植物生态学报 ›› 2023, Vol. 47 ›› Issue (1): 101-113.DOI: 10.17521/cjpe.2021.0484
所属专题: 光合作用
收稿日期:
2021-12-20
接受日期:
2022-05-19
出版日期:
2023-01-20
发布日期:
2022-07-15
通讯作者:
*张凤华(fenghuazhang2021@163.com)
基金资助:
LI Bian-Bian, ZHANG Feng-Hua*(), ZHAO Ya-Guang, SUN Bing-Nan
Received:
2021-12-20
Accepted:
2022-05-19
Online:
2023-01-20
Published:
2022-07-15
Contact:
*ZHANG Feng-Hua(fenghuazhang2021@163.com)
Supported by:
摘要:
为探讨不同留茬高度对油莎豆(Cyperus esculentus)非结构性碳水化合物代谢的影响, 进一步明确不同留茬高度与油莎豆地上生物量的关系, 并寻求最佳刈割高度, 该研究以油莎豆为研究对象, 测定6个留茬高度(10、20、30、40、50 cm和未刈割)油莎豆叶片生长生理参数、非结构性碳水化合物含量和地上生物量。结果显示: 刈割对于油莎豆光合作用有刺激作用, 刈割后油莎豆在第1-14天达到再生生长高峰期。留茬30 cm油莎豆叶片可溶性糖含量(第7、21和28天)均高于其他处理, 分别为9.22%、10.83%、9.07%, 其淀粉含量(第14和21天)均高于其他处理, 分别为4.88%和4.11%。留茬40 cm (第21、28天)蔗糖含量均高于其他处理, 分别为7.88%和11.38%; 其果糖含量(第14和21天)均高于其他处理, 分别为5.29%和6.40%。刈割促进了留茬30和40 cm油莎豆叶片蔗糖磷酸合成酶和蔗糖合成酶活性的提高。留茬10 cm抑制了油莎豆叶片蔗糖含量增加和相关酶活性。合计刈割时和收获时的饲草质量之和, 留茬30 cm油莎豆干草质量最高, 为10 605.11 kg·hm-2, 较未刈割增加19.93%; 收获时, 留茬40 cm油莎豆干草质量最高, 为8 976.93 kg·hm-2, 较未刈割增加1.52%。另外通过冗余分析可知, 可溶性糖含量、蔗糖合成酶和蔗糖磷酸合成酶活性是影响饲草产量和再生速度的关键因子。留茬30-40 cm在长期(第7-28天)更有利于油莎豆再生生长, 非结构性碳水化合物积累, 相关酶活性和饲草产量提高, 因此留茬30-40 cm为适宜留茬高度范围。
李变变, 张凤华, 赵亚光, 孙秉楠. 不同刈割程度对油莎豆非结构性碳水化合物代谢及生物量的影响. 植物生态学报, 2023, 47(1): 101-113. DOI: 10.17521/cjpe.2021.0484
LI Bian-Bian, ZHANG Feng-Hua, ZHAO Ya-Guang, SUN Bing-Nan. Effects of different clipping degrees on non-structural carbohydrate metabolism and biomass of Cyperus esculentus. Chinese Journal of Plant Ecology, 2023, 47(1): 101-113. DOI: 10.17521/cjpe.2021.0484
土壤类型 Soil type | 土层 Soil layer | 质地 Soil texture | 有机质含量 Organic matter content (g·kg-1) | 全氮含量 Total nitrogen content (g·kg-1) | 速效钾含量 Available potassium content (mg·kg-1) | 速效磷含量 Available phosphorus content (mg·kg-1) | pH |
---|---|---|---|---|---|---|---|
棕漠土 Brown desert soil | 0-20 cm | 壤土 Loam | 13.64 | 0.86 | 347.37 | 20.16 | 7.92 |
表1 阜康实验区供试土壤基础理化性质
Table 1 Physical and chemical properties of the tested soil in Fukang
土壤类型 Soil type | 土层 Soil layer | 质地 Soil texture | 有机质含量 Organic matter content (g·kg-1) | 全氮含量 Total nitrogen content (g·kg-1) | 速效钾含量 Available potassium content (mg·kg-1) | 速效磷含量 Available phosphorus content (mg·kg-1) | pH |
---|---|---|---|---|---|---|---|
棕漠土 Brown desert soil | 0-20 cm | 壤土 Loam | 13.64 | 0.86 | 347.37 | 20.16 | 7.92 |
图1 不同留茬高度对油莎豆植株再生速度的影响(平均值±标准误)。CK, 对照; R10-R50, 留茬高度分别为10、20、30、40、50 cm。不同小写字母表示不同留茬刈割处理之间差异显著(p < 0.05)。
Fig. 1 Effect of different stubble height on regeneration rate of Cyperus esculentus (mean ± SE). CK, control; R10-R50, stubble height 10, 20, 30, 40, 50 cm, respectively. Different lowercase letters indicate significant difference between different stubble clipping treatments (p < 0.05).
图2 不同留茬高度对油莎豆单株叶面积和相对叶绿素含量(SPAD)的影响(平均值±标准误)。CK, 对照; R10-R50, 留茬高度分别为10、20、30、40、50 cm。不同小写字母表示不同留茬刈割处理之间差异显著(p < 0.05)。
Fig. 2 Effects of different stubble height on leaf area per plant and of relative chlorophyll content (SPAD) value of Cyperus esculentus (mean ± SE). CK, control; R10-R50, stubble height 10, 20, 30, 40, 50 cm, respectively. Different lowercase letters indicate significant difference between different stubble clipping treatments (p < 0.05).
图3 不同留茬高度对油莎豆光合特性的影响(平均值±标准误)。CK, 对照; R10-R50, 留茬高度分别为10、20、30、40、50 cm。不同小写字母表示不同留茬刈割处理之间差异显著(p < 0.05)。
Fig. 3 Effects of different stubble heights on the photosynthetic characteristics of different stubble height Cyperus esculentus (mean ± SE). CK, control; R10-R50, stubble height 10, 20, 30, 40, 50 cm, respectively. Ci, intercellular CO2 concentration; Gs, stomatic conductance; Pn, net photosynthetic rate; Tr, transpiration rate. Different lowercase letters indicate significant difference between different stubble clipping treatments (p < 0.05).
图4 不同留茬高度对油莎豆可溶性糖含量和蔗糖含量的影响(平均值±标准误)。CK, 对照; R10-R50, 留茬高度分别为10、20、30、40、50 cm。不同小写字母表示不同留茬刈割处理之间差异显著(p < 0.05)。
Fig. 4 Effects of different stubble height on soluble sugar content and sucrose content of different stubble height Cyperus esculentus (mean ± SE). CK, control; R10-R50, stubble height 10, 20, 30, 40, 50 cm, respectively. Different lowercase letters indicate significant difference between different stubble clipping treatments (p < 0.05).
图5 不同留茬高度对油莎豆淀粉和果糖含量的影响(平均值±标准误)。CK, 对照; R10-R50, 留茬高度分别为10、20、30、40、50cm。不同小写字母表示不同留茬刈割处理之间差异显著(p < 0.05)。
Fig. 5 Effects of different stubble height on starch and fructose content of different stubble height Cyperus esculentus (mean ± SE). CK, control; R10-R50, stubble height 10, 20, 30, 40, 50 cm, respectively. Different lowercase letters indicate significant difference between different stubble clipping treatments (p < 0.05).
图6 不同留茬高度对油莎豆叶片蔗糖合成酶(SS)活性和蔗糖磷酸合成酶(SPS)活性的影响(平均值±标准误)。CK, 对照; R10-R50, 留茬高度分别为10、20、30、40、50 cm。不同小写字母表示不同留茬刈割处理之间差异显著(p < 0.05)。
Fig. 6 Effects of different stubble height on the activities of sucrose synthase (SS) and sucrose phosphate synthase (SPS) in the leaves of different stubble height Cyperus esculentus (mean ± SE). CK, control; R10-R50, stubble height 10, 20, 30, 40, 50 cm, respectively. Different lowercase letters indicate significant difference between different stubble clipping treatments (p < 0.05).
留茬处理 Stubble treatment | 刈割时 Clipping | 收获时 Reward | 合计 Total | |||
---|---|---|---|---|---|---|
鲜质量 Fresh mass (kg·hm-2) | 干质量 Dry mass (kg·hm-2) | 鲜质量 Fresh mass (kg·hm-2) | 干质量 Dry mass (kg·hm-2) | 鲜质量 Fresh mass (kg·hm-2) | 干质量 Dry mass (kg·hm-2) | |
CK | 0.00 ± 0.00d | 0.00 ± 0.00e | 22 501.13 ± 610.32a | 8 842.62 ± 357.88ab | 22 501.13 ± 1 802.87d | 8 842.62 ± 357.88b |
R50 | 1 833.43 ± 288.69cd | 741.07 ± 29.17d | 20 001.00 ± 566.38b | 7 738.24 ± 282.26c | 21 834.43 ± 1 607.36d | 8 479.31 ± 286.97b |
R40 | 4 722.46 ± 481.15bc | 1 472.57 ± 515.51c | 22 001.10 ± 1 000.05a | 8 976.93 ± 339.92a | 29 723.71 ± 1 601.58b | 10 449.51 ± 245.49a |
R30 | 6 500.33 ± 500.03b | 2 231.38 ± 277.61b | 23 334.50 ± 789.60a | 8 373.73 ± 265.79b | 29 834.83 ± 1 756.03b | 10 605.11 ± 102.57a |
R20 | 12 037.64 ± 556.51a | 4 473.91 ± 634.8a | 14 500.73 ± 685.05d | 5 804.22 ± 171.48d | 26 538.36 ± 445.62c | 10 278.13 ± 604.49a |
R10 | 15 500.78 ± 866.07a | 4 048.94 ± 181.72a | 17 500.88 ± 500.03c | 6 223.71 ± 171.42d | 33 001.65 ± 1 322.94a | 10 272.65 ± 260.16a |
表2 不同留茬高度对油莎豆地上生物量的影响(平均值±标准误)
Table 2 Effects of different stubble height on aboveground biomass of Cyperus esculentus (mean ± SE)
留茬处理 Stubble treatment | 刈割时 Clipping | 收获时 Reward | 合计 Total | |||
---|---|---|---|---|---|---|
鲜质量 Fresh mass (kg·hm-2) | 干质量 Dry mass (kg·hm-2) | 鲜质量 Fresh mass (kg·hm-2) | 干质量 Dry mass (kg·hm-2) | 鲜质量 Fresh mass (kg·hm-2) | 干质量 Dry mass (kg·hm-2) | |
CK | 0.00 ± 0.00d | 0.00 ± 0.00e | 22 501.13 ± 610.32a | 8 842.62 ± 357.88ab | 22 501.13 ± 1 802.87d | 8 842.62 ± 357.88b |
R50 | 1 833.43 ± 288.69cd | 741.07 ± 29.17d | 20 001.00 ± 566.38b | 7 738.24 ± 282.26c | 21 834.43 ± 1 607.36d | 8 479.31 ± 286.97b |
R40 | 4 722.46 ± 481.15bc | 1 472.57 ± 515.51c | 22 001.10 ± 1 000.05a | 8 976.93 ± 339.92a | 29 723.71 ± 1 601.58b | 10 449.51 ± 245.49a |
R30 | 6 500.33 ± 500.03b | 2 231.38 ± 277.61b | 23 334.50 ± 789.60a | 8 373.73 ± 265.79b | 29 834.83 ± 1 756.03b | 10 605.11 ± 102.57a |
R20 | 12 037.64 ± 556.51a | 4 473.91 ± 634.8a | 14 500.73 ± 685.05d | 5 804.22 ± 171.48d | 26 538.36 ± 445.62c | 10 278.13 ± 604.49a |
R10 | 15 500.78 ± 866.07a | 4 048.94 ± 181.72a | 17 500.88 ± 500.03c | 6 223.71 ± 171.42d | 33 001.65 ± 1 322.94a | 10 272.65 ± 260.16a |
图7 不同留茬高度对油莎豆地上生物量、再生速度与5个时期非结构性碳水化合物相关指标的冗余分析(RDA)。A、B、C、D、E分别代表1、7、14、21、28天5个时期。FDG, 收获时干质量; R, 再生速度; RFG, 收获时鲜质量; SPS, 蔗糖磷酸合成酶; SS, 蔗糖合成酶; TDG, 合计后干质量; TFG,合计后鲜质量。CK, 对照; R10-R50, 留茬高度分别为10、20、30、40、50 cm, 下角的1、2、3代表重复。
Fig. 7 Redundancy analysis (RDA) of above-ground biomass, regeneration rate and non-structural carbohydrate related indicators in five periods of different stubble height Cyperus esculentus. A, B, C, D and E represent the five periods of 1, 7, 14, 21 and 28 d, respectively. FDG, dry mass at harvest; R, regeneration rate; RFG, fresh mass at harvest; SPS, sucrose phosphate synthetase; SS, sucrose synthetase; TDG, total dry mass; TFG, total fresh mass. CK, control; R10-R50, stubble height is 10, 20, 30, 40, 50 cm, respectively. Subscript 1, 2, 3 represent repetition.
指标 Index | R2 | p ( > r) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 d | 7 d | 14 d | 21 d | 28 d | 1 d | 7 d | 14 d | 21 d | 28 d | |
可溶性糖含量 Soluble sugar content | 0.671 | 0.648 | 0.744 | 0.561 | 0.569 | 0.001*** | 0.002** | 0.001*** | 0.007** | 0.003** |
蔗糖含量 Sucrose content | 0.413 | 0.050 | 0.346 | 0.004 | 0.007 | 0.029* | 0.677 | 0.034* | 0.963 | 0.950 |
果糖含量 Fructose content | 0.186 | 0.432 | 0.129 | 0.300 | 0.292 | 0.216 | 0.017* | 0.358 | 0.065 | 0.060 |
淀粉含量 Starch content | 0.208 | 0.524 | 0.013 | 0.377 | 0.027 | 0.166 | 0.003** | 0.917 | 0.022* | 0.828 |
蔗糖合成酶活性 SS activity | 0.298 | 0.804 | 0.506 | 0.357 | 0.520 | 0.074 | 0.001*** | 0.006** | 0.041* | 0.010** |
蔗糖磷酸合成酶活性 SPS activity | 0.643 | 0.492 | 0.513 | 0.478 | 0.648 | 0.002** | 0.010** | 0.008** | 0.005** | 0.001** |
表3 基于冗余分析不同指标对油莎豆地上生物量和再生速度的影响
Table 3 Based on redundancy analysis of the influence of different indicators on the aboveground biomass and regeneration rate of Cyperus esculentus
指标 Index | R2 | p ( > r) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 d | 7 d | 14 d | 21 d | 28 d | 1 d | 7 d | 14 d | 21 d | 28 d | |
可溶性糖含量 Soluble sugar content | 0.671 | 0.648 | 0.744 | 0.561 | 0.569 | 0.001*** | 0.002** | 0.001*** | 0.007** | 0.003** |
蔗糖含量 Sucrose content | 0.413 | 0.050 | 0.346 | 0.004 | 0.007 | 0.029* | 0.677 | 0.034* | 0.963 | 0.950 |
果糖含量 Fructose content | 0.186 | 0.432 | 0.129 | 0.300 | 0.292 | 0.216 | 0.017* | 0.358 | 0.065 | 0.060 |
淀粉含量 Starch content | 0.208 | 0.524 | 0.013 | 0.377 | 0.027 | 0.166 | 0.003** | 0.917 | 0.022* | 0.828 |
蔗糖合成酶活性 SS activity | 0.298 | 0.804 | 0.506 | 0.357 | 0.520 | 0.074 | 0.001*** | 0.006** | 0.041* | 0.010** |
蔗糖磷酸合成酶活性 SPS activity | 0.643 | 0.492 | 0.513 | 0.478 | 0.648 | 0.002** | 0.010** | 0.008** | 0.005** | 0.001** |
[1] |
Aljuhaimi F, Ghafoor K, Özcan MM, Miseckaite O, Babiker EE, Hussain S (2018). The effect of solvent type and roasting processes on physico-chemical properties of tigernut (Cyperus esculentus L.) tuber oil. Journal of Oleo Science, 67, 823-828.
DOI PMID |
[2] |
Bork EW, Broadbent TS, Willms WD (2017). Intermittent growing season defoliation variably impacts accumulated herbage productivity in mixed grass prairie. Rangeland Ecology & Management, 70, 307-315.
DOI URL |
[3] |
Buysse J, Merckx R (1993). An improved colorimetric method to quantify sugar content of plant tissue. Journal of Experimental Botany, 44, 1627-1629.
DOI URL |
[4] |
Carpita N, Sabularse D, Montezinos D, Delmer DP (1979). Determination of the pore size of cell walls of living plant cells. Science, 205, 1144-1147.
DOI PMID |
[5] |
Chen L, Huang JG, Dawson A, Zhai L, Stadt KJ, Comeau PG, Whitehouse C (2018). Contributions of insects and droughts to growth decline of trembling aspen mixed boreal forest of western Canada. Global Change Biology, 24, 655-667.
DOI PMID |
[6] |
Chen Q, Lu XY, Guo XR, Xu MY, Tang ZH (2021). A source-sink model explains the difference in the metabolic mechanism of mechanical damage to young and senescing leaves in Catharanthus roseus. BMC Plant Biology, 21, 154. DOI: 10.1186/S12870-02/02934-6.
DOI |
[7] |
Dombrowski JE, Hind SR, Martin RC, Stratmann JW (2011). Wounding systemically activates a mitogen-activated protein kinase in forage and turf grasses. Plant Science, 180, 686-693.
DOI PMID |
[8] |
Donaghy, Fulkerson (1998). Priority for allocation of water-soluble carbohydrate reserves during regrowth of Lolium perenne. Grass and Forage Science, 53, 211-218.
DOI URL |
[9] | Du Y, Han Y, Wang CK (2014). The influence of drought on non-structural carbohydrates in the needles and twigs of Larix gmelinii. Acta Ecologica Sinica, 34, 6090-6100. |
[ 杜尧, 韩轶, 王传宽 (2014). 干旱对兴安落叶松枝叶非结构性碳水化合物的影响. 生态学报, 34, 6090-6100.] | |
[10] | Feng YJ, Jin Q, Wang JW (2010). Systemic induced effects of mechanical wounding on the chemical defense of Bt corn (Zea mays). Chinese Journal of Plant Ecology, 34, 695-703. |
[ 冯远娇, 金琼, 王建武 (2010). 机械损伤对Bt玉米化学防御的系统诱导效应. 植物生态学报, 34, 695-703.]
DOI |
|
[11] |
Fulkerson WJ, Slack K (1994). Leaf number as a criterion for determining defoliation time for Lolium perenne, 1. Effect of water-soluble carbohydrates and senescence. Grass and Forage Science, 49, 373-377.
DOI URL |
[12] | Gao YT, Zhang R, Li HX, Wei PC (2021). Effect of water stress on sugar accumulation and sucrose metabolism enzyme activities of greenhouse grape fruit. Arid Zone Research, 38, 1713-1721. |
[ 高彦婷, 张芮, 李红霞, 魏鹏程 (2021). 水分胁迫对葡萄糖分及其蔗糖代谢酶活性的影响. 干旱区研究, 38, 1713-1721.] | |
[13] |
Harrison MT, Kelman WM, Moore AD, Evans JR (2010). Grazing winter wheat relieves plant water stress and transiently enhances photosynthesis. Functional Plant Biology, 37, 726-736.
DOI URL |
[14] |
Heck KL Jr, Valentine JF (2006). Plant-herbivore interactions in seagrass meadows. Journal of Experimental Marine Biology and Ecology, 330, 420-436.
DOI URL |
[15] | Hou FJ (2001). Effect of grazing on photosynthesis and respiration of herbage and on its absorption and transporation of nitrogen and carbon. Chinese Journal of Applied Ecology, 12, 938-942. |
[ 侯扶江 (2001). 放牧对牧草光合作用、呼吸作用和氮、碳吸收与转运的影响. 应用生态学报, 12, 938-942.] | |
[16] | Hu RF, Jiang H, Li YY (2012). Research advance on sucrose synthesize enzymes. Northern Horticulture, (1), 167-170. |
[ 胡瑞芳, 姜慧, 李玥莹 (2012). 蔗糖代谢相关酶的研究进展. 北方园艺, (1), 167-170.] | |
[17] |
Koch KE (1996). Carbohydrate-modulated gene expression in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 47, 509-540.
PMID |
[18] |
Koch KE, Ying Z, Wu Y, Avigne WT (2000). Multiple paths of sugar-sensing and a sugar/oxygen overlap for genes of sucrose and ethanol metabolism. Journal of Experimental Botany, 51, 417-427.
DOI URL |
[19] | Kolb TE, Dodds KA, Clancy KM (1999). Effect of western spruce budworm defoliation on the physiology and growth of potted Douglas-fir seedlings. Forest Science, 45, 280-291. |
[20] | Latt CR, Nair PKR, Kang B (2000). Interactions among cutting frequency, reserve carbohydrates, and post-cutting biomass production in Gliricidia sepium and Leucaena leucocephala. Agroforestry Systems, 50, 27-46. |
[21] |
Latt CR, Nair PKR, Kang BT (2001). Reserve carbohydrate levels in the boles and structural roots of five multipurpose tree species in a seasonally dry tropical climate. Forest Ecology and Management, 146, 145-158.
DOI URL |
[22] | Lattanzi FA, Schnyder H, Thornton B (2004). Defoliation effects on carbon and nitrogen substrate import and tissue-bound efflux in leaf growth zones of grasses. Plant, Cell & Environment, 27, 347-356. |
[23] |
Letty BA, Makhubedu T, Scogings PF, Mafongoya P (2021). Effect of cutting height on non-structural carbohydrates, biomass production and mortality rate of pigeon peas. Agroforestry Systems, 95, 659-667.
DOI |
[24] |
Lin XZ, Liu L, Dong TT, Fang QB, Guo QX (2021). Effects of non-structural carbohydrate and nitrogen allocation on the ability of Populus deltoides and P. cathayana to resist soil salinity stress. Chinese Journal of Plant Ecology, 45, 961-971.
DOI URL |
[ 林夏珍, 刘林, 董婷婷, 方琦博, 郭庆学 (2021). 非结构性碳水化合物与氮分配对美洲黑杨和青杨耐盐能力的影响. 植物生态学报, 45, 961-971.]
DOI |
|
[25] |
Loewe A, Einig W, Shi LB, Dizengremel P, Hampp R (2000). Mycorrhiza formation and elevated CO2 both increase the capacity for sucrose synthesis in source leaves of spruce and aspen. New Phytologist, 145, 565-574.
DOI PMID |
[26] |
MacNeill GJ, Mehrpouyan S, Minow MAA, Patterson JA, Tetlow IJ, Emes MJ (2017). Starch as a source, starch as a sink: the bifunctional role of starch in carbon allocation. Journal of Experimental Botany, 68, 4433-4453.
DOI PMID |
[27] |
Moyo H, Scholes MC, Twine W (2015). The effects of repeated cutting on coppice response of Terminalia sericea. Trees, 29, 161-169.
DOI URL |
[28] |
Nowak RS, Caldwell MM (1984). A test of compensatory photosynthesis in the field: implications for herbivory tolerance. Oecologia, 61, 311-318.
DOI PMID |
[29] |
Nzunda EF, Griffiths ME, Lawes MJ (2008). Sprouting by remobilization of above-ground resources ensures persistence after disturbance of coastal dune forest trees. Functional Ecology, 22, 577-582.
DOI URL |
[30] |
Padhi S, Grimes MM, Muro-Villanueva F, Ortega JL, Sengupta-Gopalan C (2019). Distinct nodule and leaf functions of two different sucrose phosphate synthases in alfalfa. Planta, 250, 1743-1755.
DOI PMID |
[31] | Qu WX, Du B, Yu QL, Han YY, Hao JH, Liu CJ, Fan SX (2021). Effects of selenium on carbon metabolism of lettuce under high temperature stress. Journal of Beijing University of Agriculture, 36(4), 30-34. |
[ 屈卫星, 杜柏, 余琦隆, 韩莹琰, 郝敬虹, 刘超杰, 范双喜 (2021). 硒对高温胁迫下生菜碳代谢的影响. 北京农学院学报, 36(4), 30-34.] | |
[32] |
Quentin AG, Pinkard EA, Ryan MG, Tissue DT, Baggett LS, Adams HD, Maillard P, Marchand J, Landhäusser SM, Lacointe A, Gibon Y, Anderegg WRL, Asao S, Atkin OK, Bonhomme M, et al. (2015). Non-structural carbohydrates in woody plants compared among laboratories. Tree Physiology, 35, 1146-1165.
DOI PMID |
[33] |
Richardson AD, Carbone MS, Keenan TF, Czimczik CI, Hollinger DY, Murakami P, Schaberg PG, Xu XM (2013). Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees. New Phytologist, 197, 850-861.
DOI PMID |
[34] |
Schrader S, Sauter JJ (2002). Seasonal changes of sucrose-phosphate synthase and sucrose synthase activities in poplar wood (Populus × canadensis Moench ‘robusta’) and their possible role in carbohydrate metabolism. Journal of Plant Physiology, 159, 833-843.
DOI URL |
[35] | Shen QL (2010). A Preliminary Studies on High Yield and Quality Cultivation in Chufa. Master degree dissertation, Yangzhou University, Yangzhou, Jiangsu. |
[ 沈庆雷 (2010). 油莎豆高产优质栽培初步研究. 硕士学位论文,扬州大学, 江苏扬州.] | |
[36] | Wang DD, Tian LH, Shen YY, Liu YB (2014). Regrowth responses to cutting of different cultivars of winter wheat. Chinese Journal of Eco-Agriculture, 22, 642-647. |
[ 王丹丹, 田莉华, 沈禹颖, 刘渊博 (2014). 不同品种冬小麦再生生长对刈割干扰的响应. 中国生态农业学报, 22, 642-647.] | |
[37] | Wang J, Yang C, Han WQ, Liu ML (2003). Effects on water-soluble carbohydrate of Artemisia frigida under different defoliation intensities. Acta Ecologica Sinica, 23, 908-913. |
[ 王静, 杨持, 韩文权, 刘美玲 (2003). 刈割强度对冷蒿可溶性碳水化合物的影响. 生态学报, 23, 908-913.] | |
[38] | Wang LH, Sun JW, Wang W, Zhou Q (2017). Research advances in effects of acid rain on plant photosynthesis. Journal of Safety and Environment, 17, 775-780. |
[ 王丽红, 孙静雯, 王雯, 周青 (2017). 酸雨对植物光合作用影响的研究进展. 安全与环境学报, 17, 775-780.] | |
[39] | Wang RY, Wang XS, Xiang H (2019). A multi-purpose novel oil crop—Cyperus beans. China Oils and Fats, 44(1), 1-4. |
[ 王瑞元, 王晓松, 相海 (2019). 一种多用途的新兴油料作物——油莎豆. 中国油脂, 44(1), 1-4.] | |
[40] | Wang Y, Li ZY, Ge F (2000). Lag-change of chemical components in needles of injured pine, Pinus massoniana. Acta Entomologica Sinica, 43, 291-296. |
[ 王燕, 李镇宇, 戈峰 (2000). 马尾松受害诱导的化学物质滞后变化. 昆虫学报, 43, 291-296.] | |
[41] | Wang Y, Wu JY, Liu JH, Feng XY (2021). Effects of controlled-release nitrogen fertilizer on agronomic characteristics and yield of Panicum miliaceum L. Journal of Northern Agriculture, 49(3), 41-47. |
[ 王英, 武俊英, 刘景辉, 冯学颖 (2021). 控释氮肥对糜子农艺性状及产量的影响. 北方农业学报, 49(3), 41-47.]
DOI |
|
[42] |
Wei FT, Tao HB, Wang P (2010). Relationship of non-structure carbohydrate production and yield components of aerobic rice, Handao 297. Acta Agronomica Sinica, 36, 2135-2142.
DOI URL |
[ 魏凤桐, 陶洪斌, 王璞 (2010). 旱稻297非结构性碳水化合物的生产与产量构成因子的关系. 作物学报, 36, 2135-2142.]
DOI |
|
[43] |
William RLA, Jeffrey AH, Rosie AF, Craig DA, Juliann ABB, Sharon HJWL, Alison KM, Nate MYP, Kenneth RAS, John DSNL, Stephenson CT, Melanie Z (2015). Tree mortality from drought, insects, and their interactions in a changing climate. New Phytologist, 208, 674-683.
DOI PMID |
[44] | Wu JH, Cui YT, Zhao QZ, Wang L (2013). Effects of drought stress on anatomical structure of leaves and physiological indexes of Potentilla species. Pratacultural Science, 30, 1369-1373. |
[ 吴建慧, 崔艳桃, 赵倩竹, 王玲 (2013). 干旱胁迫下委陵菜和翻白委陵菜叶片结构和生理指标的变化. 草业科学, 30, 1369-1373.] | |
[45] |
Wu YW, Li Q, Jin R, Chen W, Liu XL, Kong FL, Ke YP, Shi HC, Yuan JC (2019). Effect of low-nitrogen stress on photosynthesis and chlorophyll fluorescence characteristics of maize cultivars with different low-nitrogen tolerances. Journal of Integrative Agriculture, 18, 1246-1256.
DOI URL |
[46] | Yang HM, Wang ZN, Ji CR (2013). Research progress in the dynamics of carbon and nitrogen in forages after cutting and grazing. Chinese Journal of Grassland, 35(4), 102-109. |
[ 杨惠敏, 王振南, 吉春荣 (2013). 刈割和放牧后牧草碳氮动态研究进展. 中国草地学报, 35(4), 102-109.] | |
[47] | Zhang YL, Wang XG, Luo XM, Jiang L (2018). Effects of plant growth regulators on growth characteristics and seeds yield of Leymus chinensis. Grassland and Turf, 38(1), 18-24. |
[ 张永亮, 王显国, 骆秀梅, 姜澜 (2018). 生长调节剂对羊草生长及种子产量的影响. 草原与草坪, 38(1), 18-24.] | |
[48] | Zhao CZ, Zhong RZ, Zhou DW, Zheng CC (2019). Effects of mowing time and interval on dry matter yield and chemical composition of Leymus chinensis. Soils and Crops, 8, 212-219. |
[ 赵成振, 钟荣珍, 周道玮, 郑聪聪 (2019). 不同刈割时间和间隔对羊草产量和品质的影响. 土壤与作物, 8, 212-219.] | |
[49] | Zheng YP, Wang HX, Lou X, Yang QP, Xu M (2014). Changes of non-structural carbohydrates and its impact factors in trees: a review. Chinese Journal of Applied Ecology, 25, 1188-1196. |
[ 郑云普, 王贺新, 娄鑫, 杨庆朋, 徐明 (2014). 木本植物非结构性碳水化合物变化及其影响因子研究进展. 应用生态学报, 25, 1188-1196.] | |
[50] | Zhou XH, Wang GX, Yang F, Chen QM, Wang L (2008). Effects of cutting on photosynthesis and purification efficiencies on nitrogen and phosphorus of the Lolium multiflorum. Environmental Science, 29, 3393-3399. |
[ 周晓红, 王国祥, 杨飞, 陈秋敏, 汪丽 (2008). 刈割对生态浮床植物黑麦草光合作用及其对氮磷等净化效果的影响. 环境科学, 29, 3393-3399.] |
[1] | 俞庆水 倪晓凤 吉成均 朱江玲 唐志尧 方精云. 10年氮磷添加对海南尖峰岭两种热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[3] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[4] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[5] | 范宏坤, 曾涛, 金光泽, 刘志理. 小兴安岭不同生长型阔叶植物叶性状变异及权衡[J]. 植物生态学报, 2024, 48(3): 364-376. |
[6] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[7] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[8] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[9] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[10] | 李冠军, 陈珑, 余雯静, 苏亲桂, 吴承祯, 苏军, 李键. 固体培养内生真菌对土壤盐胁迫下木麻黄幼苗渗透调节和抗氧化系统的影响[J]. 植物生态学报, 2023, 47(6): 804-821. |
[11] | 罗娜娜, 盛茂银, 王霖娇, 石庆龙, 何宇. 长期植被恢复对中国西南喀斯特石漠化土壤活性有机碳组分含量和酶活性的影响[J]. 植物生态学报, 2023, 47(6): 867-881. |
[12] | 杜英东, 袁相洋, 冯兆忠. 不同形态氮对杨树光合特性及生长的影响[J]. 植物生态学报, 2023, 47(3): 348-360. |
[13] | 余海霞, 曲鲁平, 汤行昊, 刘南, 张子雷, 王浩, 王艺璇, 邵长亮, 董刚, 胡亚林. 闽楠和木荷非结构性碳水化合物对不同模式热浪的差异性响应[J]. 植物生态学报, 2023, 47(2): 249-261. |
[14] | 和璐璐, 张萱, 章毓文, 王晓霞, 刘亚栋, 刘岩, 范子莹, 何远洋, 席本野, 段劼. 辽东山区不同坡向长白落叶松人工林树冠特征与林木生长关系[J]. 植物生态学报, 2023, 47(11): 1523-1539. |
[15] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19