Sichuan. Chinese Journal of Plant Ecology, 38, 540-549.
DOI URL |
[倪祥银, 杨万勤, 李晗, 徐李亚, 何洁, 吴福忠 (2014). 雪被斑块对川西亚高山森林6种凋落叶冬季腐殖化的影响. 植物生态学报, 38, 540-549.]
DOI |
|
[28] |
Ni X, Berg B, Yang W, Li H, Liao S, Tan B, Yue K, Xu Z, Zhang L, Wu F (2018). Formation of forest gaps accelerates C, N and P release from foliar litter during 4 years of decomposition in an alpine forest. Biogeochemistry, 139, 321-335.
DOI |
[29] |
Olson JS (1963). Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 44, 322-331.
DOI URL |
[30] |
Pesaro M, Widmer F, Nicollier G, Zeyer J (2003). Effects of freeze-thaw stress during soil storage on microbial communities and methidathion degradation. Soil Biology & Biochemistry, 35, 1049-1061.
DOI URL |
[31] |
Saccone P, Morin S, Baptist F, Bonneville JM, Colace MP, Domine F, Faure M, Geremia R, Lochet J, Poly F, Lavorel S, Clément JC (2013). The effects of snowpack properties and plant strategies on litter decomposition during winter in subalpine meadows. Plant and Soil, 363, 215-229.
DOI URL |
[32] |
Schimel J, Balser TC, Wallenstein M (2007). Microbial stress- response physiology and its implications for ecosystem function. Ecology, 88, 1386-1394.
DOI PMID |
[33] |
Soong JL, Parton WJ, Calderon F, Campbell EE, Cotrufo MF (2015). A new conceptual model on the fate and controls of fresh and pyrolized plant litter decomposition. Biogeochemistry, 124, 27-44.
DOI URL |
[34] |
Sorensen PO, Templer PH, Finzi AC (2016). Contrasting effects of winter snowpack and soil frost on growing season microbial biomass and enzyme activity in two mixed-hardwood forests. Biogeochemistry, 128, 141-154.
DOI URL |
[35] |
Stanton ML, Rejmánek M, Galen C (1994). Changes in vegetation and soil fertility along a predictable snowmelt gradient in the mosquito range, Colorado, U.S. A. Arctic and Alpine Research, 26, 364-374.
DOI URL |
[36] |
Vance ED, Brookes PC, Jenkinson DS (1987). An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry, 19, 703-707.
DOI URL |
[37] |
Wallenstein MD, Hall EK (2012). A trait-based framework for predicting when and where microbial adaptation to climate change will affect ecosystem functioning. Biogeochemistry, 109, 35-47.
DOI URL |
[38] | Wang JK, Xu YD, Ding F, Gao XD, Li SY, Sun LJ, An TT, Pei JB, Li M, Wang Y, Zhang WJ, Ge Z (2019). Process of plant residue transforming into soil organic matter and mechanism of its stabilization: a review. Acta Pedologica Sinica, 56, 528-540. |
[汪景宽, 徐英德, 丁凡, 高晓丹, 李双异, 孙良杰, 安婷婷, 裴久渤, 李明, 王阳, 张维俊, 葛壮 (2019). 植物残体向土壤有机质转化过程及其稳定机制的研究进展. 土壤学报, 56, 528-540.] | |
[39] |
Wipf S, Rixen C (2010). A review of snow manipulation experiments in Arctic and alpine tundra ecosystems. Polar Research, 29, 95-109.
DOI URL |
[40] | Wu QG, Wu FZ, Tan B, Yang WQ, He W, Ni XY (2016). Effects of gap sizes on foliar litter decomposition in alpine forests. Acta Ecologica Sinica, 36, 3537-3545. |
[吴庆贵, 吴福忠, 谭波, 杨万勤, 何伟, 倪祥银 (2016). 高山森林林窗对凋落叶分解的影响. 生态学报, 36, 3537-3545.] | |
[41] |
Wu QG, Wu FZ, Yang WQ, Tan B, Yang YL, Ni XY, He J (2013). Characteristics of gaps and disturbance regimes of the alpine fir forest in western Sichuan. Chinese Journal of Applied and Environmental Biology, 19, 922-928.
DOI URL |
[吴庆贵, 吴福忠, 杨万勤, 谭波, 杨玉莲, 倪祥银, 何洁 (2013). 川西高山森林林隙特征及干扰状况. 应用与环境生物学报, 19, 922-928.] | |
[42] | Wu QQ, Wang CK (2018). Effects of changes in seasonal snow-cover on litter decomposition and soil nitrogen dynamics in forests. Chinese Journal of Applied Ecology, 29, 2422-2432. |
[武启骞, 王传宽 (2018). 季节性雪被变化对森林凋落物分解及土壤氮动态的影响. 应用生态学报, 29, 2422-2432.]
DOI |
|
[43] |
Xie J, Kneubuehler M, Garonna I, de Jong R, Notarnicola C, de Gregorio L, Schaepman M (2018). Relative influence of timing and accumulation of snow on alpine land surface phenology. Journal of Geophysical Research: Biogeosciences, 123, 561-576.
DOI URL |
[44] |
Xu LY, Yang WQ, Li H, Ni XY, He J, Wu FZ (2014). Effects of snow cover on water soluble and organic solvent soluble components during foliar litter decomposition in an alpine forest. Chinese Journal of Applied Ecology, 25, 3067-3075.
PMID |
[徐李亚, 杨万勤, 李晗, 倪祥银, 何洁, 吴福忠 (2014). 雪被覆盖对高山森林凋落物分解过程中水溶性和有机溶性组分含量的影响. 应用生态学报, 25, 3067-3075.]
PMID |
|
[45] |
Yu LM, Wang CK, Wang XC (2011). Allocation of nonstructural carbohydrates for three temperate tree species in Northeast China. Chinese Journal of Plant Ecology, 35, 1245-1255.
DOI URL |
[于丽敏, 王传宽, 王兴昌 (2011). 三种温带树种非结构性碳水化合物的分配. 植物生态学报, 35, 1245-1255.]
DOI |
|
[46] | Yu XZ, Yuan FH, Wang AZ, Wu JB, Guan DX (2010). Effects of snow cover on soil temperature in broad-leaved Korean pine forest in Changbai Mountains. Chinese Journal of Applied Ecology, 21, 3015-3020. |
[于小舟, 袁凤辉, 王安志, 吴家兵, 关德新 (2010). 积雪对长白山阔叶红松林土壤温度的影响. 应用生态学报, 21, 3015-3020.] | |
[47] |
Zhu JX, He XH, Wu FZ, Yang WQ, Tan B (2012). Decomposition of Abies faxoniana litter varies with freeze-thaw stages and altitudes in subalpine/alpine forests of southwest China. Scandinavian Journal of Forest Research, 27, 586-596.
DOI URL |
[1] | 俞庆水 倪晓凤 吉成均 朱江玲 唐志尧 方精云. 10年氮磷添加对海南尖峰岭两种热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 彭仲韬 金光泽 刘志理. 小兴安岭三种槭树叶性状随植株大小和林冠条件的变异[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[4] | 余海霞, 曲鲁平, 汤行昊, 刘南, 张子雷, 王浩, 王艺璇, 邵长亮, 董刚, 胡亚林. 闽楠和木荷非结构性碳水化合物对不同模式热浪的差异性响应[J]. 植物生态学报, 2023, 47(2): 249-261. |
[5] | 陈图强, 徐贵青, 刘深思, 李彦. 干旱胁迫下梭梭水力性状调整与非结构性碳水化合物动态[J]. 植物生态学报, 2023, 47(10): 1407-1421. |
[6] | 李变变, 张凤华, 赵亚光, 孙秉楠. 不同刈割程度对油莎豆非结构性碳水化合物代谢及生物量的影响[J]. 植物生态学报, 2023, 47(1): 101-113. |
[7] | 伍敏, 田雨, 樊大勇, 张祥雪. 干旱胁迫下毛白杨和元宝槭的水力学调控[J]. 植物生态学报, 2022, 46(9): 1086-1097. |
[8] | 董涵君, 王兴昌, 苑丹阳, 柳荻, 刘玉龙, 桑英, 王晓春. 温带不同材性树种树干非结构性碳水化合物的径向分配差异[J]. 植物生态学报, 2022, 46(6): 722-734. |
[9] | 刘谣, 焦泽彬, 谭波, 李晗, 王丽霞, 刘思凝, 游成铭, 徐振锋, 张丽. 川西亚高山森林凋落物去除对土壤腐殖质动态的影响[J]. 植物生态学报, 2022, 46(3): 330-339. |
[10] | 李思源, 张照鑫, 饶良懿. 桑苗非结构性碳水化合物和生长激素对水淹胁迫的响应[J]. 植物生态学报, 2022, 46(3): 311-320. |
[11] | 秦慧君, 焦亮, 周怡, 薛儒鸿, 柒常亮, 杜达石. 祁连山优势树木碳水化合物资源分配的海拔和树种效应[J]. 植物生态学报, 2022, 46(2): 208-219. |
[12] | 林夏珍, 刘林, 董婷婷, 方琦博, 郭庆学. 非结构性碳水化合物与氮分配对美洲黑杨和青杨耐盐能力的影响[J]. 植物生态学报, 2021, 45(9): 961-971. |
[13] | 吴秋霞, 吴福忠, 胡仪, 康自佳, 张耀艺, 杨静, 岳楷, 倪祥银, 杨玉盛. 亚热带同质园11个树种新老叶非结构性碳水化合物含量比较[J]. 植物生态学报, 2021, 45(7): 771-779. |
[14] | 王娇, 关欣, 张伟东, 黄苛, 朱睦楠, 杨庆朋. 杉木幼苗生物量分配格局对氮添加的响应[J]. 植物生态学报, 2021, 45(11): 1231-1240. |
[15] | 宋琳, 雒文涛, 马望, 何鹏, 梁潇洒, 王正文. 极端干旱对草甸草原优势植物非结构性碳水化合物的影响[J]. 植物生态学报, 2020, 44(6): 669-676. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19