植物生态学报 ›› 2022, Vol. 46 ›› Issue (6): 722-734.DOI: 10.17521/cjpe.2021.0467
• 研究论文 • 上一篇
董涵君1, 王兴昌1, 苑丹阳1, 柳荻1, 刘玉龙2, 桑英3, 王晓春1,*()
收稿日期:
2021-12-10
接受日期:
2022-02-18
出版日期:
2022-06-20
发布日期:
2022-04-25
通讯作者:
王晓春
作者简介:
*(wangx@nefu.edu.cn) ORCID:王晓春: 0000-0002-8897-5077基金资助:
DONG Han-Jun1, WANG Xing-Chang1, YUAN Dan-Yang1, LIU Di1, LIU Yu-Long2, SANG Ying3, WANG Xiao-Chun1,*()
Received:
2021-12-10
Accepted:
2022-02-18
Online:
2022-06-20
Published:
2022-04-25
Contact:
WANG Xiao-Chun
Supported by:
摘要:
温带森林不同树种具有不同的非结构性碳水化合物(NSC)存储和利用策略, 树干是成年树木NSC主体储存库。但树干NSC径向变异和种间差异仍不清楚, 无孔材(裸子植物)、散孔材和环孔材(被子植物)所代表的木材孔性功能群对树干NSC浓度的影响尚缺乏定论。为探索温带森林主要树种树干NSC浓度随树木木材孔性和组织的变化特征, 该研究在黑龙江省穆棱市的东北典型阔叶红松(Pinus koraiensis)林中选择32个树种, 采集胸高位置树皮、边材和心材3种组织, 分析NSC浓度随木材孔性和组织的变化特征。结果表明: (1)树种、组织和木材孔性均显著影响树干的NSC浓度。3种组织可溶性糖、淀粉、总NSC浓度和糖/淀粉的种间变异较大, 变异系数最低为37% (树皮总NSC浓度), 最高达到101% (心材淀粉浓度), 树干组织、树种及其交互作用均显著影响NSC浓度。(2)总体上可溶性糖、淀粉和总NSC浓度均随径向深度增加而降低。无孔材树皮的可溶性糖浓度和糖/淀粉显著高于散孔材和环孔材, 而边材中的淀粉和总NSC浓度为环孔材>散孔材>无孔材。(3)无孔材可溶性糖、淀粉和总NSC浓度边材和心材比均在1左右, 显著低于散孔材和环孔材, 而且无孔材边材和心材之间淀粉浓度相关较紧密, 表明被子植物的边材、心材功能分化较裸子植物更为明显。研究结果表明木材孔性影响了温带树种树干NSC存储策略, 研究整树NSC以及树木生理生态学功能需要区分树干组织。
董涵君, 王兴昌, 苑丹阳, 柳荻, 刘玉龙, 桑英, 王晓春. 温带不同材性树种树干非结构性碳水化合物的径向分配差异. 植物生态学报, 2022, 46(6): 722-734. DOI: 10.17521/cjpe.2021.0467
DONG Han-Jun, WANG Xing-Chang, YUAN Dan-Yang, LIU Di, LIU Yu-Long, SANG Ying, WANG Xiao-Chun. Radial distribution differences of non-structural carbohydrates in stems of tree species of different wood in a temperate forest. Chinese Journal of Plant Ecology, 2022, 46(6): 722-734. DOI: 10.17521/cjpe.2021.0467
序号 Code | 树种 Tree species | 木材孔性 Wood porosity | 胸径 DBH (cm) | 树皮厚度 Bark width (cm) | 边材宽度 Sapwood width (cm) |
---|---|---|---|---|---|
1 | 鱼鳞云杉 Picea jezoensis var. microsperma | N | 44.40 ± 5.95 | >1.20 ± 0.33 | >11.15 ± 1.45 |
2 | 东北红豆杉 Taxus cuspidata | N | 53.70 ± 10.12 | >0.43 ± 0.23 | >2.27 ± 1.34 |
3 | 杜松 Juniperus rigida | N | 13.14 ± 2.45 | >0.50 ± 0.15 | >3.62 ± 0.73 |
4 | 赤松 Pinus densiflora | N | 43.23 ± 7.15 | >1.98 ± 0.91 | >11.25 ± 5.38 |
5 | 杉松 Abies holophylla | N | 43.87 ± 12.16 | >1.30 ± 0.63 | >7.04 ± 2.16 |
6 | 红皮云杉 Picea koraiensis | N | 50.42 ± 5.44 | >1.20 ± 0.21 | >22.38 ± 4.47 |
7 | 臭冷杉 Abies nephrolepis | N | 38.40 ± 4.59 | >0.92 ± 0.13 | >22.03 ± 3.37 |
8 | 红松 Pinus koraiensis | N | 41.88 ± 3.25 | >1.03 ± 0.18 | >11.81 ± 3.00 |
9 | 黄花落叶松 Larix olgensis | N | 42.57 ± 2.01 | >1.73 ± 0.23 | >7.12 ± 1.34 |
10 | 白桦 Betula platyphylla | D | 39.35 ± 5.93 | >1.22 ± 0.37 | >22.24 ± 3.65 |
11 | 山杨 Populus davidiana | D | 54.60 ± 7.71 | >2.58 ± 0.55 | >23.66 ± 5.40 |
12 | 紫椴 Tilia amurensis | D | 51.93 ± 9.87 | >2.06 ± 0.39 | >24.11 ± 3.13 |
13 | 青楷槭 Acer tegmentosum | D | 23.58 ± 2.26 | >0.68 ± 0.10 | >9.36 ± 3.16 |
14 | 硕桦 Betula costata | D | 47.83 ± 6.44 | >1.05 ± 0.48 | >17.71 ± 2.49 |
15 | 黑桦 Betula dahurica | D | 51.10 ± 8.50 | >3.02 ± 1.01 | >24.64 ± 3.27 |
16 | 五角枫 Acer pictum subsp. mono | D | 41.60 ± 8.81 | >1.43 ± 0.31 | >19.78 ± 4.39 |
17 | 大青杨 Populus ussuriensis | D | 52.62 ± 4.42 | >1.60 ± 0.45 | >15.11 ± 3.67 |
18 | 白皮柳 Salix pierotii | D | 40.93 ± 7.57 | >1.58 ± 0.43 | >9.52 ± 1.47 |
19 | 辽东桤木 Alnus hirsuta | D | 31.31 ± 5.19 | >0.67 ± 0.18 | >21.82 ± 1.66 |
20 | 黑樱桃 Prunus maximowiczii | D | 24.05 ± 2.60 | >0.60 ± 0.09 | >3.41 ± 0.54 |
21 | 斑叶稠李 Padus maackii | D | 32.45 ± 1.51 | >0.62 ± 0.12 | >4.08 ± 0.74 |
22 | 东北槭 Acer mandshuricum | D | 36.17 ± 2.28 | >0.90 ± 0.06 | >25.32 ± 3.62 |
23 | 裂叶榆 Ulmus laciniata | R | 42.50 ± 7.34 | >1.27 ± 0.31 | >8.10 ± 1.62 |
24 | 大果榆 Ulmus macrocarpa | R | 26.30 ± 3.11 | >1.30 ± 0.30 | >3.82 ± 1.29 |
25 | 春榆 Ulmus davidiana var. japonica | R | 38.76 ± 7.03 | >1.20 ± 0.37 | >4.02 ± 1.73 |
26 | 黄檗 Phellodendron amurense | R | 36.28 ± 8.99 | >2.60 ± 0.97 | >1.66 ± 0.70 |
27 | 朝鲜槐 Maackia amurensis | R | 21.23 ± 1.92 | >0.75 ± 0.08 | >0.88 ± 0.09 |
28 | 胡桃楸 Juglans mandshurica | S | 38.53 ± 8.04 | >1.85 ± 0.88 | >7.00 ± 1.41 |
29 | 软枣猕猴桃 Actinidia arguta | R | 8.47 ± 0.81 | >0.75 ± 0.42 | >2.27 ± 0.88 |
30 | 楤木 Aralia elata | R | 12.69 ± 6.63 | >0.99 ± 0.33 | >0.44 ± 0.16 |
31 | 蒙古栎 Quercus mongolica | R | 46.81 ± 3.64 | >2.04 ± 0.39 | >6.20 ± 1.80 |
32 | 水曲柳 Fraxinus mandshurica | R | 49.02 ± 9.15 | >2.23 ± 0.45 | >7.95 ± 1.62 |
表1 穆棱32个树种样木的树干特征(平均值±标准差)
Table 1 Trunk characteristics of sample trees of 32 species in Muling (mean ± SD)
序号 Code | 树种 Tree species | 木材孔性 Wood porosity | 胸径 DBH (cm) | 树皮厚度 Bark width (cm) | 边材宽度 Sapwood width (cm) |
---|---|---|---|---|---|
1 | 鱼鳞云杉 Picea jezoensis var. microsperma | N | 44.40 ± 5.95 | >1.20 ± 0.33 | >11.15 ± 1.45 |
2 | 东北红豆杉 Taxus cuspidata | N | 53.70 ± 10.12 | >0.43 ± 0.23 | >2.27 ± 1.34 |
3 | 杜松 Juniperus rigida | N | 13.14 ± 2.45 | >0.50 ± 0.15 | >3.62 ± 0.73 |
4 | 赤松 Pinus densiflora | N | 43.23 ± 7.15 | >1.98 ± 0.91 | >11.25 ± 5.38 |
5 | 杉松 Abies holophylla | N | 43.87 ± 12.16 | >1.30 ± 0.63 | >7.04 ± 2.16 |
6 | 红皮云杉 Picea koraiensis | N | 50.42 ± 5.44 | >1.20 ± 0.21 | >22.38 ± 4.47 |
7 | 臭冷杉 Abies nephrolepis | N | 38.40 ± 4.59 | >0.92 ± 0.13 | >22.03 ± 3.37 |
8 | 红松 Pinus koraiensis | N | 41.88 ± 3.25 | >1.03 ± 0.18 | >11.81 ± 3.00 |
9 | 黄花落叶松 Larix olgensis | N | 42.57 ± 2.01 | >1.73 ± 0.23 | >7.12 ± 1.34 |
10 | 白桦 Betula platyphylla | D | 39.35 ± 5.93 | >1.22 ± 0.37 | >22.24 ± 3.65 |
11 | 山杨 Populus davidiana | D | 54.60 ± 7.71 | >2.58 ± 0.55 | >23.66 ± 5.40 |
12 | 紫椴 Tilia amurensis | D | 51.93 ± 9.87 | >2.06 ± 0.39 | >24.11 ± 3.13 |
13 | 青楷槭 Acer tegmentosum | D | 23.58 ± 2.26 | >0.68 ± 0.10 | >9.36 ± 3.16 |
14 | 硕桦 Betula costata | D | 47.83 ± 6.44 | >1.05 ± 0.48 | >17.71 ± 2.49 |
15 | 黑桦 Betula dahurica | D | 51.10 ± 8.50 | >3.02 ± 1.01 | >24.64 ± 3.27 |
16 | 五角枫 Acer pictum subsp. mono | D | 41.60 ± 8.81 | >1.43 ± 0.31 | >19.78 ± 4.39 |
17 | 大青杨 Populus ussuriensis | D | 52.62 ± 4.42 | >1.60 ± 0.45 | >15.11 ± 3.67 |
18 | 白皮柳 Salix pierotii | D | 40.93 ± 7.57 | >1.58 ± 0.43 | >9.52 ± 1.47 |
19 | 辽东桤木 Alnus hirsuta | D | 31.31 ± 5.19 | >0.67 ± 0.18 | >21.82 ± 1.66 |
20 | 黑樱桃 Prunus maximowiczii | D | 24.05 ± 2.60 | >0.60 ± 0.09 | >3.41 ± 0.54 |
21 | 斑叶稠李 Padus maackii | D | 32.45 ± 1.51 | >0.62 ± 0.12 | >4.08 ± 0.74 |
22 | 东北槭 Acer mandshuricum | D | 36.17 ± 2.28 | >0.90 ± 0.06 | >25.32 ± 3.62 |
23 | 裂叶榆 Ulmus laciniata | R | 42.50 ± 7.34 | >1.27 ± 0.31 | >8.10 ± 1.62 |
24 | 大果榆 Ulmus macrocarpa | R | 26.30 ± 3.11 | >1.30 ± 0.30 | >3.82 ± 1.29 |
25 | 春榆 Ulmus davidiana var. japonica | R | 38.76 ± 7.03 | >1.20 ± 0.37 | >4.02 ± 1.73 |
26 | 黄檗 Phellodendron amurense | R | 36.28 ± 8.99 | >2.60 ± 0.97 | >1.66 ± 0.70 |
27 | 朝鲜槐 Maackia amurensis | R | 21.23 ± 1.92 | >0.75 ± 0.08 | >0.88 ± 0.09 |
28 | 胡桃楸 Juglans mandshurica | S | 38.53 ± 8.04 | >1.85 ± 0.88 | >7.00 ± 1.41 |
29 | 软枣猕猴桃 Actinidia arguta | R | 8.47 ± 0.81 | >0.75 ± 0.42 | >2.27 ± 0.88 |
30 | 楤木 Aralia elata | R | 12.69 ± 6.63 | >0.99 ± 0.33 | >0.44 ± 0.16 |
31 | 蒙古栎 Quercus mongolica | R | 46.81 ± 3.64 | >2.04 ± 0.39 | >6.20 ± 1.80 |
32 | 水曲柳 Fraxinus mandshurica | R | 49.02 ± 9.15 | >2.23 ± 0.45 | >7.95 ± 1.62 |
非结构性碳水化合物 Non-structural carbohydrates | 组织 Tissue | 平均值 Mean (%) | 标准差 SD | 变异系数 Coefficient of variation | 极差 Range |
---|---|---|---|---|---|
可溶性糖 Soluble sugar | 树皮 Bark | 7.52a | 3.42 | 45.43 | 17.55 |
边材 Sapwood | 2.04b | 1.08 | 52.94 | 5.44 | |
心材 Heartwood | 1.67b | 0.92 | 55.09 | 5.47 | |
淀粉 Starch | 树皮 Bark | 4.78a | 2.98 | 62.40 | 18.56 |
边材 Sapwood | 2.54b | 1.30 | 51.18 | 7.71 | |
心材 Heartwood | 1.85b | 1.86 | 100.54 | 14.94 | |
总非结构性碳水化合物 Total non-structural carbohydrates | 树皮 Bark | 12.33a | 4.52 | 36.66 | 25.77 |
边材 Sapwood | 4.58b | 1.90 | 41.48 | 9.95 | |
心材 Heartwood | 3.52b | 2.22 | 63.07 | 16.44 | |
可溶性糖与淀粉浓度比 The concentration ratio of soluble sugar and starch | 树皮 Bark | 2.13a | 1.65 | 77.46 | 9.05 |
边材 Sapwood | 0.91b | 0.59 | 64.84 | 3.31 | |
心材 Heartwood | 1.11b | 0.71 | 63.96 | 4.00 |
表2 穆棱32个温带树种树干不同组织非结构性碳水化合物浓度
Table 2 Non-structural carbohydrates concentration in different stem tissues for 32 tree species in Muling
非结构性碳水化合物 Non-structural carbohydrates | 组织 Tissue | 平均值 Mean (%) | 标准差 SD | 变异系数 Coefficient of variation | 极差 Range |
---|---|---|---|---|---|
可溶性糖 Soluble sugar | 树皮 Bark | 7.52a | 3.42 | 45.43 | 17.55 |
边材 Sapwood | 2.04b | 1.08 | 52.94 | 5.44 | |
心材 Heartwood | 1.67b | 0.92 | 55.09 | 5.47 | |
淀粉 Starch | 树皮 Bark | 4.78a | 2.98 | 62.40 | 18.56 |
边材 Sapwood | 2.54b | 1.30 | 51.18 | 7.71 | |
心材 Heartwood | 1.85b | 1.86 | 100.54 | 14.94 | |
总非结构性碳水化合物 Total non-structural carbohydrates | 树皮 Bark | 12.33a | 4.52 | 36.66 | 25.77 |
边材 Sapwood | 4.58b | 1.90 | 41.48 | 9.95 | |
心材 Heartwood | 3.52b | 2.22 | 63.07 | 16.44 | |
可溶性糖与淀粉浓度比 The concentration ratio of soluble sugar and starch | 树皮 Bark | 2.13a | 1.65 | 77.46 | 9.05 |
边材 Sapwood | 0.91b | 0.59 | 64.84 | 3.31 | |
心材 Heartwood | 1.11b | 0.71 | 63.96 | 4.00 |
图1 穆棱32个树种树干不同组织可溶性糖浓度。树种序号同表1。DM, 干质量。
Fig. 1 Concentrations of soluble sugar in different trunk tissues of 32 tree species in Muling. Code of tree species see Table 1. DM, dry mass.
图2 穆棱32个树种树干不同组织淀粉浓度。树种序号同表1。DM, 干质量。
Fig. 2 Concentrations of starch in different trunk tissues of 32 tree species in Muling. Code of tree species see Table 1. DM, dry mass.
图3 穆棱32个树种树干不同组织总非结构性碳水化合物(NSC)浓度。树种序号同表1。DM, 干质量。
Fig. 3 Concentrations of total non-structural carbohydrates (NSC) in different trunk tissues of 32 tree species see in Muling. Code of tree species see Table 1. DM, dry mass.
参数 Parameter | 变异来源 Source of variation | df | F | p |
---|---|---|---|---|
可溶性糖 Soluble sugar | 组织 Tissue | 2 | 550.93 | <0.01 |
木材孔性 Wood porosity | 2 | 7.98 | <0.01 | |
组织×木材孔性 Tissue × wood porosity | 4 | 21.13 | <0.01 | |
淀粉 Starch | 组织 Tissue | 2 | 112.96 | <0.01 |
木材孔性 Wood porosity | 2 | 16.84 | <0.01 | |
组织×木材孔性 Tissue × wood porosity | 4 | 12.02 | <0.01 | |
总非结构性碳水化合物 Total non-structural carbohydrates | 组织 Tissue | 2 | 513.81 | <0.01 |
木材孔性 Wood porosity | 2 | 3.41 | 0.034 | |
组织×木材孔性 Tissue × wood porosity | 4 | 11.00 | <0.01 | |
可溶性糖/淀粉浓度比 The concentration ratio of soluble sugar to starch | 组织 Tissue | 2 | 98.04 | <0.01 |
木材孔性 Wood porosity | 2 | 23.61 | <0.01 | |
组织×木材孔性 Tissue × wood porosity | 4 | 23.38 | <0.01 |
表3 穆棱32个树种树干非结构性碳水化合物浓度的双因素方差分析
Table 3 Two-way analysis of variance on the concentrations of trunk nonstructural carbohydrates in 32 tree species in Muling
参数 Parameter | 变异来源 Source of variation | df | F | p |
---|---|---|---|---|
可溶性糖 Soluble sugar | 组织 Tissue | 2 | 550.93 | <0.01 |
木材孔性 Wood porosity | 2 | 7.98 | <0.01 | |
组织×木材孔性 Tissue × wood porosity | 4 | 21.13 | <0.01 | |
淀粉 Starch | 组织 Tissue | 2 | 112.96 | <0.01 |
木材孔性 Wood porosity | 2 | 16.84 | <0.01 | |
组织×木材孔性 Tissue × wood porosity | 4 | 12.02 | <0.01 | |
总非结构性碳水化合物 Total non-structural carbohydrates | 组织 Tissue | 2 | 513.81 | <0.01 |
木材孔性 Wood porosity | 2 | 3.41 | 0.034 | |
组织×木材孔性 Tissue × wood porosity | 4 | 11.00 | <0.01 | |
可溶性糖/淀粉浓度比 The concentration ratio of soluble sugar to starch | 组织 Tissue | 2 | 98.04 | <0.01 |
木材孔性 Wood porosity | 2 | 23.61 | <0.01 | |
组织×木材孔性 Tissue × wood porosity | 4 | 23.38 | <0.01 |
图4 穆棱32个树种3种木材孔性间树干不同组织非结构性碳水化合物(NSC)浓度比较(平均值±标准差)。D, 散孔材; N, 无孔材; R, 环孔材。DM, 干质量。不同大小写字母分别表示不同木材孔性间、不同组织间差异显著(p < 0.05)。
Fig. 4 Comparison of the concentrations of nonstructural carbohydrates (NSC) in various trunk tissues among the three wood porosity groups of thirty-two tree species in Muling (mean ± SD). D, diffuse-porous; N, non-porous; R, ring-porous. DM, dry mass. Different uppercase and lowercase letters represent significant differences between wood porosity groups and tissues at the 0.05 level.
图5 穆棱32个树种3种木材孔性间边材与心材非结构性碳水化合物(NSC)浓度比值比较。D, 散孔材; N, 无孔材; R, 环孔材。不同大写字母表示不同木材孔性间差异显著(p < 0.05)。
Fig. 5 Comparison of the ratio of concentrations of non-structural carbohydrates (NSC) in sapwood and heartwood among the three wood porosity groups of thirty-two tree species in Muling. D, diffuse-porous; N, non-porous; R, ring-porous. Different uppercase letters represent significant differences between wood porosity groups (p < 0.05).
树种材性 Wood porosity | 组织 Tissue | 样本数 Sample number | 可溶性糖-淀粉间Pearson相关系数 Pearson correlation coefficient between soluble sugar and starch | p |
---|---|---|---|---|
无孔材 Non-porous wood | 树皮 Bark | 65 | 0.16 | 0.22 |
边材 Sapwood | 65 | 0.15 | 0.22 | |
心材 Heartwood | 65 | 0.10 | 0.41 | |
散孔材 Diffuse-porous wood | 树皮 Bark | 85 | 0.10 | 0.34 |
边材 Sapwood | 85 | -0.01 | 0.92 | |
心材 Heartwood | 67 | 0.47** | <0.01 | |
环孔材 Ring-porous wood | 树皮 Bark | 66 | 0.15 | 0.22 |
边材 Sapwood | 67 | 0.09 | 0.49 | |
心材 Heartwood | 67 | 0.36** | <0.01 |
表4 穆棱32个树种不同木材孔性和树干不同组织可溶性糖与淀粉浓度的相关性分析
Table 4 Correlation analysis between soluble sugar and starch concentration for various trunk tissues and wood porosity groups of thirty-two tree species in Muling
树种材性 Wood porosity | 组织 Tissue | 样本数 Sample number | 可溶性糖-淀粉间Pearson相关系数 Pearson correlation coefficient between soluble sugar and starch | p |
---|---|---|---|---|
无孔材 Non-porous wood | 树皮 Bark | 65 | 0.16 | 0.22 |
边材 Sapwood | 65 | 0.15 | 0.22 | |
心材 Heartwood | 65 | 0.10 | 0.41 | |
散孔材 Diffuse-porous wood | 树皮 Bark | 85 | 0.10 | 0.34 |
边材 Sapwood | 85 | -0.01 | 0.92 | |
心材 Heartwood | 67 | 0.47** | <0.01 | |
环孔材 Ring-porous wood | 树皮 Bark | 66 | 0.15 | 0.22 |
边材 Sapwood | 67 | 0.09 | 0.49 | |
心材 Heartwood | 67 | 0.36** | <0.01 |
木材孔性 Wood porosity | NSC组分 NSC component | 样本数 Sample number | 树皮-边材 Bark-sapwood | 样本数 Sample number | 边材-心材 Sapwood-heartwood |
---|---|---|---|---|---|
无孔材 Non-porous wood | 可溶性糖 Soluble sugar | 65 | -0.15 | 65 | -0.12 |
淀粉 Starch | 65 | -0.18 | 65 | 0.74** | |
NSC | 65 | -0.13 | 65 | 0.59** | |
散孔材 Diffuse-porous wood | 可溶性糖 Soluble sugar | 85 | 0.10 | 67 | 0.45** |
淀粉 Starch | 85 | -0.04 | 67 | -0.03 | |
NSC | 85 | -0.21 | 67 | 0.30* | |
环孔材 Ring-porous wood | 可溶性糖 Soluble sugar | 66 | 0.32** | 64 | 0.28* |
淀粉 Starch | 66 | -0.05 | 64 | 0.29* | |
NSC | 66 | 0.36** | 64 | 0.29* |
表5 穆棱32个树种树干非结构性碳水化合物(NSC)浓度在树皮和边材之间、边材和心材之间的相关性分析
Table 5 Correlation analysis of concentrations of non-structural carbohydrates (NSC) between bark and sapwood, sapwood and heartwood of thirty-two tree species in Muling
木材孔性 Wood porosity | NSC组分 NSC component | 样本数 Sample number | 树皮-边材 Bark-sapwood | 样本数 Sample number | 边材-心材 Sapwood-heartwood |
---|---|---|---|---|---|
无孔材 Non-porous wood | 可溶性糖 Soluble sugar | 65 | -0.15 | 65 | -0.12 |
淀粉 Starch | 65 | -0.18 | 65 | 0.74** | |
NSC | 65 | -0.13 | 65 | 0.59** | |
散孔材 Diffuse-porous wood | 可溶性糖 Soluble sugar | 85 | 0.10 | 67 | 0.45** |
淀粉 Starch | 85 | -0.04 | 67 | -0.03 | |
NSC | 85 | -0.21 | 67 | 0.30* | |
环孔材 Ring-porous wood | 可溶性糖 Soluble sugar | 66 | 0.32** | 64 | 0.28* |
淀粉 Starch | 66 | -0.05 | 64 | 0.29* | |
NSC | 66 | 0.36** | 64 | 0.29* |
[1] |
Anderegg WRL, Callaway ES (2012). Infestation and hydraulic consequences of induced carbon starvation. Plant Physiology, 159, 1866-1874.
DOI PMID |
[2] |
Aritsara ANA, Razakandraibe VM, Ramananantoandro T, Gleason SM, Cao KF (2021). Increasing axial parenchyma fraction in the Malagasy Magnoliids facilitated the co- soptimisation of hydraulic efficiency and safety. New Phytologist, 229, 1467-1480.
DOI URL |
[3] |
Barbaroux C, Bréda N (2002). Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees. Tree Physiology, 22, 1201-1210.
PMID |
[4] |
Barbaroux C, Bréda N, Dufrêne E (2003). Distribution of above-ground and below-ground carbohydrate reserves in adult trees of two contrasting broad-leaved species (Quercus petraea and Fagus sylvatica). New Phytologist, 157, 605-615.
DOI PMID |
[5] |
Chantuma P, Lacointe A, Kasemsap P, Thanisawanyangkura S, Gohet E, Clément A, Guilliot A, Améglio T, Thaler P (2009). Carbohydrate storage in wood and bark of rubber trees submitted to different level of C demand induced by latex tapping. Tree Physiology, 29, 1021-1031.
DOI PMID |
[6] |
Chapin III FS, Schulze E, Mooney HA (1990). The ecology and economics of storage in plants. Annual Review of Ecology and Systematics, 21, 423-447.
DOI URL |
[7] |
Chen ZC, Zhu SD, Zhang YT, Luan JW, Li S, Sun PS, Wan XC, Liu SR (2020). Tradeoff between storage capacity and embolism resistance in the xylem of temperate broadleaf tree species. Tree Physiology, 40, 1029-1042.
DOI URL |
[8] | Cheng FY, Wang CK (2016). Impacts of tree species and tissue on estimation of nonstructural carbohydrates storage in trunk. Scientia Silvae Sinicae, 52(2), 1-9. |
[成方妍, 王传宽 (2016). 树种和组织对树干非结构性碳水化合物储量估测的影响. 林业科学, 52(2), 1-9.] | |
[9] |
D'Andrea E, Scartazza A, Battistelli A, Collalti A, Proietti S, Rezaie N, Matteucci G, Moscatello S (2021). Unravelling resilience mechanisms in forests: role of non-structural carbohydrates in responding to extreme weather events. Tree Physiology, 41, 1808-1818.
DOI PMID |
[10] |
Epron D, Dannoura M, Hölttä T (2019). Introduction to the invited issue on phloem function and dysfunction. Tree Physiology, 39, 167-172.
DOI URL |
[11] |
Furze ME, Huggett BA, Aubrecht DM, Stolz CD, Carbone MS, Richardson AD (2019). Whole-tree nonstructural carbohydrate storage and seasonal dynamics in five temperate species. New Phytologist, 221, 1466-1477.
DOI URL |
[12] |
Godfrey JM, Riggio J, Orozco J, Guzmán-Delgado P, Chin ARO, Zwieniecki MA (2020). Ray fractions and carbohydrate dynamics of tree species along a 2750 m elevation gradient indicate climate response, not spatial storage limitation. New Phytologist, 225, 2314-2330.
DOI PMID |
[13] |
Hartmann H, Trumbore S (2016). Understanding the roles of nonstructural carbohydrates in forest trees-From what we can measure to what we want to know. New Phytologist, 211, 386-403.
DOI PMID |
[14] | Hoch G, Richter A, Körner C (2003). Non-structural carbon compounds in temperate forest trees. Plant, Cell & Environment, 26, 1067-1081. |
[15] |
Magel EA, Drouet A, Claudot AC, Ziegler H (1991). Formation of heartwood substances in the stemwood of Robinia pseudoacacia L. Trees, 5, 203-207.
DOI URL |
[16] |
Morris H, Plavcová L, Gorai M, Klepsch MM, Kotowska M, Jochen Schenk H, Jansen S (2018). Vessel-associated cells in angiosperm xylem: highly specialized living cells at the symplast-apoplast boundary. American Journal of Botany, 105, 151-160.
DOI PMID |
[17] |
Nakada R, Fukatsu E (2012). Seasonal variation of heartwood formation in Larix kaempferi. Tree Physiology, 32, 1497-1508.
DOI PMID |
[18] |
O'Brien MJ, Leuzinger S, Philipson CD, Tay J, Hector A (2014). Drought survival of tropical tree seedlings enhanced by non-structural carbohydrate levels. Nature Climate Change, 4, 710-714.
DOI URL |
[19] | Plavcová L, Jansen S (2015). The role of xylem parenchyma in the storage and utilization of nonstructural carbohydrates. Functional and Ecological Xylem Anatomy, 209-234. |
[20] | Pratt RB, Jacobsen AL (2017). Conflicting demands on angiosperm xylem: tradeoffs among storage, transport and biomechanics. Plant, Cell & Environment, 40, 897-913. |
[21] |
Richardson AD, Carbone MS, Keenan TF, Czimczik CI, Hollinger DY, Murakami P, Schaberg PG, Xu XM (2013). Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees. New Phytologist, 197, 850-861.
DOI PMID |
[22] |
Rosell JA (2019). Bark in woody plants: understanding the diversity of a multifunctional structure. Integrative and Comparative Biology, 59, 535-547.
DOI URL |
[23] | Rosell JA, Piper FI, Jiménez-Vera C, Vergílio PCB, Marcati CR, Castorena M, Olson ME (2021). Inner bark as a crucial tissue for non-structural carbohydrate storage across three tropical woody plant communities. Plant, Cell & Environment, 44, 156-170. |
[24] | Sevanto S, McDowell NG, Dickman LT, Pangle R, Pockman WT (2014). How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant, Cell & Environment, 37, 153-161. |
[25] | Spicer R (2005). Senescence in secondary xylem: heartwood formation as an active developmental program. Vascular Transport in Plants, 22, 457-475. |
[26] | Spicer R (2016). Variation in angiosperm wood structure and its physiological and evolutionary significance//Groover A, Cronk Q. Comparative and Evolutionary Genomics of Angiosperm Trees, Plant Genetics and Genomics: Crops and Models. Springer, Cham, Switzerland. Switzerland. 19-60. |
[27] | Taylor AM, Gartner BL, Morrell JJ (2002). Heartwood formation and natural durability: a review. Wood and Fiber Science, 34, 587-611. |
[28] | Tyree MT, Zimmermann MH (2002). Xylem Structure and the Ascent of Sap. Springer, Berlin. |
[29] | Wang C, Li YX, Wang ZC, Meng YB (2021). Analysis of NSC variation sources of main tree species in Xiaoxing'An mountains conifer and broadleaf mixed natural secondary forest. Forest Engineering, 37(3), 36-43. |
[王晨, 李耀翔, 王子纯, 孟永斌 (2021). 小兴安岭针阔混交天然次生林主要树种NSC变异来源分析. 森林工程, 37(3), 36-43.] | |
[30] | Wang K, Song Q, Zhang RS, Zhang DP, Sun J (2020). Distribution characteristics of non-structural carbohydrate in main tree species of shelterbelt forests in horqin sandy land. Scientia Silvae Sinicae, 56(12), 39-48. |
[王凯, 宋琪, 张日升, 张大鹏, 孙菊 (2020). 科尔沁沙地防护林主要树种的非结构性碳水化合物分布特征. 林业科学, 56(12), 39-48.] | |
[31] |
Wang XC, Wang CK, Zhang QZ, Quan XK (2010). Heartwood and sapwood allometry of seven Chinese temperate tree species. Annals of Forest Science, 67, 410. DOI: 10.1051/forest/2009131.
DOI URL |
[32] | Wei LN, Zhou GJ, Sun HL, Zhao X (2021). Effects of nitrogen and phosphorus fertilization on photosynthetic characteristics and non-structural carbohydrate of Fraxinus mandshurica. Forest Engineering, 37(5), 20-27. |
[魏丽娜, 周冠军, 孙海龙, 赵鑫 (2021). 氮磷施肥对水曲柳叶片光合特征及体内非结构性碳的影响. 森林工程, 37(5), 20-27.] | |
[33] |
Yang QP, Zhang WD, Li RS, Xu M, Wang SL (2016). Different responses of non-structural carbohydrates in above- ground tissues/organs and root to extreme drought and re- watering in Chinese fir (Cunninghamia lanceolata) saplings. Trees, 30, 1863-1871.
DOI URL |
[34] |
Yu LM, Wang CK, Wang XC (2011). Allocation of nonstructural carbohydrates for three temperate tree species in Northeast China. Chinese Journal of Plant Ecology, 35, 1245-1255.
DOI URL |
[于丽敏, 王传宽, 王兴昌 (2011). 三种温带树种非结构性碳水化合物的分配. 植物生态学报, 35, 1245-1255.]
DOI |
|
[35] |
Yuan DY, Zhu LJ, Cherubini P, Li ZS, Zhang YD, Wang XC (2021). Species-specific indication of 13 tree species growth on climate warming in temperate forest community of northeast China. Ecological Indicators, 133, 108389. DOI: 10.1016/j.ecolind.2021.108389.
DOI URL |
[36] |
Zhang HY, Wang CK, Wang XC (2014). Spatial variations in non-structural carbohydrates in stems of twelve temperate tree species. Trees, 28, 77-89.
DOI URL |
[37] | Zhang HY, Wang CK, Wang XC, Cheng FY (2013). Spatial variation of non-structural carbohydrates in Betula platyphylla and Tilia amurensis stems. Chinese Journal of Applied Ecology, 24, 3050-3056. |
[张海燕, 王传宽, 王兴昌, 成方妍 (2013). 白桦和紫椴树干非结构性碳水化合物的空间变异. 应用生态学报, 24, 3050-3056.] | |
[38] | Ziemińska K, Rosa E, Gleason SM, Holbrook NM (2020). Wood day capacitance is related to water content, wood density, and anatomy across 30 temperate tree species. Plant, Cell & Environment, 43, 3048-3067. |
[1] | 蔡慧颖 李兰慧 林阳 梁亚涛 杨光 孙龙. 白桦叶片和细根非结构性碳水化合物对火后时间的响应[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 俞庆水 倪晓凤 吉成均 朱江玲 唐志尧 方精云. 10年氮磷添加对海南尖峰岭两种热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 白雨鑫, 苑丹阳, 王兴昌, 刘玉龙, 王晓春. 东北地区3种桦木木质部导管特征对气候变化响应的趋同与差异[J]. 植物生态学报, 2023, 47(8): 1144-1158. |
[4] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[5] | 余海霞, 曲鲁平, 汤行昊, 刘南, 张子雷, 王浩, 王艺璇, 邵长亮, 董刚, 胡亚林. 闽楠和木荷非结构性碳水化合物对不同模式热浪的差异性响应[J]. 植物生态学报, 2023, 47(2): 249-261. |
[6] | 刘美君, 陈秋文, 吕金林, 李国庆, 杜盛. 黄土丘陵区辽东栎和刺槐树干径向生长与微变化季节动态特征[J]. 植物生态学报, 2023, 47(2): 227-237. |
[7] | 陈图强, 徐贵青, 刘深思, 李彦. 干旱胁迫下梭梭水力性状调整与非结构性碳水化合物动态[J]. 植物生态学报, 2023, 47(10): 1407-1421. |
[8] | 李变变, 张凤华, 赵亚光, 孙秉楠. 不同刈割程度对油莎豆非结构性碳水化合物代谢及生物量的影响[J]. 植物生态学报, 2023, 47(1): 101-113. |
[9] | 伍敏, 田雨, 樊大勇, 张祥雪. 干旱胁迫下毛白杨和元宝槭的水力学调控[J]. 植物生态学报, 2022, 46(9): 1086-1097. |
[10] | 李思源, 张照鑫, 饶良懿. 桑苗非结构性碳水化合物和生长激素对水淹胁迫的响应[J]. 植物生态学报, 2022, 46(3): 311-320. |
[11] | 秦慧君, 焦亮, 周怡, 薛儒鸿, 柒常亮, 杜达石. 祁连山优势树木碳水化合物资源分配的海拔和树种效应[J]. 植物生态学报, 2022, 46(2): 208-219. |
[12] | 于海英, 杨莉琳, 付素静, 张志敏, 姚琦馥. 暖温带森林木本植物展叶始期对低温和热量累积变化的响应[J]. 植物生态学报, 2022, 46(12): 1573-1584. |
[13] | 林夏珍, 刘林, 董婷婷, 方琦博, 郭庆学. 非结构性碳水化合物与氮分配对美洲黑杨和青杨耐盐能力的影响[J]. 植物生态学报, 2021, 45(9): 961-971. |
[14] | 吴秋霞, 吴福忠, 胡仪, 康自佳, 张耀艺, 杨静, 岳楷, 倪祥银, 杨玉盛. 亚热带同质园11个树种新老叶非结构性碳水化合物含量比较[J]. 植物生态学报, 2021, 45(7): 771-779. |
[15] | 赵文芹, 席本野, 刘金强, 刘洋, 邹松言, 宋午椰, 陈立欣. 不同灌溉条件下杨树人工林蒸腾过程及环境响应[J]. 植物生态学报, 2021, 45(4): 370-382. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19